JPS61192848A - Fuel feeder for internal-combustion engine - Google Patents

Fuel feeder for internal-combustion engine

Info

Publication number
JPS61192848A
JPS61192848A JP3399285A JP3399285A JPS61192848A JP S61192848 A JPS61192848 A JP S61192848A JP 3399285 A JP3399285 A JP 3399285A JP 3399285 A JP3399285 A JP 3399285A JP S61192848 A JPS61192848 A JP S61192848A
Authority
JP
Japan
Prior art keywords
intake
primary
throttle valve
fuel
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3399285A
Other languages
Japanese (ja)
Inventor
Tadahiro Yamamoto
忠弘 山本
Hiroshi Iwano
浩 岩野
Hidekazu Onishi
大西 英一
Atsushi Yonezawa
米沢 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3399285A priority Critical patent/JPS61192848A/en
Publication of JPS61192848A publication Critical patent/JPS61192848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To atomize the fuel while to suppress formation of fuel wall flow by providing primary intake path having relatively small open area and secondary intake path having relatively large open area. CONSTITUTION:In a series 4-cylinder engine, and intake branch tube 1 having branch paths 1B, 1C to be connected to #3, #4 cylinders is arranged at the collecting section to which a throttle body 4 is coupled through primary intake tube 3 having relatively small diameter and secondary intake tube 2 having relatively large diameter is coupled. The throttle body 4 is comprised of primary and secondary path sections 6, 9 and primary and secondary throttle valves 7, 10 for opening/closing said path sections where a solenoid fuel injection valve 11 is arranged in primary path section 9 while a Venturi section 21 is formed in the downstream of said valve 11. It is constructed such that the secondary intake throttle valve 7 will open later than the primary intake throttle valve 10.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の燃料供給装置に関し、詳しくは吸
気分岐管の集合部よりも上流側で燃料を噴射供給する形
式の燃料供給装置の改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a fuel supply system for an internal combustion engine, and more specifically, to an improvement in a fuel supply system that injects and supplies fuel upstream of a collection point of intake branch pipes. Regarding.

(従来の技術) 内燃機関の吸気管に燃料を噴射供給するようにした燃料
供給装置には、大きく分けて複数気筒の吸入ボートに燃
料噴射弁を配置して個々の気筒毎4こ燃料を供給する方
式のボートインシェクシシンと、吸気分岐管の上流側に
噴射弁を設けて各気筒分の燃料を一括供給する方式のシ
ングルポイントインジェクシヨンとがある。
(Prior art) A fuel supply system that injects fuel into the intake pipe of an internal combustion engine can be broadly divided into multiple cylinders with fuel injection valves arranged in intake boats to supply four fuels to each individual cylinder. There are two types of fuel injection systems: boat-injection, which is a system in which fuel is supplied to each cylinder, and single-point injection, which is a system in which an injection valve is provided upstream of the intake branch pipe to supply fuel for each cylinder at once.

前者は噴射弁がシリンダの近くに在るため応答性ないし
過渡特性の点では中し分ないのであるが、噴射燃料が微
粒化する余裕が少ないため、部分負荷運転域での燃焼面
に着目すると気化器に比較して必ずしも有利ではない。
The former has an injector located close to the cylinder, so it is fair in terms of response and transient characteristics, but since there is little room for the injected fuel to become atomized, focusing on the combustion aspect in the partial load operating range, Not necessarily advantageous compared to vaporizers.

これに対して、例えば実開昭57−49568号公報に
見られるように、噴射弁の前方に高速空気流を導入する
ことにより燃料微粒化を実現したものもあるが、何れに
しても各気筒毎の噴射であることに変わりは無いので、
個々の噴射弁特性に偏りが生じないように品質管理をす
る必要があり、部品コストも高くなる等の問題は残され
ている。
On the other hand, as seen in Japanese Utility Model Application Publication No. 57-49568, for example, there are some systems that achieve fuel atomization by introducing high-speed airflow in front of the injection valve, but in either case, each cylinder There is no change in the fact that it is an injection every time,
It is necessary to perform quality control to prevent deviations in the characteristics of individual injection valves, and problems such as increased component costs remain.

このような観点から注目されているのが後者のいわゆる
SPI方式で、単一または少数の噴射弁で一括的に供給
した燃料を吸気流に乗せて各気筒に分配供給するという
気化器と同様の燃料分配経路を構成するため、燃料霧化
の点で有利であるほか、上述した品質管理及びコスト面
での制約が少な(、しかも燃料噴射装置の資質として当
然ではあるが燃料供給量の制御性では気化器よりも大幅
に優れている。
The latter, the so-called SPI method, is attracting attention from this point of view, and is similar to a carburetor, in which fuel is supplied all at once by a single or small number of injectors and distributed to each cylinder via the intake air flow. Since it forms a fuel distribution path, it is advantageous in terms of fuel atomization, and there are fewer restrictions in terms of quality control and cost as described above (in addition, it is easy to control the amount of fuel supplied, which is a natural characteristic of a fuel injection device). It's significantly better than a vaporizer.

