JPS61116026A - Intake-air device in internal-combustion engine - Google Patents
Intake-air device in internal-combustion engineInfo
- Publication number
- JPS61116026A JPS61116026A JP59236797A JP23679784A JPS61116026A JP S61116026 A JPS61116026 A JP S61116026A JP 59236797 A JP59236797 A JP 59236797A JP 23679784 A JP23679784 A JP 23679784A JP S61116026 A JPS61116026 A JP S61116026A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- valve
- fuel
- air
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】 く産業上の利用分野〉 本発明伐内燃機関の吸気装置に関する。[Detailed description of the invention] Industrial application fields> The present invention relates to an intake system for an internal combustion engine.
〈従来の技術〉
この種の内燃機関の吸気装置の従来例として第8図及び
第9図に示すようなものがある(特願昭58−2253
56号参照)。<Prior Art> As a conventional example of this type of intake system for an internal combustion engine, there is one shown in FIGS. 8 and 9 (Japanese Patent Application No. 58-2253
(See No. 56).
すなわち、各気筒毎に2つの第1及び第2の吸気弁IA
、IBを介装した2−)の第1及び第2の吸気ポート2
人、2Bを設け、それらの一方例えば第2吸気ホー)2
Bにバタフライ式の開閉弁3を介装する。That is, two first and second intake valves IA for each cylinder.
, the first and second intake ports 2 of 2-) with IB interposed
person, 2B, one of them (e.g. second intake hole) 2
A butterfly type on-off valve 3 is installed in B.
そして、機関低速運転領域では、開閉弁3を閉じ第1吸
気ポート2人のみから燃焼室4に吸気を供給することに
よシ燃焼室4の内周壁に涜って流入する吸気流にて燃焼
室4にスワールを形成し低速時の燃焼改善を図る。また
、中速〜高速運転領域では開閉弁3を開き両吸気ポート
2人、2Bから#5.焼室4に吸気を供給し吸気充横効
単を高め機関出力の向上を図るようにしている。When the engine is in a low-speed operating region, the on-off valve 3 is closed and intake air is supplied to the combustion chamber 4 from only the two first intake ports, allowing combustion to occur with the intake air flowing against the inner peripheral wall of the combustion chamber 4. A swirl is formed in chamber 4 to improve combustion at low speeds. In addition, in the medium speed to high speed operation range, the on-off valve 3 is opened for both intake ports, 2B to #5. Intake air is supplied to the combustion chamber 4 to increase the intake air charging efficiency and improve the engine output.
ここで、開閉弁3は常用運転領域では開く頻度が少ない
ため、安定した空燃比制御が図れるように燃料噴射弁5
を常時開通する第1吸気ポート2All11に設け、ま
た燃料は第9図に示すよりに第1吸気弁1A傘部の弁軸
中心付近に集中させて噴射させるようKしている。Here, since the on-off valve 3 does not open frequently in the normal operating range, the fuel injection valve 5
is provided in the first intake port 2All11 which is always open, and the fuel is injected in a concentrated manner near the center of the valve shaft of the umbrella portion of the first intake valve 1A as shown in FIG.
尚、排気弁6A、6B及び排気ポート1人、TBも2つ
ずつ備えられ、また点火栓8は燃焼室4の中心付近に設
けられている。Incidentally, exhaust valves 6A, 6B, one exhaust port, and two exhaust ports TB are also provided, and an ignition plug 8 is provided near the center of the combustion chamber 4.
