JPS61193716A - Control method of rolled plate thickness of strip - Google Patents

Control method of rolled plate thickness of strip

Info

Publication number
JPS61193716A
JPS61193716A JP60034412A JP3441285A JPS61193716A JP S61193716 A JPS61193716 A JP S61193716A JP 60034412 A JP60034412 A JP 60034412A JP 3441285 A JP3441285 A JP 3441285A JP S61193716 A JPS61193716 A JP S61193716A
Authority
JP
Japan
Prior art keywords
plate thickness
control
difference
amount
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60034412A
Other languages
Japanese (ja)
Inventor
Takeshi Katayama
片山 健史
Hideki Ueki
秀樹 植木
Katsuhiko Kashiba
柏葉 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60034412A priority Critical patent/JPS61193716A/en
Publication of JPS61193716A publication Critical patent/JPS61193716A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To correct the inlet side plate thickness influence coefficient and controlled valuable influence coefficient and to control the plate thickness with high accuracy by applying a Kalman filter for the difference in the control data of a control time and the control data before the fixed control time. CONSTITUTION:The inlet side plate thickness influence coefficient to minimize the outlet side plate thickness deviation and control quantity influence coefficient are calculated by applying Kalman filter to these differences DELTAH1(K), DELTAU(K) and DELTAH(K) by finding the difference in the deviation DELTAh1(K) in the inlet side measured plate thickness against the inlet side reference plate thickness and the deviation DELTAh1(K-1) in the inlet side measured plate thickness before the fixed control period, the controlled valuable DELTAU(K) of the strip part which obtains the inlet side measured value and the difference DELTAH2(K) between the outlet side plate thickness deviation DELTAh2(K) against the target plate thickness of the strip part which gives the controlled valuable and the outlet side plate thickness deviation DELTAh2(K-1) before the fixed control period, both influence coefficients are corrected by the calculated value and the controlled valuable is determined by the corrected influence coefficient.

Description

【発明の詳細な説明】 “ 〔産業上の利用分野〕 本発明はストリップの圧延板厚制御方法に関し、特に、
圧延スタンドの入側の板厚に応じて圧下量、張力等を制
御して出側板厚を目標板厚に制御するフィード・フォワ
ード式板厚制御方法に関する。
[Detailed Description of the Invention] “ [Industrial Application Field] The present invention relates to a method for controlling the rolled thickness of a strip, and in particular,
The present invention relates to a feed-forward plate thickness control method that controls the thickness of the plate on the exit side to a target plate thickness by controlling the reduction amount, tension, etc. according to the plate thickness on the input side of a rolling stand.

〔従来の技術〕[Conventional technology]

ストリップ圧延、たとえばゼンジミア圧延機(以下2M
ミルと称する)によるステンレス鋼などの特殊鋼の圧延
においては、ミル構造上圧延反力が正確に把握できない
ために、板厚制御は圧延ロール圧下量(作業ロール間隙
)の制御、あるいは圧延ロール上流かあるいは下流の少
くともいずれかでのストリップの張力の制御(前方張力
制御または後方張力制御)により行なわれる。
Strip rolling, for example, Sendzimir rolling mill (hereinafter referred to as 2M
When rolling special steel such as stainless steel using a mill, the rolling reaction force cannot be accurately determined due to the structure of the mill. or by controlling the tension in the strip (forward tension control or rear tension control) at least either downstream or downstream.

このような板厚制御では、板厚測定を圧延ロール直下で
行なうことができないので、板厚測定は圧延ロールより
も出側(下流側)の点で行わざるを得ない。従って、板
厚測定点(出側板厚測定点)と制御点(ロール直下)と
の間には距離的ずれがあり、圧延材がこの距離を移動す
る時間だけ制御の遅れ時間が伴うため通常のフィードバ
ック制御では高精度の制御系を実現できない。従ってこ
の種の板厚制御では通常のフィードバック制御に代え、
圧延ロール入側(上流側)での板厚を測定しその測定値
に対応してロール圧下量又は張力を制御するフィードフ
ォワード制御が主流となっている。
In such plate thickness control, the plate thickness cannot be measured directly below the rolling rolls, so the plate thickness measurement must be performed at a point on the exit side (downstream side) of the rolling rolls. Therefore, there is a distance difference between the thickness measurement point (thickness measurement point on the exit side) and the control point (directly below the roll), and there is a delay time in control for the time the rolled material moves this distance, so the normal Feedback control cannot achieve a highly accurate control system. Therefore, in this type of plate thickness control, instead of normal feedback control,
Feedforward control, which measures the plate thickness at the entrance side (upstream side) of the rolling rolls and controls the roll reduction amount or tension in accordance with the measured value, has become mainstream.

フィードフォワード制御の制御利得は、一般に圧延機お
よび圧延材の特性から定められる。それらの特性には、
圧延機本体の特性、圧下装置や張力制御装置の特性、こ
れらの装置を駆動付勢する制御回路の特性、および圧延
材の特性等が含まれる。これらの緒特性の中には、事前
に十分な精度で把握できないものがある。たとえば、圧
延材の変形抵抗は、同一種類の素材においてさえも素材
毎に異なり、更には圧延時の圧下量、圧延速度等の圧延
条件によっても変化する。また、圧延機本体の特性であ
っても、例えば圧延機のばね定数などは圧延ロールの取
り替えによって変化することがある。事前に把握できな
いこれらの変動要因は、フィードフォワード制御におけ
る制御誤差の原因となる。
The control gain of feedforward control is generally determined from the characteristics of the rolling mill and the rolled material. Those characteristics include;
This includes the characteristics of the rolling mill main body, the characteristics of the rolling device and tension control device, the characteristics of the control circuit that drives and energizes these devices, and the characteristics of the rolled material. Some of these characteristics cannot be known in advance with sufficient accuracy. For example, the deformation resistance of a rolled material differs from material to material even in the same type of material, and further changes depending on rolling conditions such as the amount of reduction during rolling and the rolling speed. Further, even the characteristics of the rolling mill main body, such as the spring constant of the rolling mill, may change due to replacement of rolling rolls. These fluctuation factors that cannot be grasped in advance cause control errors in feedforward control.

そこで本願出願人は先に特願昭56−125036 (
特開昭58−25807号公報)において、フィードフ
ォワード制御における板厚制御精度を高めることを主目
的とし、合わせて圧延中の変動要因による板厚偏差を防
止しかつ変動要因に起因する制?Ifiの過不足をオン
ラインで修正することを企図したフィードフォワード式
の圧延板厚制御方法を開示した。
Therefore, the applicant of this application first applied for Japanese Patent Application No. 56-125036 (
In Japanese Patent Application Laid-Open No. 58-25807), the main purpose is to improve the accuracy of plate thickness control in feedforward control, and also to prevent plate thickness deviation due to fluctuation factors during rolling, and to prevent thickness deviation due to fluctuation factors during rolling. A feedforward type rolling plate thickness control method has been disclosed that is intended to correct excess or deficiency of Ifi on-line.

本願発明はこの先行出願に開示した技術を基礎とするも
のであるので、この先行技術について簡単に説明する。
Since the present invention is based on the technology disclosed in this prior application, this prior art will be briefly explained.

一般に圧延機による板厚圧延の特性は、圧延理論と総称
される多くの理論で解析されており、2Mミルの如き可
逆圧延機の一圧延バス内では次の近似式(1)が成立す
ることが知られている。
In general, the characteristics of plate thickness rolling by a rolling mill are analyzed using many theories collectively called rolling theory, and the following approximate equation (1) holds true within one rolling bus of a reversible rolling mill such as a 2M mill. It has been known.