(発明が解決しようとする問題点) しかしながら、こうしたSPI方式の燃料供給装置によ
ると、上述したように気化器と同様の燃料分配経路を構
成することに付随して、気化器方式における一つの問題
点がそのまま引き継がれることになる。
(Problems to be Solved by the Invention) However, according to such an SPI type fuel supply device, there is one problem in the carburetor type associated with configuring the fuel distribution path similar to the carburetor as described above. The points will be carried over as is.

すなわち、多気筒機関では燃料供給部分から各気筒まで
の吸気管長が長くなるため、噴射燃料が各%筒に到達す
るまでの間に吸気管壁に付着しやす(、これが燃料壁流
と称される液状燃料の流れを形成して徐々に供給される
ことになるので燃料の供給遅れが起こるのである。この
ため、燃料噴射弁での燃料流量を正確に計量しでも加速
時には空燃比が希薄化して充分な出力が得られない等の
問題が生じ、これを解決するには結局気化器と同様に必
要量以上の燃料を供給せざるをえないことになる。(S
PI方式の燃料供給装置に関する従来例としては、例え
ば実開昭55−60657号公報等参照。)この発明は
、このような問題点を解決することを目的とする。もの
である。
In other words, in a multi-cylinder engine, the length of the intake pipe from the fuel supply section to each cylinder is long, so the injected fuel tends to adhere to the intake pipe wall before it reaches each cylinder (this is called fuel wall flow). This creates a flow of liquid fuel that is gradually supplied, causing a delay in fuel supply.For this reason, even if the fuel flow rate at the fuel injection valve is accurately measured, the air-fuel ratio becomes lean during acceleration. This results in problems such as not being able to obtain sufficient output, and in order to solve this problem, one ends up having to supply more fuel than the required amount, just like with a carburetor.(S
For a conventional example of a PI type fuel supply device, see, for example, Japanese Utility Model Application Publication No. 55-60657. ) This invention aims to solve these problems. It is something.

(問題点を解決するための手段) 上記目的を達成するためにこの発明では、吸気分岐管を
介しでsui各気前気筒続する二次吸気通路に対し独立
して吸気を導入する比較的通路WFi口面積の小さい一
次吸気通路と、アクセレレータ操作に連動して一次吸気
通路を開閉する一次吸気絞り弁と、この一次吸気絞り弁
の下流側に位置して一次吸気通路に燃料を噴射供給する
燃料噴射弁と、一次吸気絞り弁の作動状態に応じて二次
吸気通路の二次吸気絞り弁を開閉駆動する二次吸気制御
手段とを設ける。前記一次吸気通路はその途中に燃料噴
射弁を介しての燃料供給部位より下流側に位置してベン
チエリ部を形成するとともに、該ベンチュリ部より下流
側で分岐して各気前もしくは所定気筒群の近傍に各々開
口し、また二次吸気制御手段は二次吸気絞り弁が一次吸
気絞り弁よりも遅れて開弁するように構成する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a comparative passageway that independently introduces intake air into the secondary intake passageway connected to each intake cylinder via an intake branch pipe. A primary intake passage with a small WFi opening area, a primary intake throttle valve that opens and closes the primary intake passage in conjunction with accelerator operation, and a fuel that is located downstream of the primary intake throttle valve and injects fuel into the primary intake passage. An injection valve and a secondary intake control means for opening and closing a secondary intake throttle valve in a secondary intake passage depending on the operating state of the primary intake throttle valve are provided. The primary intake passage forms a venturi part located downstream of the fuel supply part via the fuel injection valve, and branches downstream from the venturi part to supply air to each air intake or a predetermined group of cylinders. The secondary air intake control means is configured such that the secondary air intake throttle valve opens later than the primary air intake throttle valve.

(作用) 上記構成において、二次吸気絞り弁は二次吸気制御手段
を介して一次吸気絞り弁よりも遅れて開弁作動すること
から、特に負荷の小さい運転域はど一次吸気通路の吸気
流量割合が大きくなる。一方、同一流量に対する通路内
流速はその通路開口面積が小さいほど大きくなることか
ら、同一運転条件での吸気の流速は二次吸気通路よりも
一次吸気通路側で大となる。このことから、一次吸気通
路に噴射供給された燃料が壁流を形成したとしても、高
速の吸気流に付勢されて速やかに機関に到達する。しか
も、噴射弁からの燃料は下流側に位置するベンチュリ部
にて吸気流とともにさらに加速されるため充分に微粒化
され、よって壁流そのものが形成されにくい。
(Function) In the above configuration, since the secondary intake throttle valve opens later than the primary intake throttle valve via the secondary intake control means, the intake flow rate in the primary intake passage is particularly high in the low-load operating range. The proportion increases. On the other hand, the flow velocity in the passage for the same flow rate increases as the opening area of the passage decreases, so the flow velocity of intake air under the same operating conditions is higher in the primary intake passage than in the secondary intake passage. Therefore, even if the fuel injected into the primary intake passage forms a wall flow, it is urged by the high-speed intake flow and quickly reaches the engine. Furthermore, since the fuel from the injection valve is further accelerated together with the intake air flow in the venturi section located on the downstream side, the fuel is sufficiently atomized, so that it is difficult to form a wall flow itself.