〈発明が解決しようとする間勉点〉
しかしながら、このような従来の吸気装置では、燃料噴
射弁5から燃料を第1吸気弁1A傘部の弁軸中心に集中
させて噴射するようにしているので、燃料噴射弁5から
噴射された大粒径の燃料が吸気ポートの空気と良好に混
合されないまま燃焼室4に流入しまた第1吸気弁1人の
傘部及び弁軸に付着滞留した燃料が開弁と同時に燃焼室
4に一度に流入していた。このため、燃焼室4において
も大粒径の燃料は空気との混合性が悪くまたその燃料は
空気流によシ搬送されにくいためさらに空気との混合性
が悪(HC(炭火水素)排出量が増加するという問題点
があった。<Study points to be solved by the invention> However, in such a conventional intake device, fuel is injected from the fuel injection valve 5 in a concentrated manner at the center of the valve shaft of the umbrella portion of the first intake valve 1A. Therefore, the large particle diameter fuel injected from the fuel injection valve 5 flows into the combustion chamber 4 without being mixed well with the air in the intake port, and the fuel adheres to and accumulates on the head of the first intake valve and the valve shaft. was flowing into the combustion chamber 4 at once when the valve was opened. For this reason, even in the combustion chamber 4, fuel with large particle diameters has poor mixing properties with air, and the fuel is difficult to be transported by the air flow, resulting in poor mixing properties with air (HC (hydrocarbon) emissions). There was a problem in that the number increased.
また、開閉弁3が開く運転域では両吸気ポート2人、2
Bを介して略同量の空気が燃焼室4に供給されるのに対
し燃料は第1吸気ポート2人から燃焼室4に供給される
ため、どりしても燃焼室4壁に形成されるクエンチ層は
第1吸気弁1A付近に偏って浮くなυやすく、もって燃
焼性能を低下させ上記問題点を助長する欠点があった。In addition, in the operating range where the on-off valve 3 is open, two people at both intake ports and two
Approximately the same amount of air is supplied to the combustion chamber 4 through B, while fuel is supplied to the combustion chamber 4 from the two first intake ports, so even if it returns, it will be formed on the combustion chamber 4 wall. The quench layer tends to float in the vicinity of the first intake valve 1A, which has the drawback of reducing combustion performance and aggravating the above problem.
本発明は、このような実状に鑑みてなされたもので、H
C排出量を低減させる吸気装置を提供することを目的と
する。The present invention was made in view of the above-mentioned circumstances.
An object of the present invention is to provide an intake device that reduces C emissions.
く間踊点を解決するための手段〉
このため、本発明は、開閉弁が設置されない側の吸気弁
上流の吸気ポート内壁の全周に燃料を噴射する燃料噴射
弁を設けるようにした。Means for Solving Distance Point> Therefore, in the present invention, a fuel injection valve that injects fuel is provided all around the inner wall of the intake port upstream of the intake valve on the side where the on-off valve is not installed.
く作用〉 ゛
これによ)、燃料噴射弁から噴射された煤料の大部分を
吸気ポート壁に付着させた後燃焼魚に供給し燃料の気化
特性を向上させ、もって燃焼性能を向上させることKよ
J)HC排出量の低減化を図るようにした。゛Thus, most of the soot injected from the fuel injection valve adheres to the intake port wall and is then supplied to the combustion engine to improve the vaporization characteristics of the fuel, thereby improving combustion performance. KyoJ) Efforts were made to reduce HC emissions.
く夷凡例〉
以下に、本発明の一実施例を第1図〜第5図に基づいて
説明する。Legend> An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
図において、シリンダヘッド11には従来例と同様に第
1の吸気ポート12と第2の吸気ポート(図示せず)と
が並設されて形成され、第2吸気ポートには開閉弁が設
けられている。第1の吸気ポート12には第1の吸気弁
(図示せず)が介装され第2の吸気ポートには第2の吸
気弁が介装されている。シリンダヘッド11にはウォー
タジャケット13が第1の吸気ポート12を包囲して形
成されている。In the figure, a cylinder head 11 is formed with a first intake port 12 and a second intake port (not shown) arranged side by side as in the conventional example, and the second intake port is provided with an on-off valve. ing. A first intake valve (not shown) is installed in the first intake port 12, and a second intake valve is installed in the second intake port. A water jacket 13 is formed in the cylinder head 11 so as to surround the first intake port 12 .