K−δP/δh2 に ここに、 Δh2(k)二人側板厚偏差 Δtl2(k)  :出側板厚偏差 Δ5(k):圧下制御量 ΔT(k)  :張力制御Ii量 λ  :入側板厚影響係数 ν  :ロール圧下量影響係数 ξ  :張力影響係数 P  :圧延圧力 K  :ミルばね定数 (1)式より、λ、νおよびξが正確に把握できれば、
入側板圧偏差Δh r (k)に対応して、出側板厚偏
差Δh2(k)を零とする制御量(変更N)ΔS (k
)およびΔT (k)を予め求めうる。λ、νおよびξ
は圧延理論に基づき、各パスの圧延条件下で予め計算で
きるが、前述の如くこれらは、種々の要因による誤差を
含んだ値となっている。
K-δP/δh2 where: Δh2(k) Thickness deviation on the two-person side Δtl2(k) : Thickness deviation on the exit side Δ5(k) : Rolling control amount ΔT(k) : Tension control amount Ii λ : Influence on the board thickness on the inlet side Coefficient ν : Roll reduction amount influence coefficient ξ : Tension influence coefficient P : Rolling pressure K : Mill spring constant From formula (1), if λ, ν and ξ can be accurately grasped,
Corresponding to the inlet plate pressure deviation Δh r (k), the control amount (change N) ΔS (k
) and ΔT (k) can be determined in advance. λ, ν and ξ
can be calculated in advance under the rolling conditions of each pass based on rolling theory, but as described above, these values include errors due to various factors.

そこで、このλ、νおよびξの誤差に着目し、これらを
学習制御により制御各時点において最も誤差が小さいと
見なしうる値に修正する。簡単には、(11式のΔh 
+ (k) 、  Δh2(k)は測定により得られる
ものとし、Δ5(k)、  ΔT (k)を制御系で得
られるものとしてλ、νおよびξを変数と想定し、連続
3個のデータを(1)式に代入して3個の式を得てこれ
を連立で解くことによりその時点の係数λ3.ν1.ξ
、を求めこれらの係数で構成する(1)式に今回の入側
板厚偏差Δh + (k)をまたΔh 2 (k) =
0を導入して今回のΔ5(k)、  ΔT (k)を求
めて制御量とし、この制御量と、それらによる圧延結果
Δh2(k)およびΔh1(k)をまた+11式に代入
して新たな一つの式を立てて、これを前記3つの式の一
番古いデータに基づくものと置きかえて連立で解いて現
時点の係数λ2.ν2.ξ2を求め以下同様に前述の制
御量の演算、Δh1(k)の測定、制御、Δh2(k)
の測定を繰り返すことにより、一応確からしい影響係数
を設定しうる。
Therefore, attention is paid to the errors in λ, ν, and ξ, and these are corrected by learning control to values that can be considered to have the smallest error at each control point. Simply, (Δh of equation 11
+ (k), Δh2(k) are obtained by measurement, Δ5(k), ΔT(k) are obtained by the control system, and λ, ν, and ξ are assumed to be variables, and three consecutive data are calculated. By substituting λ3 into equation (1) to obtain three equations and solving them simultaneously, the coefficient λ3. ν1. ξ
, and add the current entry side thickness deviation Δh + (k) to equation (1), which is composed of these coefficients, and add Δh 2 (k) =
0 is introduced and the current Δ5(k) and ΔT(k) are determined as the controlled variables, and these controlled variables and their rolling results Δh2(k) and Δh1(k) are substituted into the +11 formula again to create a new Create one equation, replace it with the one based on the oldest data of the three equations above, solve them simultaneously, and get the current coefficient λ2. ν2. Find ξ2, calculate the control amount as described above, measure and control Δh1(k), Δh2(k)
By repeating the measurements, it is possible to set a more or less reliable influence coefficient.

しかしながら、これのみでは−過性等のノイズを大きく
取り込む可能性があり、制御の安定性が損なわれる虞が
ある。そこでこの先願発明においては、安定性が高い、
線形離散値系の状態推定法として知られるカルマンフィ
ルタを適用したものである。すなわち、上述の先願発明
は、(11式にカルマンフィルタを適用し、被圧延材の
板厚偏差を測定してそれを最小とする制御利得を求め、
予測制御における制御利得を修正し、圧延中の圧延材質
の変化、圧延機およびロール系の剛性の推定誤差等に起
因する制御量の過不足を学習制御によりオンラインで修
正するものである。
However, this alone may introduce a large amount of noise such as transient noise, and there is a risk that control stability may be impaired. Therefore, this prior invention has high stability,
This is an application of the Kalman filter, which is known as a state estimation method for linear discrete value systems. That is, the above-mentioned prior invention applies (applying a Kalman filter to Equation 11, measuring the plate thickness deviation of the material to be rolled, and finding a control gain that minimizes it,
The control gain in predictive control is corrected, and excesses and deficiencies in the control amount due to changes in the material being rolled during rolling, errors in estimating the rigidity of the rolling mill and roll system, etc. are corrected online using learning control.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如き従来の方法においては、1つの制御タイミン
グでの板厚測定値および制御量をカルマンフィルタに取
り込むので、圧延中のロールの熱膨張や板厚を測定する
板厚検出器のドリフトなどによる直流成分の外乱が除か
れず、その結果各係数の推定過程を遅らせたり、間違っ
た推定結果を与えたりするおそれがある。また、フィー
ドフォワード制御方式としているため圧延中のロール圧
下制御量は入側板厚変動量とほぼ1対1に対応し、従っ
て入側板厚偏差Δh + (+<)と圧下制御量ΔS 
(k)の相関は非常に高い。従ってこのようなフィード
フォワード制御に対して推定する各係数が独立であるこ
とを前提とするカルマンフィルタをそのまま適用する上
述の如き方法では、各影響係数λ。
In the conventional method as described above, the plate thickness measurement value and control amount at one control timing are taken into the Kalman filter, so there is no direct current caused by the thermal expansion of the rolls during rolling or the drift of the plate thickness detector that measures the plate thickness. Component disturbances are not removed, and as a result, there is a risk that the process of estimating each coefficient may be delayed or incorrect estimation results may be provided. In addition, since the feedforward control method is used, the roll reduction control amount during rolling has a nearly one-to-one correspondence with the entry side plate thickness variation, and therefore the entry side plate thickness deviation Δh + (+<) and the roll reduction control amount ΔS.
The correlation of (k) is very high. Therefore, in the method described above in which the Kalman filter is applied as is, assuming that each coefficient to be estimated is independent for such feedforward control, each influence coefficient λ.

シ、ξの推定に誤りを生じるおそれがある。There is a risk that an error will occur in the estimation of ξ and ξ.

本発明はこのような従来技術の欠点を改善したもので、
板厚測定値および制御量の夫々差分をとることにより外
乱の直流成分を除去し、かつ入側板厚影響係数λと圧下
量影響係数νとの関係(λ十ν=1)から圧下量影響係
数νを入側板厚影響係数λによって表わし、これを(1
)式に代入してνを消去してカルマンフィルタで推定す
る各係数を独立にすることにより、フィードフォワード
制御の板厚精度を高くし、更には圧延中の変動要因によ
る板厚偏差を防止し、並びに変動要因に起因する制御量
の過不足をオンラインで修正することを目的とするもの
である。
The present invention improves the drawbacks of the prior art, and
The DC component of the disturbance is removed by taking the difference between the plate thickness measurement value and the control amount, and the reduction amount influence coefficient is calculated from the relationship between the entry side plate thickness influence coefficient λ and the reduction amount influence coefficient ν (λ + ν = 1). ν is expressed by the entrance side plate thickness influence coefficient λ, which is expressed as (1
) by substituting it into the equation and eliminating ν to make each coefficient estimated by the Kalman filter independent, increasing the accuracy of the plate thickness in feedforward control and further preventing plate thickness deviations due to fluctuation factors during rolling. It also aims to correct on-line any excess or deficiency in the control amount caused by fluctuation factors.