従って、噴射燃料は急速に吸気と混合しつつ高速で一次
吸気通路内を流れるのであり、その後機関容気筒もしく
は気筒群へと分岐し、吸気分岐管内で二次吸気通路から
の吸′気と合流して確実かつ速やかに各気筒へと導入さ
れることになる。
Therefore, the injected fuel flows through the primary intake passage at high speed while rapidly mixing with the intake air, and then branches into the engine cylinder or cylinder group, where it merges with the intake air from the secondary intake passage in the intake branch pipe. This allows the fuel to be introduced into each cylinder reliably and quickly.

次に、この発明の実施例を図面の簡単な説明する。Next, embodiments of the present invention will be briefly described with reference to the drawings.

(実施例) 第1図または第2図において、1は直列4気筒機関の吸
気分岐管、2は吸気分岐管1の集合部IAに接続する二
次吸気管、3は同じく集合部IAに接続する一次吸気管
、4は二次吸気管2並びに−吹吸気管3を介して吸気分
岐管1に接続するスロットルボディである。
(Example) In Fig. 1 or 2, 1 is an intake branch pipe of an in-line four-cylinder engine, 2 is a secondary intake pipe connected to the collecting part IA of the intake branch pipe 1, and 3 is also connected to the collecting part IA. The primary intake pipe 4 is a throttle body connected to the intake branch pipe 1 via the secondary intake pipe 2 and the blow intake pipe 3.

吸気分岐管1は、その集合部IAから分岐通路IBとI
Cとに分岐し、各分岐通路IB、ICはさらに途中で分
岐してそれぞれ@ 1 +#2気筒、@ 3 、#4気
筒へと接続する。
The intake branch pipe 1 has branch passages IB and I from its gathering part IA.
The branch passages IB and IC further branch in the middle and connect to cylinders @1 + #2, @3, and #4, respectively.

スロットルボディ4は、二次吸気管2とともに二次吸気
通路5を形成する二次通路部6及びこれを開閉する二次
吸気絞り弁7等を備えた空気供給部4□へと、−吹吸気
管3とともに一次吸気通路8を形成する一次通路部9と
これを開閉する一次吸気絞り弁10及び電磁燃料噴射弁
11等を備えた空気燃料供給部4Bとからなる。
The throttle body 4 supplies -blow air to an air supply section 4□, which includes a secondary passage section 6 that forms a secondary intake passage 5 together with the secondary intake pipe 2, a secondary intake throttle valve 7 that opens and closes this, and the like. It consists of a primary passage part 9 that forms a primary intake passage 8 together with the pipe 3, and an air fuel supply part 4B that includes a primary intake throttle valve 10 and an electromagnetic fuel injection valve 11 that open and close the primary passage part 9.

上記スロットルボディ4の各部の詳細は第2図に示した
通りで、一次通路部9はスロットルボディ4に圧入され
たベンチュリボディ12に形成されており、これを開閉
する一次吸気絞り弁10は一次通路部9の入口付近に位
置するように弁軸10Aを介して回動可能に支持されて
いる。この一次吸気絞り弁10は、図示しないアクセレ
レータ機構と連動して運転者の意志に応じた開度となる
ように構成されており、全閉位置(アイドル位置)から
ある程度回動すると弁軸10Aの一端に固設されたアー
ムIOBがこれと同軸上に相対回転可能に支持された略
り字型のレバー13を押し、リターンスプリング14の
張力に抗してこれを回動させるようになっている。なお
、前記レバー13は二次吸気絞り弁7の最大開度を規制
するためのもので、詳しくは後述する。
The details of each part of the throttle body 4 are as shown in FIG. It is rotatably supported via the valve shaft 10A so as to be located near the entrance of the passage section 9. This primary intake throttle valve 10 is configured to open according to the driver's will in conjunction with an accelerator mechanism (not shown), and when it rotates to a certain extent from the fully closed position (idle position), the valve shaft 10A opens. An arm IOB fixed to one end pushes an abbreviated lever 13 coaxially supported so as to be relatively rotatable, and rotates it against the tension of a return spring 14. . Note that the lever 13 is for regulating the maximum opening degree of the secondary intake throttle valve 7, and will be described in detail later.