また、シリンダヘッド11外壁には吸気マニホールド1
4が取付けられ、該吸気マニホールド14には外開き式
の燃料噴射弁15が取付けられている。燃料噴射弁15
の燃料鳴射中心軸人は第1の吸気弁のバルブシート16
の中心部を通るように設定されている。また、燃料噴射
弁15の噴射角θは従来より大きく設定され、燃料噴射
弁15の噴射燃料は第1図に示すように第1の吸気ポー
ト12内壁の全周に衝突するようになっている。In addition, an intake manifold 1 is provided on the outer wall of the cylinder head 11.
4 is attached to the intake manifold 14, and an outward-opening type fuel injection valve 15 is attached to the intake manifold 14. Fuel injection valve 15
The fuel squirting center axis is located at the valve seat 16 of the first intake valve.
It is set to pass through the center of Furthermore, the injection angle θ of the fuel injection valve 15 is set larger than before, so that the injected fuel of the fuel injection valve 15 collides with the entire circumference of the inner wall of the first intake port 12, as shown in FIG. .
外[+1一式の燃料噴射弁15の具体例としては第2図
に示すようなものがあり、噴射角θを大きくとるためK
は第3図に示すニードル15mの先端部の広がシ角θ′
を従来よシ大きく設定すれは実現できる。このとき、上
記広がシ角θ′は前記噴射角θよシやや大きく設定する
。また、噴射角θ線噴射燃料が燃料噴射弁15の前端部
のプロテクタ15bに衝突しないように最大的70′〜
85°になる。A specific example of a set of fuel injection valves 15 is as shown in FIG.
is the divergence angle θ' of the tip of the 15m needle shown in Figure 3.
This can be achieved by setting the value larger than before. At this time, the spread angle θ' is set to be slightly larger than the injection angle θ. In addition, to prevent the injection angle θ line injected fuel from colliding with the protector 15b at the front end of the fuel injection valve 15,
It becomes 85°.
これによ)、噴射燃料は第4図に示すように円錐環状と
なって第1の吸気ポート12内壁の全周域に衝突するの
でおる。As a result, the injected fuel forms a conical ring shape as shown in FIG. 4 and impinges on the entire circumference of the inner wall of the first intake port 12.
尚、第1図中ITは燃焼室でおる。In addition, IT in FIG. 1 is a combustion chamber.
次にかかる吸気装置の作用を説明する。Next, the operation of this intake device will be explained.
燃料噴射弁15から燃料が第1の吸気ポート12内周壁
に向けて噴射されその一部は吸気ポート12内空間に滞
留し残シは吸気ポート12内周壁に広く分布して付着す
る。Fuel is injected from the fuel injection valve 15 toward the inner circumferential wall of the first intake port 12, a part of which remains in the inner space of the intake port 12, and the remainder is widely distributed and adheres to the inner circumferential wall of the intake port 12.
このとき、第1の吸気ポート12を包囲するようにウォ
ータジャケット13が形成されているので、第1の吸気
ポート12内壁の温度が冷却水温度程度まで上昇してお
)、これKよシ第1の吸気ポート12内局壁に広く分布
して付着した燃料の気化が促進される。また、燃料噴射
弁15から噴射された燃料粒径は噴射角θが大きく設定
されているのでニードル部での燃料移動方向が大きく変
化されかつその噴射燃料が広い範囲に拡散するから微/
トになる。At this time, since the water jacket 13 is formed to surround the first intake port 12, the temperature of the inner wall of the first intake port 12 rises to about the cooling water temperature. The vaporization of the fuel widely distributed and attached to the inner wall of the intake port 12 is promoted. In addition, since the injection angle θ is set to be large, the fuel particle size injected from the fuel injection valve 15 changes the direction of fuel movement at the needle portion, and the injected fuel is spread over a wide range.