〔問題点を解決するための手段〕[Means for solving problems]

上述の如き目的を達成するために本発明によれば、入側
板厚に応じてロール圧下量とストリップ張力との少なく
とも一方を制御量として出側板厚に一致する方向にフィ
ードフォワード制御するストリップ圧延板厚制御方法に
おいて、入側基準板厚に対する入側測定板厚の偏差Δh
1(k)と一定制御周期前の入側測定板厚の偏差Δh 
、 (k−1)との差ΔHI (k)と、該入側測定値
を得たストリップ部の制御量ΔU (k)と一定制御周
期前の制御量ΔU(k−1)との差ΔU (k)と、該
制御量を与えたストリップ部の目標板厚に対する出側板
厚偏差Δh2(k)と一定制御周期前の出側板厚偏差Δ
h2(k−x)との差ΔH2(k)を求めてこれら差分
ΔH1(k)、  ΔU (k) 。
In order to achieve the above-mentioned objects, the present invention provides a strip rolled plate in which at least one of the roll reduction amount and the strip tension is controlled as a control amount in accordance with the inlet side plate thickness in a direction that matches the outlet side plate thickness. In the thickness control method, the deviation Δh of the measured board thickness on the entry side from the reference board thickness on the entry side
1(k) and the deviation Δh of the inlet side measured plate thickness before a certain control period
, (k-1), and the difference ΔU between the control amount ΔU (k) of the strip section from which the input side measurement value was obtained and the control amount ΔU (k-1) before a certain control period. (k), the outlet side plate thickness deviation Δh2(k) with respect to the target plate thickness of the strip section given the control amount, and the outlet side plate thickness deviation Δ before a certain control period.
Find the difference ΔH2(k) with h2(k-x) and calculate these differences ΔH1(k) and ΔU (k).

及びΔH,(k)にカルマンフィルタを適用して出側板
厚偏差を最小とする入側板厚影響係数および制御量影響
係数を算出し、これら算出値によりそれまで用いていた
入側板厚影響係数及び制御量影響係数を修正し、該修正
した影響係数を用いて制御量を定める。
and ΔH, (k) to calculate the entry side thickness influence coefficient and control amount influence coefficient that minimize the exit side thickness deviation, and use these calculated values to change the input side thickness influence coefficient and control amount that were used until then. The quantity influence coefficient is corrected, and the controlled quantity is determined using the revised influence coefficient.

制御量としてロール圧下量とストリップ張力との双方を
取り入れた本発明の第2番目の発明によれば、入側基準
板厚に対する入側測定板厚の偏差Δh1(k)と一定制
御周期前の入側測定板厚の偏差Δh 、 (k−1)と
の差ΔH1(k)と、該入側測定値を得たストリップ部
の圧下制御量ΔS (k)と一定制御周期前の圧下制御
量ΔS (k−1)との差ΔS (k)と、該入側測定
値を得たストリップ部の張力制御量ΔT (k)と一定
制御周期前の張力制御量ΔT(k−1)との差ΔT (
k)と、該制御量を与えたストリップ部の目標板厚に対
する出側板厚偏差Δh2(k)と一定制御周期前の出側
板厚偏差Δh2(k−1)との差ΔHz (k)とを求
め、前記入側板厚偏差の差分ΔHI (k)と前記圧下
制御量の差分 ΔS (k)との差と、前記出側板厚偏
差の差分ΔH2(k)と前記圧下制御量の差分ΔS (
k)との差、および前記張力制御量の差分ムT (k)
にカルマンフィルタを適用して出側板厚偏差を最小とす
る入側板厚影響係数および張力影響係数を算出し、さら
に前記入側板厚影響係数から圧下量影響係数を算出して
、・それまで用いていた入側板厚影響係数、張力影響係
数並びに圧下量影響係数を修正し、これら修正した影響
係数を用いて制御量を定める。
According to the second aspect of the present invention, which incorporates both the roll reduction amount and the strip tension as control variables, the deviation Δh1(k) of the measured board thickness on the entry side with respect to the reference board thickness on the entry side and the difference Δh1(k) before a certain control period The difference ΔH1(k) between the deviation of the measured board thickness on the entrance side Δh, (k-1), the reduction control amount ΔS (k) of the strip section where the entrance side measurement value was obtained, and the reduction control amount before a certain control period The difference ΔS (k) from ΔS (k-1), the tension control amount ΔT (k) of the strip section from which the input side measurement value was obtained, and the tension control amount ΔT (k-1) before a certain control period. Difference ΔT (
k) and the difference ΔHz (k) between the outlet side plate thickness deviation Δh2(k) with respect to the target plate thickness of the strip section given the control amount and the outlet side plate thickness deviation Δh2(k−1) before a certain control period. The difference between the input side plate thickness deviation ΔHI (k) and the reduction control amount difference ΔS (k), the difference between the exit side plate thickness deviation ΔH2 (k) and the reduction control amount ΔS (
k) and the difference between the tension control amount T (k)
A Kalman filter is applied to calculate the entrance plate thickness influence coefficient and tension influence coefficient that minimize the exit side plate thickness deviation, and the reduction amount influence coefficient is calculated from the input side plate thickness influence coefficient. The entrance plate thickness influence coefficient, tension influence coefficient, and reduction amount influence coefficient are corrected, and the control amount is determined using these revised influence coefficients.

また第3番目の本発明によれば制御量はロール圧下量の
みとし、入側基準板厚に対する入側測定板厚の偏差Δh
 + (k)と一定制御周期前の入側測定板厚の偏差Δ
h 、 (k−1)との差ΔHI (k)と、該入側測
定値を得たストリップ部の圧下制御量ΔS (k)と一
定制御周期前の圧下制御量ΔS (k−1)と゛の差Δ
S (k)と、該圧下制御量を与えたストリップ部の目
標板厚に対する出側板厚偏差Δha(k)と一定制御周
期前の出側板厚偏差Δh2(k−1)との差ΔH2(k
)とを求め、前記入側板厚偏差の差分ΔH1(k)と前
記圧下制御量の差分ΔS (k)との差と、前記出側板
厚偏差の差分ΔH2(k)と前記圧下?hll <1r
J量の差分ΔS (k)との差にカルマンフィルタを適
用して出側板厚偏差を最小とする入側板厚影響係数を算
出し、さらに前記入側板厚影響係数から圧下量影響係数
を算出して、それまで用いていた入側板厚影響係数及び
圧下量影響係数を修正し、これら修正した影響係数を用
いて圧下制御量を定める。
Further, according to the third invention, the control amount is only the roll reduction amount, and the deviation Δh of the measured board thickness on the entry side with respect to the standard board thickness on the entry side.
+ (k) and the deviation Δ of the inlet side measured plate thickness before a certain control period
The difference ΔHI (k) between Difference Δ
S (k), the difference ΔH2(k) between the outlet side plate thickness deviation Δha(k) with respect to the target plate thickness of the strip portion given the reduction control amount and the outlet side plate thickness deviation Δh2(k−1) before a certain control period.
), and calculate the difference between the difference ΔH1(k) in the thickness deviation on the inlet side and the difference ΔS(k) in the reduction control amount, the difference ΔH2(k) in the thickness deviation on the outlet side and the reduction ? hll <1r
A Kalman filter is applied to the difference between the J amount and the difference ΔS (k) to calculate an inlet thickness influence coefficient that minimizes the outlet thickness deviation, and then a reduction amount influence coefficient is calculated from the inlet thickness influence coefficient. , the entrance plate thickness influence coefficient and the reduction amount influence coefficient that had been used up to that point are corrected, and the reduction control amount is determined using these revised influence coefficients.