燃料噴射弁11は、前記一次吸気絞り弁10の下流側に
位置して一次通路部9内に設けられた混合気ノズル15
に向けて燃料を噴射するもので、図示しない燃料系統を
介して所定の圧力に調圧された燃料の供給を受け、クラ
ンク角(回転速度)及び吸気管圧力等の機関運転状態を
代表する所定のパラメータに基づいて制御回路16(1
1図)から出力される駆動パルス信号に応動して当該パ
ルスの開弁時間比に応じた量の燃料を噴射するようにな
っている。この燃料噴射弁11はスロットルボディ4の
側方にホルダ17及びクッション18、Q 17ング1
9等を介して保持されており、一次吸気絞り弁10を迂
回して混合気ノズル15に連通するように形成された補
助空気通路20に燃料を噴射供給する。補助空気通路2
0には一次吸気絞り弁10の上下流間に生じる圧力差に
基づいて図示しないエアクリーナからの空気が導入され
、この補助空気に前記噴射燃料が混合して混合気ノズル
15先端のオリフィス15Aから噴出する。
The fuel injection valve 11 includes a mixture nozzle 15 located downstream of the primary intake throttle valve 10 and provided within the primary passage portion 9.
It injects fuel toward the engine, and receives fuel regulated to a predetermined pressure via a fuel system (not shown), and is designed to inject fuel at predetermined pressures representative of engine operating conditions such as crank angle (rotational speed) and intake pipe pressure. The control circuit 16 (1
In response to a drive pulse signal outputted from the valve shown in FIG. 1), fuel is injected in an amount corresponding to the valve opening time ratio of the pulse. This fuel injection valve 11 has a holder 17, a cushion 18 and a Q 17 ring 1 on the side of the throttle body 4.
The fuel is injected and supplied to an auxiliary air passage 20 formed to communicate with the mixture nozzle 15 by bypassing the primary intake throttle valve 10. Auxiliary air passage 2
0 is introduced from an air cleaner (not shown) based on the pressure difference generated between the upstream and downstream sides of the primary intake throttle valve 10, and the injected fuel is mixed with this auxiliary air and jetted from the orifice 15A at the tip of the mixture nozzle 15. do.

一次通路部9には、さらに上記混合気ノズル15より下
流側にベンチよす部21が形成されている。このベンチ
ュリ部21の喉部面積は、一次吸気紋り弁10の下流に
生じる吸入負圧が−50,mmHg程のときに当該喉部
において150 m、/ see程度の吸気流速が得ら
れるように設定されている。なお、このようなベンチュ
リ状の通路形状によると圧力回復が良好であるため、オ
リフィス形式の絞りとは異なり容易に前記程度の流速が
得られる。
In the primary passage section 9, a bench well section 21 is further formed downstream of the mixture nozzle 15. The throat area of this venturi portion 21 is set such that when the suction negative pressure generated downstream of the primary intake crest valve 10 is approximately -50 mmHg, an intake flow velocity of approximately 150 m/see is obtained at the throat portion. It is set. Note that this venturi-like passage shape allows for good pressure recovery, and therefore, unlike an orifice-type restriction, the above-mentioned flow rate can be easily obtained.

上記一次通路部9は、その出口部に対称的に2方向に分
岐する分配管22が接続しており、さらにこの分配管2
2の2個の出口端に接続した一次吸気管3とともに一次
吸気通路8を形成している。
The primary passage section 9 is connected to its outlet section with a distribution pipe 22 that branches symmetrically in two directions, and furthermore, this distribution pipe 2
A primary intake passage 8 is formed together with a primary intake pipe 3 connected to the two outlet ends of 2.

−吹吸気管3の出口端は第1図に示したようにそれぞれ
分岐通路IB、ICに面するように吸気分岐管1に設け
られたコネクタ24を介して各々集合部IAに開口して
いる。なお、2個の一次吸気管3の通路開口面積はそれ
ぞれベンチュリ部21付近における一次通路部9のおよ
そ2分の1であり、また一次吸気絞り弁10の介装位置
付近における一次通路部9の開口面積はベンチュリ部2
1の3倍程度である。
- As shown in FIG. 1, the outlet ends of the intake pipes 3 open into the collecting parts IA via connectors 24 provided on the intake branch pipes 1 so as to face the branch passages IB and IC, respectively. . The passage opening area of the two primary intake pipes 3 is approximately one-half of the primary passage part 9 near the venturi part 21, and the opening area of the primary passage part 9 near the intervening position of the primary intake throttle valve 10 is approximately one-half of that of the primary passage part 9 near the venturi part 21. Opening area is venturi part 2
It is about three times as large as 1.