Becomes
そして、第1の吸気弁の開弁作動と共に第1吸気ポート
12内周壁から気化された燃料及び第1の吸気ポート1
2内空間に滞溜された微小の燃料が吸気流によ)燃焼室
17に搬送される。また、第1の吸気ポート12内周壁
に付着する燃料は第1の吸気弁開弁初期におけるその吸
気弁とバルブシート16との狭間隙から燃焼室1Tに流
入すゐ高速空気流に乗って燃焼室17に流入するため燃
料の微粒化が促進される。Then, as the first intake valve opens, the fuel vaporized from the inner peripheral wall of the first intake port 12 and the first intake port 1
A small amount of fuel accumulated in the internal space of the combustion chamber 2 is conveyed to the combustion chamber 17 by the intake air flow. Further, the fuel adhering to the inner circumferential wall of the first intake port 12 is combusted on the high-speed airflow flowing into the combustion chamber 1T through the narrow gap between the intake valve and the valve seat 16 at the initial stage of opening of the first intake valve. Since the fuel flows into the chamber 17, atomization of the fuel is promoted.
したがって、燃焼室17において燃料と空気との混合が
促進されるから燃焼性能が向上しHC排出量の低減化を
図れる。また、第2の吸気ポートに介装される開閉弁が
開弁して第2の吸気ポートから空気が燃焼thtrに流
入するときくも@iの吸気ポート12から流入する燃料
の気化及び微粒化が促進されるから燃焼室17における
燃料と空気との混合が促進されるため燃料の偏在を少な
くできもってHC排出量の低減化を図れる。Therefore, since the mixing of fuel and air is promoted in the combustion chamber 17, combustion performance is improved and HC emissions can be reduced. Also, when the on-off valve installed in the second intake port opens and air flows into the combustion thtr from the second intake port, the fuel flowing from the intake port 12 of Kumo@i is vaporized and atomized. Since the mixing of fuel and air in the combustion chamber 17 is promoted, uneven distribution of fuel can be reduced, and the amount of HC emissions can be reduced.
ここで、第5図に燃料噴射弁15の噴射角θを変化させ
たときの実験データを示す。このデータによれは、噴射
角θを増加させるに伴なって噴射燃料の平均粒径が減少
し、これに伴なって燃料粒の重量も減少する。また、H
C排出濃度は噴射角30°付近まで急激に減少しその後
略一定値になっている。これは噴射角30°以上におい
て燃料が第1の吸気ポート12内周壁に付着するためで
ある。Here, FIG. 5 shows experimental data when the injection angle θ of the fuel injection valve 15 was changed. According to this data, as the injection angle θ increases, the average particle diameter of the injected fuel decreases, and the weight of the fuel particles decreases accordingly. Also, H
The C emission concentration decreases rapidly until the injection angle is around 30°, and then remains at a substantially constant value. This is because fuel adheres to the inner circumferential wall of the first intake port 12 at an injection angle of 30° or more.
尚、噴射角θ全人きく設定して第1の吸気ポート12内
局壁に燃料を付着させることKよシ燃料の空燃比制御の
応答性が低下することが予想されるので、噴射角θに応
じた入コントロール制御周期の変化を調べたが第5図に
示すようにその制御周期の変化は小さくHC排出濃度九
対する影響、三元触媒の転化効率の低下も極めて少ない
。It should be noted that if the injection angle θ is set sharply so that the fuel adheres to the inner wall of the first intake port 12, it is expected that the responsiveness of the fuel air-fuel ratio control will decrease. The change in the input control control period was investigated in response to the change in the control period, and as shown in FIG. 5, the change in the control period was small, and the influence on the HC emission concentration 9 and the reduction in the conversion efficiency of the three-way catalyst were extremely small.
尚、第1の吸気ポート12内における燃料の気化率を高
めるため第1の吸気弁が閉弁された直後に第1の吸気ポ
ート12内周壁に燃料が到達するように燃料噴射タイミ
ングを設定し、吸気ポート12に燃料が出来るだけ長時
間滞溜し冷却水によシ加熱されるのが良い。In addition, in order to increase the vaporization rate of the fuel in the first intake port 12, the fuel injection timing is set so that the fuel reaches the inner peripheral wall of the first intake port 12 immediately after the first intake valve is closed. It is preferable that the fuel stays in the intake port 12 for as long as possible and is heated by the cooling water.