第1図は本発明に係る制御方法を実施するハードウェア
を示すもので、ストリップ10の板厚は上下の圧延ロー
ル11.13の一方、例えば上ロール13の圧下量を第
1の駆動装置(モータ、シリンダ等)19により制御す
ることにより行われる。第1駆動装置D1の制御は制御
装置(コンピュータ)40により制御される圧下量制御
装置31の入出力装置I10により制御される。更にま
たストリップ10の板厚はストリップの張力を制御する
ことによっても行われる。張力は第2の駆動装置21に
より例えば圧延ロールの両スタンド間速度を制御するこ
とにより行われる。第2駆動制御装置D2は制御コンピ
ュータ40により制御さ糺る張力制御装置33により制
御される。15及び17は夫々ストリップ10の入側及
び出側の板厚を検出する検出器でその検出信号が制御装
置40のA/D変換器(A/D)に入力される。コンピ
ュータ40は命令の解釈と実行をし系を全体的に制御す
るCPU、固定データを記憶した読出し専用の ROM
、及びデータの書き込みあるいは読出しを随時行うRA
Mを有する。
FIG. 1 shows hardware for implementing the control method according to the present invention. (motor, cylinder, etc.) 19. The control of the first drive device D1 is controlled by the input/output device I10 of the reduction amount control device 31, which is controlled by the control device (computer) 40. Additionally, the thickness of the strip 10 is determined by controlling the tension in the strip. Tensioning is effected by means of a second drive 21, for example by controlling the speed between the stands of the rolling rolls. The second drive control device D2 is controlled by a tension control device 33 which is controlled by a control computer 40. Detectors 15 and 17 detect the thickness of the inlet and outlet sides of the strip 10, respectively, and their detection signals are input to the A/D converter (A/D) of the control device 40. The computer 40 includes a CPU that interprets and executes instructions and controls the entire system, and a read-only ROM that stores fixed data.
, and an RA that writes or reads data at any time.
It has M.

以下本発明の第1番目の発明に係る板厚制御方法を、圧
延機入側の板厚測定値に応じてロール圧下量とストリッ
プ張力との両方を制御量としてフィードフォワード制御
する場合を例として詳しく説明する。
Hereinafter, the method for controlling plate thickness according to the first aspect of the present invention will be described as an example in which feedforward control is performed using both the roll reduction amount and the strip tension as control variables according to the plate thickness measurement value at the entrance side of the rolling machine. explain in detail.

尚ここで、上記の入側板厚影響係数λと圧下量影響係数
νとの関係を表わす式(λ+シー1)を第(5)式とす
る。
Here, the equation (λ+C1) representing the relationship between the entrance side plate thickness influence coefficient λ and the reduction amount influence coefficient ν is defined as Equation (5).

λ+ν=1            ・・・(5)まず
、各制御データの差分を用いて(1)式を次のように表
わす。
λ+ν=1 (5) First, equation (1) is expressed as follows using the difference between each control data.

ここに、 込みがありうるとして板厚制御系を離散時間制御系と見
なし、第に段における(6)式をカルマンフィルタを適
用して次(7)式のように表わす。
Here, the plate thickness control system is considered to be a discrete time control system, assuming that there may be some interference, and the equation (6) in the first stage is expressed as the following equation (7) by applying a Kalman filter.

Y(k) =h(k) X(k)  +w(k)   
  ・・・(7)Y(k)=ΔH21t=k・Δt  
    ・・・(8)ΔHl (k) =Δh 、 (
k)−Δh 、 (k−1)   ・・・(11)ΔH
2(k)=Δh1(k)−Δh2(k−1)   ・・
・(12)Δ5(k)=ΔS (k)−ΔS (k−1
)   ・・・(13)ΔT(k) =ΔT (k)−
ΔT(k−1)   ・・・(14)Xl 蟲λ   
            ・・・(15)XZ 蟲ν 
              ・・・(1−6)X、Δ
ξ              ・・・(17)w(k
)  :分散C1の白色性ノイズh′:ベクトル−の転
置 被制御系の変数λ、ν、ξの状態変数を次の様に表わす
Y(k) =h(k) X(k) +w(k)
...(7) Y(k)=ΔH21t=k・Δt
...(8) ΔHl (k) = Δh, (
k)-Δh, (k-1)...(11)ΔH
2(k)=Δh1(k)−Δh2(k−1)...
・(12)Δ5(k)=ΔS (k)−ΔS (k−1
) ... (13) ΔT (k) = ΔT (k) −
ΔT (k-1) ... (14) Xl Insect λ
...(15)XZ Mushiν
...(1-6)X, Δ
ξ...(17)w(k
) : whiteness noise with variance C1 h' : transposition of vector The state variables of variables λ, ν, ξ of the controlled system are expressed as follows.

X (k+1)  = rb 、K (k)  + v
 (k)      −(18)ここで、 v(k):分散行列cvの白色正規性ノイズベクトル U  =単位行列 上記(7)式および(18)式が状態空間表示法による
圧延特性を示す。即ち、出側板厚偏差の差分Δ)l2(
k)を観測値Y (k)として、入側板厚偏差の差分Δ
H1(k)とこれに応じて決定した圧下制御量の差分Δ
5(k)、張力制御量の差分ΔT (k)を1つのベク
トル1h(k)とし、圧延特性係数λ、ν。
X (k+1) = rb, K (k) + v
(k) - (18) Here, v(k): white normality noise vector U of dispersion matrix cv = unit matrix Equations (7) and (18) above indicate rolling characteristics according to the state space representation method. That is, the difference Δ) l2(
k) is the observed value Y (k), the difference Δ of the entrance side plate thickness deviation is
Difference Δ between H1(k) and the reduction control amount determined accordingly
5(k), the tension control amount difference ΔT (k) is one vector 1h(k), and the rolling characteristic coefficients λ, ν.

ξを状態変数ベクトル1c(k)として表現して線形離
散値系の状態推定法として知られているカルマンフィル
タを通用する。即ち、 ここでC,(k)はX (k)の最適推定値X (k)
の推定誤差分散行列である。これから、制御開始時(k
=o)の初期値(λ。、ν。、ξ。)を与えると、以後
制御が進むにつれてより最適なλ、ν。
ξ is expressed as a state variable vector 1c(k), and a Kalman filter, which is known as a state estimation method for a linear discrete value system, is applied. That is, where C, (k) is the optimal estimate of X (k)
is the estimated error variance matrix of . From now on, at the start of control (k
If initial values (λ., ν., ξ.) of =o) are given, λ, ν become more optimal as control progresses.

ξの推定値が逐次得られる。Estimated values of ξ are obtained sequentially.

次に、(20)弐〜(22)式を用いた学習制御を具体
的に説明する(第2図参照)。
Next, learning control using equations (20) to (22) will be specifically explained (see FIG. 2).

初期値ス(0)として、 は圧延理論に基づく計算値、又はそれまでの実績値を使
用する。CX(0)、CvおよびC,1は個々の圧延機
において最適値を実験的に定める(ステップ101)。
As the initial value (0), use a calculated value based on rolling theory or an actual value up to that point. Optimum values for CX(0), Cv, and C,1 are determined experimentally for each rolling mill (step 101).

まず初期値X(0)を(1)式に代入してに=1(ステ
ップ103)におけるΔh+(1)を測定しくステップ
105)、それを用いてΔhz(1)=Oとする制御量
Δ5(1)、  ΔT(1)を求める(ステップ107
)。例えば圧下制御量ΔSを主にした板厚制御では、Δ
T(1)=OとしてΔ5(1)=−Δh+(1)・λ/
νとなる。ΔSとΔTは圧延機の仕様、圧延材の種類等
で使い分けが決定される。
First, substitute the initial value (1), find ΔT(1) (step 107
). For example, in plate thickness control mainly based on the reduction control amount ΔS,
As T(1)=O, Δ5(1)=-Δh+(1)・λ/
It becomes ν. The usage of ΔS and ΔT is determined depending on the specifications of the rolling mill, the type of rolled material, etc.