一方、二次吸気絞り弁7は、弁軸7Aを介してスロット
ルボディ4に回動可能に支持されており、弁軸7Aの一
端部に固設されたクランクアーム31、及びその一方の
揺動端に連接したダイア7うム装置32及び上記り字型
レバー13等からなる二次吸気制御手段を介して上記一
次吸気絞り弁10に連動するようになっている。クラン
クアーム31の他方の揺動端にはストッパーピン31A
が植設されており、このビン31AがL字型レバー13
の規制腕部13Aに当接して二次吸気絞り弁7の最大開
度を規制する。この場合、各絞り弁の開弁方向は、図面
上一次吸気絞り弁10が時計方向、二次吸気絞り弁7が
反時計方向であり、一次吸気絞り弁10が時計方向に回
動してアーム10Bがレバー13に当接すると、以後そ
の開度を増すほどレバー13の規制腕部13Aがピン3
1Aから遠ざかり、その分だけ二次吸気絞り弁7が反時
計方向つまり開弁方向に作動可能となる。ただし、クラ
ンクアーム31にはダイアフラム装置32が連接してい
るので、二次吸気絞り弁7は前記状態でダイアフラム装
置32に作動負圧が供給されたときに初めて作動する。
On the other hand, the secondary intake throttle valve 7 is rotatably supported by the throttle body 4 via the valve shaft 7A, and the crank arm 31 is fixed to one end of the valve shaft 7A, and one of the crank arms 31 is pivotable. It is linked to the primary intake throttle valve 10 through a secondary intake control means consisting of a diamond arm device 32 connected to the end, the above-mentioned cross-shaped lever 13, and the like. A stopper pin 31A is provided at the other swing end of the crank arm 31.
is installed, and this bottle 31A is connected to the L-shaped lever 13.
The maximum opening degree of the secondary intake throttle valve 7 is regulated by contacting the regulating arm 13A of the secondary intake throttle valve 7. In this case, the opening direction of each throttle valve is that the primary intake throttle valve 10 is opened clockwise in the drawing, the secondary intake throttle valve 7 is opened counterclockwise, and the primary intake throttle valve 10 is rotated clockwise to open the arm. When the lever 10B comes into contact with the lever 13, the more the lever 10B opens, the more the regulating arm 13A of the lever 13 moves toward the pin 3.
1A, the secondary intake throttle valve 7 can be operated counterclockwise, that is, in the valve opening direction. However, since the diaphragm device 32 is connected to the crank arm 31, the secondary intake throttle valve 7 operates only when the operating negative pressure is supplied to the diaphragm device 32 in the above state.

ダイアフラム装置32は、クランクアーム31に連接し
たロッド32A10ツド32Aを保持したダイアフラム
32B1ダイアフラム32Bを介して画成された圧力室
32C2圧力室32Gに介装されたスプリング32D等
からなり、スプリング32Dの張力に基づいて二次吸気
絞り弁7を閉弁力向に付勢している。圧力室32Cが大
気圧のときは前記スプリング32Dの張力により二次吸
気絞り弁7を全閉保持して二次通路部6を閉ざしている
が、圧力室32Cにある程度の作動負圧が作用すると、
この負圧に基づいてダイアフラム32Bに作用する力と
スプリング32Dの張力とがつり合う位置までロッド3
2Aを移動させて二次吸気絞り弁7を開作動させようと
する。
The diaphragm device 32 consists of a spring 32D and the like interposed in a pressure chamber 32C2 defined through the diaphragm 32B, a pressure chamber 32C2, and a pressure chamber 32G that holds a rod 32A connected to the crank arm 31. Based on this, the secondary intake throttle valve 7 is biased in the direction of the valve closing force. When the pressure chamber 32C is at atmospheric pressure, the tension of the spring 32D keeps the secondary intake throttle valve 7 fully closed and closes the secondary passage 6. However, when a certain amount of operating negative pressure acts on the pressure chamber 32C, ,
The rod 3 reaches a position where the force acting on the diaphragm 32B based on this negative pressure and the tension of the spring 32D are balanced.
2A to open the secondary intake throttle valve 7.

上記作動負圧の負圧源はベンチュリ部21の喉部から取
り出されるベンチエリ負圧であり、前記喉部に開口した
負圧導入通路33を介して圧力室32Cに供給される。
The negative pressure source of the operating negative pressure is bench eri negative pressure taken out from the throat of the venturi section 21, and is supplied to the pressure chamber 32C via the negative pressure introduction passage 33 opened to the throat.

このベンチよす負圧は一次吸気絞9弁10の開度が増し
てベンチュリ部21の吸気流速が増加するほど発達し、
その強さがある程度にまで達すると上述したようにして
二次吸気絞り弁7が開き始める。即ち、二次吸気絞り弁
7の開度は一次吸気絞り弁10に比較して遅れ側にあり
、機関の吸入吸気量がある程度以下の運転条件では主と
して一次吸気絞り弁10を介して吸気量が制御される。
This bench negative pressure develops as the opening degree of the primary intake throttle 9 valve 10 increases and the intake flow velocity of the venturi portion 21 increases.
When the strength reaches a certain level, the secondary intake throttle valve 7 begins to open as described above. That is, the opening degree of the secondary intake throttle valve 7 is on the delayed side compared to the primary intake throttle valve 10, and under operating conditions where the intake air amount of the engine is below a certain level, the intake air amount is mainly controlled via the primary intake throttle valve 10. controlled.

次に、上記構成下での作用をRN運転状態との関係にお
いて説明する。
Next, the operation under the above configuration will be explained in relation to the RN operating state.