また、燃料噴射弁15からの噴射燃料が第1の吸気ポー
ト12内周壁に付着するために燃料噴射弁15の噴射角
θ及びその配置の設定方法として第6図に示す例がある
。Further, since the injected fuel from the fuel injection valve 15 adheres to the inner circumferential wall of the first intake port 12, there is an example shown in FIG. 6 as a method of setting the injection angle θ of the fuel injection valve 15 and its arrangement.
すなわち、燃料噴射弁15の噴孔部とバルブシート1γ
との距離をLに、燃料噴射弁15の噴射角をθに1かつ
バルブシー)17の口径をDに設定したときにそれらり
、θ、Dの関係をLa/D〉lに設定すると燃料噴射弁
15から噴射された燃料が第1の吸気ポート12内周壁
に付着するようになる。これによfil、HC排出量は
第7図に示すように Lθ/Dが小さい側から1に近づ
くにつれて急激に低下し、その後低い値で維持されるよ
うになる。That is, the injection hole portion of the fuel injection valve 15 and the valve seat 1γ
When the distance between the fuel injector 15 and the fuel injection valve 15 is set to L, the injection angle of the fuel injector 15 is set to θ, and the aperture of the valve seat (valve seat) 17 is set to D, the fuel injection The fuel injected from the valve 15 comes to adhere to the inner peripheral wall of the first intake port 12. As a result, as shown in FIG. 7, the amount of fil and HC emissions decreases rapidly as Lθ/D approaches 1 from the small side, and then remains at a low value.
〈発明の効果〉
本発明は、以上説明したように1燃料噴射弁から燃料を
開閉弁が設置されない側の吸気弁上流の吸気ポート内壁
の全周に噴射させるように構成したので、吸気ホード部
での燃料の気化が促進されるため燃焼室における燃料と
空気との混合が促進されて燃焼性能が向上しICC排出
量低減化を図れる。また、他方の吸気ポートから空気の
みが燃焼室に流入する開閉弁が開く運転領域でも一方の
吸気ポート部での燃料の気化が促進されることくより燃
焼室での空気と燃料との混合が促進されHC排出量を低
減できる。<Effects of the Invention> As explained above, the present invention is configured so that fuel is injected from one fuel injection valve to the entire circumference of the inner wall of the intake port upstream of the intake valve on the side where the on-off valve is not installed. Since the vaporization of the fuel is promoted in the combustion chamber, the mixing of the fuel and air in the combustion chamber is promoted, the combustion performance is improved, and ICC emissions can be reduced. In addition, even in the operating range where the on-off valve is open, where only air flows into the combustion chamber from the other intake port, the vaporization of fuel at one intake port is promoted, and the mixing of air and fuel in the combustion chamber is improved. HC emissions can be reduced.
第1図は本発明の一冥施例を示す要部断面図、第2図は
燃料噴射弁の具体例を示す要部断面図、第3図は第2図
の要部拡大図、第4図は燃料噴射弁の燃料噴射形状を示
す図、第5図は噴射角θに対する燃料の平均粒径1重量
比、HC排出濃度及び入コントロール制御周期を示す因
、第6図は燃料噴射弁の設定方法を説明するための図、
第7図は第6図におけるLa/D とHC排出量及び燃
料粒径の関係を示す図、第8図は吸気装置の従来例を示
す平面図、第9図は第8図の兼部断面図でおる。
12・・・第1の吸気ポート 13・・・ウオータジ
ヤケット 15・・・燃料噴射弁 17・・・燃焼
室特許 出 願人 日産自動車株式会社
代理人 弁理士 笹 島 富二雄
第2図
第3図
第4図
窮6図
第7図
Le/DFIG. 1 is a cross-sectional view of the main part showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of the main part showing a specific example of a fuel injection valve, FIG. 3 is an enlarged view of the main part of FIG. Figure 5 shows the fuel injection shape of the fuel injection valve, Figure 5 shows the fuel average particle diameter 1 weight ratio, HC emission concentration, and input control control period with respect to the injection angle θ, Figure 6 shows the fuel injection shape of the fuel injection valve. A diagram to explain how to set it up,
Fig. 7 is a diagram showing the relationship between La/D in Fig. 6, HC emission amount, and fuel particle size, Fig. 8 is a plan view showing a conventional example of an intake system, and Fig. 9 is a cross section of the part shown in Fig. 8. Illustrated. 12...First intake port 13...Water jacket 15...Fuel injection valve 17...Combustion chamber patent Applicant Nissan Motor Co., Ltd. Representative Patent attorney Fujio Sasashima Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Le/D