次に前述のようにして求めたΔ5(1)、ΔT(1)と
入側板厚偏差Δh + (1)から、各々の制御開始時
(k=o)の初期値Δ5(0)、ΔT (0)およびΔ
hl(0)との差分 ΔHl (1)−Δh+(1)−Δ’h + (0)ム
5(1)=Δ5(1)−Δ5(0) 八T(1)  −ΔT(1)  −ΔT (0)を計算
しくステップ109)、 )1(1) = (ΔH+(1)ム5(1)ΔT(1)
)を構成する(ステップ111)。すなわち、入側板厚
偏差Δh 、 (1)に対応したロール圧下制御量Δ5
(1)、張力制御量ΔT(1)を設定する。次にこの制
御の結果得られる出側板厚偏差Δh、(1)を測定しく
ステップ113)、一定制御周期(サンプリング周期)
前の制御結果から得られたΔhz(0)との差をY(1
)とする。即ち(12)式から八Hz(1)が求まり(
ステップ115)、(81式よりY(1)を構成する(
ステップ117)即ち、Y(1) =Δhz(1)−Δ
h2(0)。一方cX(0) 、cv、c。
Next, from Δ5(1), ΔT(1) and entrance side plate thickness deviation Δh + (1) obtained as described above, initial values Δ5(0), ΔT ( 0) and Δ
Difference from hl(0) ΔHl (1)−Δh+(1)−Δ′h+(0)mu5(1)=Δ5(1)−Δ5(0) 8T(1) −ΔT(1) − Step 109) to calculate ΔT(0), )1(1) = (ΔH+(1)mu5(1)ΔT(1)
) (step 111). In other words, the roll reduction control amount Δ5 corresponding to the entry side plate thickness deviation Δh, (1)
(1), setting the tension control amount ΔT(1). Next, the exit plate thickness deviation Δh obtained as a result of this control (1) is measured (step 113), constant control period (sampling period)
The difference from Δhz(0) obtained from the previous control result is calculated as Y(1
). That is, from equation (12), 8Hz (1) can be found (
Step 115), (Construct Y(1) from equation 81 (
Step 117) That is, Y(1) =Δhz(1)−Δ
h2(0). On the other hand, cX(0), cv, c.

とth (1)を用いて(20)式よりA(1)を求め
る(ステップ119)。そしてA(1)とX(0)、Y
(1)。
A(1) is obtained from equation (20) using and th (1) (step 119). And A(1) and X(0), Y
(1).

1h(1)を(21)式に入れて第1回の最適推定値ス
(1)すなわち特性影響係数λ、ν、ξを求める(ステ
ップ121)。そしてc、 (0) 、 Ih (1)
、 A (1)を用いて(22)式よりC,(1)を求
める(ステップ123)。
1h(1) is put into equation (21) to obtain the first optimum estimated value S(1), that is, the characteristic influence coefficients λ, ν, and ξ (step 121). and c, (0), Ih (1)
, A (1) is used to find C, (1) from equation (22) (step 123).

以後同様に、入側板厚偏差Δh I (2)を測定して
、ス(1)を使って(1)式より制御量Δ5(2)、八
T(2)を設定し、出側板厚偏差Δhz(2)を測定し
てh(2)およびY(2)を求め、A(2)を算出して
X(2)を求める手順で、制御の進行に伴ない逐次特性
制御影響係数λ、ν、ξの最適推定値を求めて、これに
基づき制itを決定し制御をおこなう(ステップ125
.127)。
Thereafter, in the same way, measure the entrance side plate thickness deviation Δh I (2), set the control amounts Δ5(2) and 8T(2) from equation (1) using step (1), and calculate the exit side plate thickness deviation. In the procedure of measuring Δhz(2), finding h(2) and Y(2), calculating A(2), and finding X(2), the characteristic control influence coefficient λ, The optimal estimated values of ν and ξ are determined, and based on this, the control it is determined and controlled (step 125).
.. 127).

斯くして本発明によれば、フィードフォワードを主体と
する板厚制御系の制御特性を、実際の制御データからオ
ンライン、リアルタイムに推定を行ない、これをただち
に次の制?lIの決定に用いるため、予め正確に制御特
性を知ることができない圧延機においても、精度が高い
板厚制御が可能となる。
Thus, according to the present invention, the control characteristics of a plate thickness control system mainly based on feedforward are estimated online and in real time from actual control data, and this is immediately applied to the next control. Since it is used to determine lI, highly accurate plate thickness control is possible even in rolling mills whose control characteristics cannot be accurately known in advance.

上記とは別の方法として、以下に述べる如く前述の各制
御データの差分化の方法と、(5)式の関係より推定す
る係数を独立にする方法とを組合わせてカルマンフィル
タにて各係数を推定することもできる。
As an alternative method to the above, as described below, each coefficient is calculated using a Kalman filter by combining the method of differentiating each control data described above and the method of making the coefficients estimated from the relationship in equation (5) independent. It can also be estimated.

以下、本発明の第2発明および第3発明による板厚制御
方法を圧延機入側の板厚測定値に応じて圧下量と張力の
両方を制御量としてフィードフォワード制御する場合を
例として説明する(第3図参照)。
Hereinafter, the plate thickness control method according to the second and third aspects of the present invention will be explained using as an example a case where feedforward control is performed using both the rolling reduction amount and the tension as control variables according to the plate thickness measurement value at the entrance side of the rolling machine. (See Figure 3).

圧延理論で知られている入側板厚影響係数λと圧下量影
響係数νとの関係を表す(5)弐より、圧下量影響係数
νを入側板厚影響係数λで表したシー1−λ     
       ・・・(24)を前述の各制御データの
差分化によって得られる(6)式に代入して該(6)式
を圧下量影響係数を含まない形で次のように表す。
Expressing the relationship between the entrance side plate thickness influence coefficient λ and the reduction amount influence coefficient ν, which is known from rolling theory.
(24) is substituted into the equation (6) obtained by differentiating the respective control data described above, and the equation (6) is expressed as follows without including the reduction amount influence coefficient.

ΔH2(k)−Δ5(k)= λ(ΔH1(k)−ΔS (k))+ξ・ムT (k)
  ・・・(25)そして上記(25)式にカルマンフ
ィルタを適用して前述の(7)弐〜(17)式と同様に
、(25)式を次のように表す。
ΔH2(k)−Δ5(k)=λ(ΔH1(k)−ΔS(k))+ξ・muT(k)
(25) Then, by applying a Kalman filter to the above equation (25), the equation (25) is expressed as follows, similar to the above equations (7) to (17).

Y (k)  = h (k) 7t: (k)  +
 w (k)     ・・・(26)Y(k)  =
ΔH2−ΔS l t=k  ・Δt ・・・(27)
ΔH1(k)=Δh1(k)−Δh 、 (k−1) 
   ・・・(30)ΔH2(k)=Δ)lx(k)−
Δh ! (k−1)    ・(31)Δ5(k)=
ΔS (k)  −ΔS (k−1)     ・・・
(32)ΔT(k)=ΔT (k)  −ΔT(k−1
)     ・・・(33)Xl Δλ       
            ・・・(34)X3 Δξ 
                 ・・・(35)w
(k)  :分散Cwの白色性ノイズh′ :ベクトル
hの転置 また状態変数を(18) 、 (19)式と同様にして
次の様に表わす。
Y (k) = h (k) 7t: (k) +
w (k) ... (26) Y (k) =
ΔH2−ΔS lt=k・Δt...(27)
ΔH1(k)=Δh1(k)−Δh, (k−1)
...(30)ΔH2(k)=Δ)lx(k)−
Δh! (k-1) ・(31)Δ5(k)=
ΔS (k) −ΔS (k-1) ...
(32)ΔT(k)=ΔT(k) −ΔT(k−1
)...(33)Xl Δλ
...(34)X3 Δξ
...(35)w
(k): whiteness noise with variance Cw h': transpose of vector h and state variables are expressed as follows in the same way as equations (18) and (19).

ス(k+1) =1!’、K(k) +V(k)   
  ”(36)ここで w(k):分散行列Cvの白色正規性ノイズベクトル I 二単位行列 上記(26)式および(36)式が状態空間表示法によ
る圧延特性を示す。即ち、出側板厚偏差に差分ΔH2(
k)と該出側板厚偏差を生じさせた圧下制御量の差分Δ
S (k)との差を観測値Y (k)として、入側板厚
偏差の差分ΔH1(k)とこれに応じて決定した圧下制
御量の差分ΔS (k)との差および張力制御量の差分
ΔT (k)を1つのベクトルh (k)とし、各係数
λ、ξを状態変数ベクトルX (k)として表現して、
前記(20)弐〜(22)式のカルマンフィルタを適用
する。これから制御開始時(k=0)の初期値(λ。、
ξ。)を与えると、以後制御が進むにつれてより最適な
λ、ξの推定値が逐次帯られる。初期値 は圧延理論に基づく計算値、又はそれまでの実験値を使
用する。C,(0)、CvおよびCwは個々の圧延機に
おいて最適値を実験的に求める(ステップ201)。
S(k+1)=1! ', K(k) +V(k)
(36) where w(k): white normality noise vector I of dispersion matrix Cv two unit matrices Equations (26) and (36) above indicate the rolling characteristics according to the state space representation method. In other words, the exit side plate thickness The deviation is the difference ΔH2 (
k) and the reduction control amount that caused the exit side plate thickness deviation Δ
S (k) is the observed value Y (k), and the difference between the difference ΔH1 (k) in the entry side plate thickness deviation and the difference ΔS (k) in the reduction control amount determined according to this and the difference in the tension control amount Let the difference ΔT (k) be one vector h (k), and express each coefficient λ, ξ as a state variable vector X (k),
The Kalman filters of equations (20) to (22) are applied. From now on, the initial value (λ.,
ξ. ), as the control progresses, more optimal estimates of λ and ξ are successively selected. For the initial value, use a calculated value based on rolling theory or an experimental value up to that point. The optimum values of C, (0), Cv and Cw are determined experimentally for each rolling mill (step 201).

次に(20)弐〜(22)式を用いた学習制御を具体的
に説明すると、まず初期値X (0)より前記差分化の
方法の所で説明した同様の方法で、各々の制御データの
差分ΔH1(1) 、 ム5(1)、八T(1)を計算
しくステップ203〜209)、 h(1) = (ΔH1(1)−ム5(1)、ΔT(1
))を構成する(ステップ211)。すなわち、入側板
厚偏差Δh+(1)に対応した制御量Δ5(1)。
Next, to specifically explain the learning control using equations (20)2 to (22), first, from the initial value X (0), each control data is Calculate the difference ΔH1(1), h5(1), 8T(1) (steps 203 to 209), h(1) = (ΔH1(1) - m5(1), ΔT(1)
)) (step 211). That is, the control amount Δ5(1) corresponds to the entrance side plate thickness deviation Δh+(1).

ΔT (1)を設定する。次にこの制御の結果得られる
Δhz(1)を測定しくステップ213)、一定制御周
期前の制御結果から得られた八hg(0)との差をY(
1)とする(ステップ215.217)。一方、C,(
0)、Cv、C,とIh (1)を用いて(2o)式よ
りA(1)を求める(ステップ219)。そしてA(1
)とX (0) 、 Y (1) 、 Ih (1)を
(21)式に入れて第1回の最適推定値1(1)すなわ
ち影響係数λ、ξを求め(ステップ221)、このλか
ら(24)式によりνを求める。そし”i’c、 (0
)、Ih(1)、A(1) t−用いて(22)式より
C,(1)を求める(ステップ223)。以後同様に、
入側板厚偏差Δh + (2)を測定してX (1)を
使って(1)式より制御量Δ5(2)。
Set ΔT (1). Next, step 213) measures Δhz(1) obtained as a result of this control, and calculates the difference from 8hg(0) obtained from the control result before a certain control period by Y(
1) (steps 215 and 217). On the other hand, C, (
0), Cv, C, and Ih (1) to find A(1) from equation (2o) (step 219). and A(1
) and X (0), Y (1), and Ih (1) into equation (21) to obtain the first optimal estimate 1(1), that is, the influence coefficients λ and ξ (step 221), and this λ ν is calculated from equation (24). So"i'c, (0
), Ih(1), A(1) t- to find C,(1) from equation (22) (step 223). Similarly,
Measure the entry side plate thickness deviation Δh + (2) and use X (1) to calculate the control amount Δ5 (2) from equation (1).

ΔT(2)を設定し、出側板厚偏差Δhz(2)を測定
してh(2)およびY(2)を求めA(2)を算出して
λ(2)を求めその結果からνを求める手順で、制御の
進行に伴い逐次係数λ、ν、ξの最適推定値を求めて、
これに基づき制御量を決定し制御をおこなう (ステッ
プ225,227)。
Set ΔT(2), measure the outlet thickness deviation Δhz(2), calculate h(2) and Y(2), calculate A(2), find λ(2), and calculate ν from the results. As the control progresses, the optimum estimated values of the successive coefficients λ, ν, and ξ are determined by the procedure
Based on this, the control amount is determined and control is performed (steps 225, 227).

なお、上記の説明は、入側板厚測定値に応じて圧下量と
張力の両方を制御量とする場合を例にして説明したが、
張力は一定として圧下量のみを制御量としてフィードフ
ォワード制御する場合は、前記(25)弐〜(38)式
において張力に関する項を除いた式を用いて入側板厚影
響係数と圧下量影響係数を求めるようにすればよい。
Note that the above explanation was based on an example in which both the reduction amount and the tension are controlled according to the measured value of the entrance side plate thickness.
When performing feedforward control with the tension constant and only the reduction amount as the control variable, use the equations (25) to (38) above excluding the terms related to the tension to calculate the entrance plate thickness influence coefficient and the reduction amount influence coefficient. All you have to do is ask for it.

また圧下量は一定として張力のみを制御量としてフィー
ドフォワード制御する場合は、前記(25)弐〜(38
)式において圧下量に関する項を除いた式を用いて入側
板厚影響係数と張力影響係数を求めるようにすればよい
。これらの制御は張力に関する項あるいは圧下量に関す
る項がない点を除き前述の制御と同様であり、従って説
明は省略する。
In addition, when performing feedforward control with only the tension as the controlled variable while keeping the reduction amount constant,
), the entry side plate thickness influence coefficient and tension influence coefficient may be determined using an expression that excludes the term related to the rolling reduction amount. These controls are the same as those described above except that there is no term regarding tension or reduction amount, and therefore the explanation will be omitted.

この学習制御によるフィードフォワード板厚制御におい
て、入側で板厚を測定する時刻とこれによって得た入側
板厚偏差Δh、で求めたΔS。
In feedforward plate thickness control using this learning control, ΔS is calculated from the time at which the plate thickness is measured on the entry side and the entry side plate thickness deviation Δh obtained thereby.

ΔTで制御をおこなう時刻、ならびにその制御結果であ
る出側板厚を測定する時刻はそれぞれ異なるので、圧延
材のトラッキングをおこないストリップ上の同一点に対
する測定データおよび制御量を同一点の値として用いる
。従って制御量ΔUは1ステツプ前でなく数時点前の次
の最適推定値を使って決定される場合もある。また、板
厚偏差および制御量の差分をとるため一定制御周期前の
板厚偏差および制御量を記憶装置に記憶しておく必要が
ある。
Since the time at which the control is performed using ΔT and the time at which the exit side plate thickness, which is the control result, is measured are different, the rolled material is tracked and the measurement data and control amount for the same point on the strip are used as the value at the same point. Therefore, the control amount .DELTA.U may be determined using the next optimal estimated value several times before, rather than one step before. Furthermore, in order to obtain the difference between the thickness deviation and the control amount, it is necessary to store the sheet thickness deviation and the control amount before a certain control period in a storage device.

尚、本発明において圧下制御量ΔSおよび張力制御量Δ
Tを制御量ΔUと総称し、従って単に制御量と言及した
場合には圧下量のみの場合、張力のみの場合、あるいは
その双方を制御する場合を含むものである。また一定制
御周期前とは、制御時刻によりもN制御周期前の制御時
刻(k−N)を意味する。また以上の説明においては一
定制御周期前の時刻を(k−1)としているが(k−N
)としてもよいことは勿論である。
In addition, in the present invention, the reduction control amount ΔS and the tension control amount Δ
T is collectively referred to as the control amount ΔU, and therefore, when simply referred to as the control amount, it includes the case where only the reduction amount, the case where only the tension is controlled, or the case where both are controlled. Also, "before a certain control cycle" means a control time (k-N) that is N control cycles before the control time. Also, in the above explanation, the time before a certain control period is set to (k-1), but (k-N
) of course.

〔実施例〕〔Example〕

本発明をゼンジミア圧延機(2Mミル)によるステンレ
ス鋼の冷間圧延において実施した例を以下に示す。仕様
は次の通りである。
An example in which the present invention was implemented in cold rolling of stainless steel using a Sendzimir rolling mill (2M mill) is shown below. The specifications are as follows.

以下余白 このように本発明により顕著な板厚精度改善効果があっ
た。
Below is a margin.As described above, the present invention had a remarkable effect of improving plate thickness accuracy.

尚、本発明としては圧下量と張力の双方を制御量とした
制御方法を採用した。また従来技術としては1制御タイ
ミングの板厚測定値および制御量をカルマンフィルター
に使用するとともに、各影響係数を独立的に推定する特
開昭58−25807に開示された方法を採用した。従
来技術によれば圧延中のロールの熱膨張、板厚検出器の
ドリフトなどにより、各影響係数の推定に誤差を生じ、
制御系が発散して制御不可能な場合があり、適用率が約
20%と低い結果となった。
Incidentally, in the present invention, a control method in which both the reduction amount and the tension are controlled variables is adopted. Further, as a conventional technique, a method disclosed in Japanese Patent Application Laid-open No. 58-25807 was adopted in which a plate thickness measurement value and a control amount at one control timing are used in a Kalman filter, and each influence coefficient is estimated independently. According to the conventional technology, errors occur in the estimation of each influence coefficient due to thermal expansion of the rolls during rolling, drift of the plate thickness detector, etc.
The control system sometimes diverged and became uncontrollable, resulting in a low application rate of about 20%.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の板厚制御は、フィードフォワ
ードを主体とする板厚制御系の制御特性を、実際の制御
データからオンライン、リアルタイムに推定を行い、こ
れをただちに次の制?il量の決定に用いるため、予め
正確に制御特性を知ることができない圧延機においても
、精度が高い板厚制御が可能となる。特に、カルマンフ
ィルタの適用に際し推定の過程をおくらせたり、間違っ
た推定結果を与える原因となる直流成分の外乱を除くた
め、制御時刻にの制御データと一定制御時刻前(k−1
)の制御データの差にカルマンフィルタを適用したこと
により、従来よりもより精度の高い板厚制御が可能とな
る。またカルマンフィルタで推定する影響係数を独立に
することにより精度の高い板厚制御が可能となり、更に
またロール圧下又は張力のいずれか一方のみを制御量と
して板厚制御をする場合は、カルマンフィルタを形成す
るベクトル、行列の次元を1次元低減できるため計算時
間を大幅に削減できる。
As described above, the plate thickness control of the present invention estimates the control characteristics of the plate thickness control system, which is mainly based on feedforward, online and in real time from actual control data, and immediately applies this to the next control. Since it is used to determine the amount of il, it is possible to control the plate thickness with high precision even in rolling mills where control characteristics cannot be accurately known in advance. In particular, in order to remove DC component disturbances that delay the estimation process or give incorrect estimation results when applying the Kalman filter, control data at the control time and a certain period before the control time (k-1
) By applying a Kalman filter to the difference in control data, it becomes possible to control plate thickness with higher accuracy than before. In addition, by making the influence coefficient estimated by the Kalman filter independent, it is possible to control the plate thickness with high precision.Furthermore, when controlling the plate thickness using only either roll reduction or tension as the control variable, a Kalman filter can be formed. Since the dimensions of vectors and matrices can be reduced by one, calculation time can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御方法を実施するためのハードウェ
アを示す図解図、第2図、第3図は本発明の2つの異な
2制御方法を示すフローチャート図である。 10・・・ストリップ、11.13・・・圧延ロール、
31・・・圧下量制御装置、33・・・張力制御装置、
40・・・制御装置。 第1図 第2図
FIG. 1 is an illustrative diagram showing hardware for implementing the control method of the present invention, and FIGS. 2 and 3 are flowcharts showing two different control methods of the present invention. 10... Strip, 11.13... Rolling roll,
31... Reduction amount control device, 33... Tension control device,
40...control device. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、入側板厚に応じてロール圧下量とストリップ張力と
の少なくとも一方を制御量として出側板厚に一致する方
向にフィードフォワード制御するストリップ圧延板厚制
御方法において、 入側基準板厚に対する入側測定板厚の偏差 Δh_1(k)と一定制御周期前の入側測定板厚の偏差
Δh_1(k−1)との差ΔH_1(k)と、該入側測
定値を得たストリップ部の制御量ΔU(k)と一定制御
周期前の制御量ΔU(k−1)との差ΔU(k)と、該
制御量を与えたストリップ部の目標板厚に対する出側板
厚偏差Δh_2(k)と一定制御周期前の出側板厚偏差
Δh_2(k−1)との差ΔH_2(k)を求めてこれ
ら差分ΔH_1(k)、ΔU(k)、及びΔH_2(k
)にカルマンフィルタを適用して出側板厚偏差を最小と
する入側板厚影響係数および制御量影響係数を算出し、
これら算出値によりそれまで用いていた入側板厚影響係
数及び制御量影響係数を修正し、該修正した影響係数を
用いて制御量を定めることを特徴とするストリップ圧延
板厚制御方法。 2、張力は一定として制御量は圧下量のみとし、制御量
影響係数は圧下量影響係数である特許請求の範囲第1項
記載のストリップ圧延板厚制御方法。 3、圧下刃は一定として制御量は張力のみとし、制御量
影響係数は張力影響係数である特許請求の範囲第1項記
載のストリップ圧延板厚制御方法。 4、制御量は張力および圧下量とし、制御量影響係数は
張力影響係数と圧下量影響係数とを含む前記特許請求の
範囲第1項記載のストリップ圧延板厚制御方法。 5、入側板厚に応じてロール圧下量とストリップ張力を
制御量として出側板厚を目標板厚に一致する方向にフィ
ードフォワード制御するストリップ圧延板厚制御方法に
おいて、 入側基準板厚に対する入側測定板厚の偏差 Δh_1(k)と一定制御周期前の入側測定板厚の偏差
Δh_1(k−1)との差ΔH_1(k)と、該入側測
定値を得たストリップ部の圧下制御量ΔS(k)と一定
制御周期前の圧下制御量ΔS(k−1)との差ΔS(k
)と、該入側測定値を得たストリップ部の張力制御量Δ
T(k)と一定制御周期前の張力制御量ΔT(k−1)
との差ΔT(k)と、該制御量を与えたストリップ部の
目標板厚に対する出側板厚偏差Δh_2(k)と一定制
御周期前の出側板厚偏差Δh_2(k−1)との差ΔH
_2(k)とを求め、前記入側板厚偏差の差分ΔH_2
(k)と前記圧下制御量の差分ΔS(k)との差と、前
記出側板厚偏差の差分ΔH_2(k)と前記圧下制御量
の差分ΔS(k)との差および前記張力制御量の差分Δ
T(k)にカルマンフィルタを適用して出側板厚偏差を
最小とする入側板厚影響係数および張力影響係数を算出
し、さらに前記入側板厚影響係数から圧下量影響係数を
算出して、それまで用いていた入側板厚影響係数、張力
影響係数並びに圧下量影響係数を修正し、修正したこれ
ら影響係数を用いて制御量を定めることを特徴とするス
トリップ圧延板厚制御方法。 6、入側板厚に応じてロール圧下量を制御量として出側
板厚を目標板厚に一致する方向にフィードフォワード制
御するストリップ圧延板厚制御方法において、 入側基準板厚に対する入側測定板厚の偏差 Δh_1(k)と一定制御周期前の入側測定板厚の偏差
Δh_1(k−1)との差ΔH_1(k)と、該入側測
定値を得たストリップ部の圧下制御量ΔS(k)と一定
制御周期前の圧下制御量ΔS(k−1)との差ΔS(k
)と、該圧下制御量を与えたストリップ部の目標板厚に
対する出側板厚偏差Δh_2(k)と一定制御周期前の
出側板厚偏差Δh_2(k−1)との差ΔH_2(k)
とを求め、前記入側板厚偏差の差分ΔH_1(k)と前
記圧下制御量の差分ΔS(k)との差と、前記出側板厚
偏差の差分ΔH_2(k)と前記圧下制御量の差分ΔS
(k)との差にカルマンフィルタを適用して出側板厚偏
差を最小とする入側板厚影響係数を算出し、さらに前記
入側板厚影響係数から圧下量影響係数を算出して、それ
まで用いていた入側板厚影響係数及び圧下量影響係数を
修正し、修正したこれら影響係数を用いて圧下制御量を
定めることを特徴とするストリップ圧延板厚制御方法。
[Claims] 1. In a strip rolling plate thickness control method in which at least one of the roll reduction amount and the strip tension is controlled as a control amount according to the input side plate thickness, feedforward control is performed in a direction that matches the output side plate thickness, comprising: Obtain the difference ΔH_1(k) between the deviation Δh_1(k) of the entrance-side measured plate thickness with respect to the standard plate thickness and the deviation Δh_1(k-1) of the entrance-side measured plate thickness before a certain control cycle, and the entry-side measured value. The difference ΔU(k) between the controlled amount ΔU(k) of the strip section and the controlled amount ΔU(k-1) before a certain control period, and the deviation of the exit side plate thickness from the target plate thickness of the strip section to which the controlled variable was applied. The difference ΔH_2(k) between Δh_2(k) and the exit side plate thickness deviation Δh_2(k-1) before a certain control period is calculated, and these differences ΔH_1(k), ΔU(k), and ΔH_2(k
) by applying a Kalman filter to calculate the inlet plate thickness influence coefficient and control amount influence coefficient that minimize the outlet plate thickness deviation,
A strip rolling plate thickness control method characterized by correcting the entrance plate thickness influence coefficient and control amount influence coefficient that have been used up to then using these calculated values, and determining the control amount using the revised influence coefficients. 2. The strip-rolled plate thickness control method according to claim 1, wherein the tension is constant, the control amount is only the reduction amount, and the control amount influence coefficient is the reduction amount influence coefficient. 3. The strip-rolled plate thickness control method according to claim 1, wherein the rolling blade is kept constant, the control amount is only tension, and the control amount influence coefficient is the tension influence coefficient. 4. The strip-rolled plate thickness control method according to claim 1, wherein the control amount is a tension and a reduction amount, and the control amount influence coefficient includes a tension influence coefficient and a reduction amount influence coefficient. 5. In a strip rolling plate thickness control method in which the roll reduction amount and strip tension are controlled as control variables according to the input side plate thickness, and the output side plate thickness is feedforward controlled in a direction that matches the target plate thickness, the input side with respect to the input side reference plate thickness The difference ΔH_1(k) between the deviation Δh_1(k) of the measured plate thickness and the deviation Δh_1(k-1) of the measured plate thickness on the entrance side before a certain control cycle, and the reduction control of the strip section where the measured value on the entrance side was obtained. The difference ΔS(k) between the amount ΔS(k) and the reduction control amount ΔS(k-1) before a certain control period
) and the tension control amount Δ of the strip section from which the entry side measurement value was obtained.
T(k) and tension control amount ΔT(k-1) before a certain control period
and the difference ΔH between the outlet side plate thickness deviation Δh_2(k) with respect to the target plate thickness of the strip section given the control amount and the outlet side plate thickness deviation Δh_2(k-1) before a certain control cycle.
_2(k) is calculated, and the difference ΔH_2 of the entrance side plate thickness deviation is calculated.
(k) and the difference ΔS(k) in the roll control amount, the difference between the exit side plate thickness deviation ΔH_2(k) and the difference ΔS(k) in the roll control amount, and the difference ΔS(k) in the roll control amount, and Difference Δ
A Kalman filter is applied to T(k) to calculate the entry side plate thickness influence coefficient and tension influence coefficient that minimize the exit side plate thickness deviation, and further, the reduction amount influence coefficient is calculated from the input side plate thickness influence coefficient. A strip rolling plate thickness control method characterized by correcting the previously used entry side plate thickness effect coefficient, tension effect coefficient, and reduction amount effect coefficient, and determining the control amount using these corrected effect coefficients. 6. In a strip rolling plate thickness control method in which the roll reduction amount is used as a control variable according to the input plate thickness and the output plate thickness is feedforward controlled in a direction that matches the target plate thickness, the input side measured plate thickness is compared to the input side reference plate thickness. The difference ΔH_1(k) between the deviation Δh_1(k) and the deviation Δh_1(k-1) of the plate thickness measured on the entrance side before a certain control period, and the reduction control amount ΔS( k) and the reduction control amount ΔS(k-1) before a certain control period ΔS(k
), and the difference ΔH_2(k) between the outlet side plate thickness deviation Δh_2(k) with respect to the target plate thickness of the strip section given the reduction control amount and the outlet side plate thickness deviation Δh_2(k-1) before a certain control period.
and the difference between the input side plate thickness deviation difference ΔH_1(k) and the said reduction control amount difference ΔS(k), and the difference between the said exit side plate thickness deviation difference ΔH_2(k) and the said reduction control amount ΔS
A Kalman filter is applied to the difference from A strip rolling plate thickness control method, characterized in that an entry side plate thickness influence coefficient and a reduction amount influence coefficient are corrected, and a reduction control amount is determined using these corrected influence coefficients.
JP60034412A 1985-02-25 1985-02-25 Control method of rolled plate thickness of strip Pending JPS61193716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034412A JPS61193716A (en) 1985-02-25 1985-02-25 Control method of rolled plate thickness of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034412A JPS61193716A (en) 1985-02-25 1985-02-25 Control method of rolled plate thickness of strip

Publications (1)

Publication Number Publication Date
JPS61193716A true JPS61193716A (en) 1986-08-28

Family

ID=12413476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034412A Pending JPS61193716A (en) 1985-02-25 1985-02-25 Control method of rolled plate thickness of strip

Country Status (1)

Country Link
JP (1) JPS61193716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964653A (en) * 2016-01-14 2017-07-21 株式会社日立制作所 Calender control device, calender control method and program
EP3332883A1 (en) * 2016-12-09 2018-06-13 Honeywell International Inc. Metal thickness control model based inferential sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964653A (en) * 2016-01-14 2017-07-21 株式会社日立制作所 Calender control device, calender control method and program
EP3332883A1 (en) * 2016-12-09 2018-06-13 Honeywell International Inc. Metal thickness control model based inferential sensor
CN108213085A (en) * 2016-12-09 2018-06-29 霍尼韦尔国际公司 Inferential sensor based on metal thickness Controlling model
CN108213085B (en) * 2016-12-09 2020-07-07 霍尼韦尔国际公司 Inference sensor based on metal thickness control model

Similar Documents

Publication Publication Date Title
US4506532A (en) Method for controlling continuous rolling mill and control apparatus therefor
JPS61193716A (en) Control method of rolled plate thickness of strip
JP2007061876A (en) Method for controlling thickness in cold tandem rolling
JP3067879B2 (en) Shape control method in strip rolling
US3820366A (en) Rolling mill gauge control method and apparatus including temperatureand hardness correction
KR100531145B1 (en) Sheet width control method in hot rolling
JPH0232041B2 (en)
KR100293213B1 (en) Method for controlling thickness of steel sheet at exit side of hot finish rolling mill
JP3405499B2 (en) Thickness and tension control method in tandem rolling mill
JP2956934B2 (en) Rolling control method in hot strip finishing mill
JPH048122B2 (en)
JPH07100519A (en) Device and method for rolling mill control
JP2628965B2 (en) Rolling control method in hot strip finishing mill
JP2697573B2 (en) Control method of continuous rolling mill
JP3467559B2 (en) Strip width control method in hot continuous rolling
JPH0636929B2 (en) Method for controlling strip width of rolled material
JPS5825807A (en) Controlling method of sheet thickness in strip rolling
JP3115081B2 (en) Control method and apparatus for continuous rolling mill
JPS6260163B2 (en)
JP2878060B2 (en) Automatic hot thickness control method and apparatus
JP2719216B2 (en) Edge drop control method for sheet rolling
WO1992000817A1 (en) Interstand tension control
JPS6316805A (en) Rolling method
JPS6178506A (en) Shape control method of thin sheet
JPS6015010A (en) Control method suitable for rolling