第1図、第2図は何れもフィトリングに近い低負荷運転
時の状態を示しており、このとき一次通路g9には一次
吸気絞9弁10の下流側に例えば−100a+mHg以
上の強い負圧が生じるが、これが負圧導入通路33を介
してダイアフラム装置32に作用してもレバー13が二
次吸気絞り弁7の回動を阻止するため、二次吸気絞り弁
7はほぼ全閉状態を保つ、従って、この運転状態での吸
気は専ら一次通路部りないし一次吸気通路8を介して機
関に供給される。このときの一次吸気通路8における吸
気流速としてはベンチュリ部21の約2分の1で、即ち
少な(とも80 va/ sec程度に達する。
Figures 1 and 2 both show a low-load operating condition close to fitting, and at this time, there is a strong negative pressure of -100a+mHg or more in the primary passage g9 on the downstream side of the primary intake throttle 9 valve 10. However, even if this acts on the diaphragm device 32 through the negative pressure introduction passage 33, the lever 13 prevents the rotation of the secondary intake throttle valve 7, so the secondary intake throttle valve 7 is almost completely closed. Therefore, in this operating state, intake air is supplied to the engine exclusively via the primary passage section or the primary intake passage 8. At this time, the intake air flow velocity in the primary intake passage 8 is approximately one-half that of the venturi portion 21, that is, it is small (both reach about 80 va/sec).

一方、このような低負荷運転条件では燃料流量の絶対値
が小さく、また燃料供給系が経済空燃比を目標として制
御されることから、吸気流量に対する燃料供給量の割合
も少なし しかも混合気7にル15に至る補助空気通路
20での空気流速は強い吸人員圧のもとで着しく速くな
っている。このため、燃料噴射弁11からの噴射燃料は
混合気ノズル15のオリフィス15Aを通過して一次通
路部9へと噴出するとさ、及びその後ベンチュリ部21
を通過するときに効率よく微粒化され、具体的にはガソ
リン燃料では平均粒径が15〜30tt1m程になる。
On the other hand, under such low-load operating conditions, the absolute value of the fuel flow rate is small, and the fuel supply system is controlled with an economic air-fuel ratio as the target, so the ratio of the fuel supply amount to the intake flow rate is also small. The air flow velocity in the auxiliary air passage 20 leading to the air passage 15 becomes considerably faster under strong intake manifold pressure. Therefore, the injected fuel from the fuel injection valve 11 passes through the orifice 15A of the mixture nozzle 15 and is injected into the primary passage section 9, and then the venturi section 21.
When the fuel passes through the fuel, it is efficiently atomized, and specifically, for gasoline fuel, the average particle size is about 15 to 30 tt1m.

従って、噴射燃料が一次通路部9及び一次吸気通路8の
内壁に付着して壁流を形成するようなことがな(、高速
の吸電流と混合しながら速やかに吸気分岐管1へと供給
される。この場合、一次吸気通路8の出口端は分岐管1
の分岐通路IBまたはICに面して開口しているので、
一次吸気通路8から噴出した燃料はその慣性力により流
速を低下させることなく気筒内に達し、かつ気筒間分配
性も良好である。
Therefore, the injected fuel is prevented from adhering to the inner walls of the primary passage section 9 and the primary intake passage 8 and forming a wall flow (and is quickly supplied to the intake branch pipe 1 while mixing with the high-speed suction current). In this case, the outlet end of the primary intake passage 8 is connected to the branch pipe 1.
Since it opens facing the branch passage IB or IC,
The fuel ejected from the primary intake passage 8 reaches into the cylinders without reducing its flow velocity due to its inertial force, and the distribution between the cylinders is also good.

このような運転状態から、例えば緩慢な加速に移るとき
のようにアクセル開度及び一次吸気絞り弁10の開度が
やや増加され、この結果一次吸気絞り弁10下流の吸気
管負圧が−50mmHgはどまで減少すると、この状態
でも先に説明したようにベンチュリ部21での流速が1
50 ml see程度となるように構成したことから
、一次吸気通路8内の流速は80 IIl/ see程
度を維持する。尤も、噴射燃料の微粒化はやや鈍くなり
、その平均粒径はおよそ40p程度になる。このため、
燃料は一次吸気通路8の曲線部分等に衝突して壁流を形
成しやすくなるが、吸気流速が速い分だけ壁流の移動速
度も高くなるので、その供給遅れは従来上りも着しく短
縮される。具体例を挙げると、一次吸気通路8の出口端
から機関気筒までの距離を16011吸気流速に対する
壁流の移動速度比率が2パーセントとして、吸気流速は
80 ml secであるから壁流移動速度は1.6m
/seaになる。従って、壁流燃料が一次吸気通路8を
脱してから気筒内に達するまでの時間は約10分の1秒
である。これは、従来の吸気分岐管集合部に単純に燃料
を供給した場合に比較して5〜10倍の速度になる。
From such an operating state, for example, when transitioning to slow acceleration, the accelerator opening and the opening of the primary intake throttle valve 10 are slightly increased, and as a result, the intake pipe negative pressure downstream of the primary intake throttle valve 10 is -50 mmHg. When the flow rate decreases to the limit, even in this state, the flow velocity in the venturi section 21 becomes 1, as explained earlier.
Since the flow rate in the primary intake passage 8 is configured to be approximately 50 ml/see, the flow rate in the primary intake passage 8 is maintained at approximately 80 IIl/see. However, the atomization of the injected fuel becomes somewhat slower, and the average particle size becomes about 40p. For this reason,
The fuel collides with the curved portion of the primary intake passage 8 and tends to form a wall flow, but the faster the intake flow speed, the faster the wall flow moves, so the supply delay has been significantly shortened in the past. Ru. To give a specific example, assuming that the distance from the outlet end of the primary intake passage 8 to the engine cylinder is 16011, and the ratio of the moving speed of the wall flow to the intake flow velocity is 2%, the intake flow velocity is 80 ml sec, so the wall flow moving speed is 1. .6m
/become sea. Therefore, the time from when the wall flow fuel leaves the primary intake passage 8 until it reaches the inside of the cylinder is about 1/10 second. This is 5 to 10 times faster than the conventional case where fuel is simply supplied to the intake branch pipe assembly.

なお、一次吸気絞り弁10の開度増加により既述したよ
うに二次吸気絞り弁7の最大開度が拡大されるので、一
次通路部りないし一次吸気通路8の吸気流量または流速
がある程度増加するとグイア7ラム装置32へのベンチ
ュリ負圧が発達してこれを駆動し、二次吸気絞り弁7を
開弁方向に回動させる。従って、一次吸気絞り弁10の
開度が大きくなる比較的高負荷の運献条件では、前記二
次吸気絞り弁7の開弁に伴う二次通路部6及び二次吸気
通路5を介しての吸気供給により高い要求負荷に対応し
た多量の混合気を供給することができる。
In addition, as mentioned above, the maximum opening of the secondary intake throttle valve 7 is expanded by increasing the opening of the primary intake throttle valve 10, so the intake flow rate or flow velocity in the primary passage section or the primary intake passage 8 increases to some extent. Then, venturi negative pressure develops and drives the Guia 7 ram device 32, causing the secondary intake throttle valve 7 to rotate in the opening direction. Therefore, under relatively high load operating conditions in which the opening degree of the primary intake throttle valve 10 is large, the air flow through the secondary passage portion 6 and the secondary intake passage 5 due to the opening of the secondary intake throttle valve 7 is By supplying intake air, a large amount of air-fuel mixture corresponding to a high required load can be supplied.

(発明の効果) 以上説明した通り、この発明によれば一次吸気通路に生
起した高速吸気流に燃料を噴射供給することにより燃料
の微粒化を促すとともに燃料壁流の形成を抑制し、仮に
壁流が生じたとしてもこれを短時間で機関気筒に供給し
うるようにしたので、噴射燃料の壁流化に原因する空燃
比の希薄化及び燃料供給遅れを解消して機関の過渡特性
を改善でき、さらには燃料噴射装置に特有の正確な空燃
比制御特性を生かして機関の燃費、出力、排気エミッシ
ョンなど諸性能を可及的に向上させることが可能になる
(Effects of the Invention) As explained above, according to the present invention, by injecting and supplying fuel to the high-speed intake flow generated in the primary intake passage, fuel atomization is promoted and the formation of fuel wall flow is suppressed, and the formation of fuel wall flow is suppressed. Even if a flow occurs, it can be supplied to the engine cylinders in a short time, eliminating the dilution of the air-fuel ratio and fuel supply delay caused by wall flow of injected fuel, and improving the transient characteristics of the engine. Furthermore, by taking advantage of the precise air-fuel ratio control characteristics unique to the fuel injection system, it becomes possible to improve engine performance such as fuel efficiency, output, and exhaust emissions as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図はその要
部拡大図である。 1・・・吸気分岐管、    4・・・スロ7)ルボデ
イ、5・・・二次吸気通路、  6・・・二次通路部、
7・・・二次吸気絞り弁、  8・・・一次吸気通路、
9・・・一次通路部、   10・・・一次吸気絞り弁
、11・・・電磁燃料噴射弁、13・・・レバー、13
A・・・開度規制腕部、15・・・混合気ノズル、16
・・・燃料噴射制御回路、20・・・補助空気通路、2
1・・・ベンチュリ部、  22・・・分配管、31・
・・クランクアーム、31A・・・ストッパービン、3
2・・・グイア7ラム装置、33・・・負圧導入通路。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is an enlarged view of the main parts thereof. DESCRIPTION OF SYMBOLS 1...Intake branch pipe, 4...Slot 7) Lubo day, 5...Secondary intake passage, 6...Secondary passage part,
7...Secondary intake throttle valve, 8...Primary intake passage,
9... Primary passage portion, 10... Primary intake throttle valve, 11... Electromagnetic fuel injection valve, 13... Lever, 13
A... Opening regulating arm, 15... Mixture nozzle, 16
...Fuel injection control circuit, 20...Auxiliary air passage, 2
1... Venturi part, 22... Distribution pipe, 31...
... Crank arm, 31A ... Stopper bin, 3
2... Guia 7 ram device, 33... Negative pressure introduction passage.

Claims (1)

【特許請求の範囲】 1、吸気分岐管を介して機関各気筒に接続する比較的通
路開口面積の大きい二次吸気通路に対し独立して吸気を
導入する比較的通路開口面積の小さい一次吸気通路と、
アクセレレータ操作に連動して一次吸気通路を開閉する
一次吸気絞り弁と、この一次吸気絞り弁の下流側に位置
して一次吸気通路に燃料を噴射供給する燃料噴射弁と、
一次吸気絞り弁の作動状態に応じて二次吸気通路の二次
吸気絞り弁を開閉駆動する二次吸気制御手段とを備えた
燃料供給装置であって、一次吸気通路はその途中に燃料
噴射弁を介しての燃料供給部位より下流側に位置してベ
ンチユリ部を有するとともに該ベンチユリ部より下流側
で分岐して各気筒もしくは所定気筒群の近傍に各々開口
し、かつ二次吸気制御手段は二次吸気絞り弁が一次吸気
絞り弁よりも遅れて開弁する構成であることを特徴とす
る内燃機関の燃料供給装置。 2、二次吸気制御手段は、一次吸気絞り弁に連動して二
次吸気絞り弁の最大開度を規制する規制装置と、一次吸
気通路のベンチユリ部に生じる負圧に基づき前記規制最
大閉度の範囲内で二次吸気絞り弁を開閉駆動するダイア
フラム装置とからなることを特徴とする特許請求の範囲
第1項に記載の内燃機関の燃料供給装置。
[Claims] 1. A primary intake passage with a relatively small opening area that introduces intake air independently to a secondary intake passage with a relatively large opening area that connects to each cylinder of the engine via an intake branch pipe. and,
a primary intake throttle valve that opens and closes a primary intake passage in conjunction with accelerator operation; a fuel injection valve located downstream of the primary intake throttle valve that injects fuel into the primary intake passage;
A fuel supply device comprising a secondary intake control means for opening and closing a secondary intake throttle valve in a secondary intake passage according to the operating state of the primary intake throttle valve, the primary intake passage having a fuel injection valve in the middle thereof. It has a bench lily section located downstream of the fuel supply section via the vent lily section, and branches downstream from the bench lily section and opens in the vicinity of each cylinder or a predetermined group of cylinders, and has a secondary intake control means. 1. A fuel supply system for an internal combustion engine, characterized in that a secondary intake throttle valve opens later than a primary intake throttle valve. 2. The secondary intake control means includes a regulation device that regulates the maximum opening of the secondary intake throttle valve in conjunction with the primary intake throttle valve, and a regulation device that regulates the maximum opening of the secondary intake throttle valve based on the negative pressure generated in the vent lily portion of the primary intake passage. 2. The fuel supply system for an internal combustion engine according to claim 1, further comprising a diaphragm device that opens and closes a secondary intake throttle valve within a range of .
JP3399285A 1985-02-22 1985-02-22 Fuel feeder for internal-combustion engine Pending JPS61192848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3399285A JPS61192848A (en) 1985-02-22 1985-02-22 Fuel feeder for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3399285A JPS61192848A (en) 1985-02-22 1985-02-22 Fuel feeder for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61192848A true JPS61192848A (en) 1986-08-27

Family

ID=12401973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3399285A Pending JPS61192848A (en) 1985-02-22 1985-02-22 Fuel feeder for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61192848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269260A (en) * 1991-02-25 1992-09-25 Kajima Corp Structure of joint portion between facing panels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464226A (en) * 1977-09-23 1979-05-23 Bosch Gmbh Robert Fuel injection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464226A (en) * 1977-09-23 1979-05-23 Bosch Gmbh Robert Fuel injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269260A (en) * 1991-02-25 1992-09-25 Kajima Corp Structure of joint portion between facing panels

Similar Documents

Publication Publication Date Title
US4196701A (en) Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port
US4387695A (en) Fuel injection apparatus
JPS6025604B2 (en) Intake control method for internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
GB1254457A (en) Carburetors for internal combustion engines
JPH02277919A (en) Suction device of multi-cylinder engine
JPS6056261B2 (en) Fuel-injected multi-cylinder internal combustion engine
US4483292A (en) Internal combustion engine
JPS5840647B2 (en) Internal combustion engine intake system
US4300506A (en) Fuel supply system
JPS61192848A (en) Fuel feeder for internal-combustion engine
JP3808502B2 (en) Fuel amount control
US4530325A (en) Suction system for internal combustion engine
CA1208088A (en) Internal combustion engine
JPS6238874A (en) Throttle body for fuel injector
JPS6113109B2 (en)
JPS6380055A (en) Fuel supply device for engine
JPH0133790Y2 (en)
JPS628627B2 (en)
JPS61226559A (en) Mixture gas controller for internal-combustion engine
JPS5910775A (en) Intake air-fuel supply device of internal-combustion engine
JPS5941641A (en) Fuel controller
JPH048609B2 (en)
JP2514944Y2 (en) Fuel injector
JPS61116026A (en) Intake-air device in internal-combustion engine