Claims (1)
れぞれ介装される2つの吸気弁と、前記吸気ポートの一
方に介装され機関運転条件に応じて開閉する開閉弁と、
を備える内燃機関の吸気装置において、前記開閉弁が設
置されない側の吸気弁上流の吸気ポート内壁の全周に向
けて燃料を噴射する燃料噴射弁を設けたことを特徴とす
る内燃機関の吸気装置。For each cylinder, two intake ports, two intake valves installed in each of these intake ports, and an on-off valve installed in one of the intake ports that opens and closes according to engine operating conditions;
An intake system for an internal combustion engine, characterized in that the intake system for an internal combustion engine is provided with a fuel injection valve that injects fuel toward the entire circumference of the inner wall of the intake port upstream of the intake valve on the side where the on-off valve is not installed. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236797A JPS61116026A (en) | 1984-11-12 | 1984-11-12 | Intake-air device in internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236797A JPS61116026A (en) | 1984-11-12 | 1984-11-12 | Intake-air device in internal-combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61116026A true JPS61116026A (en) | 1986-06-03 |
JPH0344227B2 JPH0344227B2 (en) | 1991-07-05 |
Family
ID=17005930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59236797A Granted JPS61116026A (en) | 1984-11-12 | 1984-11-12 | Intake-air device in internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116026A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0349373U (en) * | 1989-09-20 | 1991-05-14 | ||
JPH0349371U (en) * | 1989-09-19 | 1991-05-14 | ||
JPH0349372U (en) * | 1989-09-20 | 1991-05-14 |
-
1984
- 1984-11-12 JP JP59236797A patent/JPS61116026A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0349371U (en) * | 1989-09-19 | 1991-05-14 | ||
JPH0349373U (en) * | 1989-09-20 | 1991-05-14 | ||
JPH0349372U (en) * | 1989-09-20 | 1991-05-14 |
Also Published As
Publication number | Publication date |
---|---|
JPH0344227B2 (en) | 1991-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4196701A (en) | Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port | |
US4438743A (en) | Internal combustion engine | |
US4211191A (en) | Fuel supplying device for internal combustion engine | |
US3542003A (en) | Engine exhaust recirculation | |
US3587541A (en) | Engine exhaust recirculation | |
JPS61116026A (en) | Intake-air device in internal-combustion engine | |
JPS6232328B2 (en) | ||
CA1206386A (en) | Intake port structure for internal combustion engines | |
CA1208088A (en) | Internal combustion engine | |
JPS61223268A (en) | Jet apparatus of internal combustion engine | |
JPH1122470A (en) | Fuel injection device of lean burn engine | |
JPH09280066A (en) | Intake air controller of internal combustion engine | |
JPH1026026A (en) | Spark ignition engine | |
JPH07166926A (en) | Air intake device of internal combustion engine | |
JPH044462B2 (en) | ||
JPH0216057Y2 (en) | ||
JP3328848B2 (en) | Engine intake system | |
JPH09177641A (en) | Intake device of internal combustion engine | |
JPH0465232B2 (en) | ||
JP2519563Y2 (en) | Internal combustion engine intake system | |
JPH0693941A (en) | Fuel feeding device for internal combustion engine | |
JPS581653Y2 (en) | Fuel supply system for multi-cylinder internal combustion engine | |
JP2000274278A (en) | Cylinder injection type spark ignition internal combustion engine | |
JPS61132773A (en) | Air intake device for internal-combustion engine | |
JPH048251Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |