JPS581653Y2 - Fuel supply system for multi-cylinder internal combustion engine - Google Patents

Fuel supply system for multi-cylinder internal combustion engine

Info

Publication number
JPS581653Y2
JPS581653Y2 JP1978032028U JP3202878U JPS581653Y2 JP S581653 Y2 JPS581653 Y2 JP S581653Y2 JP 1978032028 U JP1978032028 U JP 1978032028U JP 3202878 U JP3202878 U JP 3202878U JP S581653 Y2 JPS581653 Y2 JP S581653Y2
Authority
JP
Japan
Prior art keywords
fuel
air
fuel supply
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978032028U
Other languages
Japanese (ja)
Other versions
JPS54137620U (en
Inventor
荒井元美
斉藤正昭
川村佳久
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP1978032028U priority Critical patent/JPS581653Y2/en
Publication of JPS54137620U publication Critical patent/JPS54137620U/ja
Application granted granted Critical
Publication of JPS581653Y2 publication Critical patent/JPS581653Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【考案の詳細な説明】 本考案は多気筒内燃機関の燃料供給装置、特に絞り弁下
流かつライザ部上流の吸気通路に1つの燃料噴射弁を臨
資せ全気筒に、この1つの噴射弁から燃料を供給するシ
ングルポイントインジェクションタイプの燃料供給装置
の改善に関する。
[Detailed description of the invention] The present invention is a fuel supply system for a multi-cylinder internal combustion engine, in particular, one fuel injection valve is provided in the intake passage downstream of the throttle valve and upstream of the riser part, and all cylinders are supplied from this one injection valve. This invention relates to an improvement in a single point injection type fuel supply device that supplies fuel.

一般に採用されているシングルポイントインジェクショ
ンタイプの燃料供給装置の構造を第1図によって説明す
ると、エンジン本体1に接続する吸気マニホルド2ば、
複数のブランチ部3とこれらベランチ部3が集合するコ
レクタ部4とから成り、該コレクタ部4の底部は排気マ
ニホルド5に臨接されて吸気加熱を行なうライザストー
ブ部6となっている。
The structure of a generally adopted single point injection type fuel supply system is explained with reference to FIG.
It consists of a plurality of branch parts 3 and a collector part 4 in which these veranti parts 3 are assembled, and the bottom part of the collector part 4 is a riser stove part 6 which is adjacent to an exhaust manifold 5 and heats intake air.

コレクタ部4の上流側には絞り弁7を装置した吸気通路
8が接続され、該吸気通路8の絞り弁7下流のブラケッ
ト部材8aを介して燃料噴射弁9をその燃料噴射方向が
吸入空気流に交差するようにして装着しである。
An intake passage 8 equipped with a throttle valve 7 is connected to the upstream side of the collector portion 4, and a fuel injection valve 9 is connected to the fuel injection valve 9 through a bracket member 8a downstream of the throttle valve 7 in the intake passage 8 so that the direction of fuel injection is determined by the intake air flow. It is installed so that it intersects with the

かかる燃料供給装置においては、燃料噴射弁によること
及び噴射燃料の一部が燃料噴射弁とは反対側の対向する
吸気通路内壁に衝突、付着し、これが該内壁を伝う壁流
となって吸気旋回流に沿い特定のブランチ部に導かれ易
いため各気筒間の燃料分配性に劣り、混合気濃度の気筒
間の不均等性が大きい欠点を生じた。
In such a fuel supply system, a part of the injected fuel collides with and adheres to the inner wall of the opposite intake passage on the opposite side of the fuel injection valve, and this becomes a wall flow that travels along the inner wall, causing intake swirl. Since the fuel is easily guided to a specific branch portion along the flow, the fuel distribution between the cylinders is poor and the air-fuel mixture concentration is highly uneven between the cylinders.

又、NOx排出量を低減させる目的で希薄混合気を用い
る場合には燃料の微粒化、混合性の向上が一層厳しく要
求されるため、混合性が充分でないと実質的な混合気の
希薄化を促進することが離かしくなり、排気対策及び燃
費対策で不利である等機関性能を低下させていた。
In addition, when using a lean mixture for the purpose of reducing NOx emissions, there are even stricter requirements for fuel atomization and improved mixing properties. It became difficult to accelerate the engine, which was disadvantageous in terms of exhaust gas and fuel efficiency measures, and reduced engine performance.

特に機関アイドリンク時には、吸入空気量が少ないため
、空気と燃料との混合性向上がより期待されるところで
あった。
In particular, when the engine is idling, the amount of intake air is small, so an improvement in the mixing properties of air and fuel would have been expected.

本考案はかかる従来のシングルポイントインジェクショ
ンタイプの燃料供給装置の欠点に対処するものとして、
燃料噴射弁から噴射される燃料流束の液膜流から液滴と
なって飛散しようとする境界点近傍に向けて一対の空気
ノズルにより吸入空気流上下両側から該吸入空気流と平
行し、かつ燃料噴射軸とは直交する方向に空気を噴射し
、もって燃料の微粒化を促進し吸入空気との混合性並び
に各気筒間の燃料供給量の分配性を向上させて機関運転
性能向上、排気性能向上を実現するようにした燃料供給
装置を提供するものである。
The present invention addresses the shortcomings of the conventional single-point injection type fuel supply system, and includes:
A pair of air nozzles are used to direct the intake air flow parallel to the intake air flow from above and below both sides toward the boundary point where the liquid film flow of the fuel injected from the fuel injection valve is about to scatter as droplets. Air is injected in a direction perpendicular to the fuel injection axis, which promotes atomization of fuel and improves mixing with intake air and distribution of fuel supply between each cylinder, improving engine operating performance and exhaust performance. The present invention provides a fuel supply device that achieves improvements.

以下にその実施例を第2図〜第4図に基づいて説明する
The embodiment will be described below based on FIGS. 2 to 4.

尚、実施例にあ−いて第1図ど同一の構成要素について
は同一符号を付しその説明の重複を避ける。
In the embodiment, the same components as in FIG. 1 are given the same reference numerals to avoid duplication of explanation.

第2図にむいて、本考案を構成する空気ノズルは次のよ
うに形成される。
Referring to FIG. 2, the air nozzle constituting the present invention is formed as follows.

吸気通路8周壁に固定され燃料噴射弁9を取り付けてい
るブラケット部材11内に、1つの入口ポート12と1
対の出口ポーN3.14を備えた通路15を形成する。
One inlet port 12 and one
A passageway 15 is formed with a pair of outlet ports N3.14.

そして該通路15の入口ポート12にはパイプ部材16
を嵌入して取り付け、該パイプ部材16と、絞り弁7上
流の吸気通路8に鋭角状に切り落とされた開口端17a
を臨1せたパイプ部材17とをチューブ18を介して接
続する。
A pipe member 16 is connected to the inlet port 12 of the passage 15.
The pipe member 16 and the opening end 17a cut off at an acute angle are connected to the intake passage 8 upstream of the throttle valve 7.
The pipe member 17 is connected to the pipe member 17 through a tube 18.

1対の出口ポート13.14には夫々湾曲形成されたノ
ズル19゜20を接続し、その先端に開口する噴孔19
a。
Curved nozzles 19 and 20 are connected to the pair of outlet ports 13 and 14, respectively, and a nozzle hole 19 is opened at the tip of each nozzle.
a.

20a(例えば約1φ〜1.5φ)の向きは燃料噴射弁
9の噴射中心軸lを含んで吸入空気の流通方向に平行す
る平面内にあって該噴射中心軸lを直角に挾んで例えば
、約7〜8IIX211の間隔をもたせて対向するよう
に配設する。
20a (for example, about 1φ to 1.5φ) is oriented within a plane that includes the central injection axis l of the fuel injection valve 9 and is parallel to the flow direction of intake air, and is sandwiched at right angles to the central injection axis l, for example, They are arranged to face each other with an interval of about 7 to 8 IIX211.

この結果絞り弁7上流と下流との吸気通路8を絞り弁7
をバイパスして接続するバイパス吸気通路10が形成さ
れる。
As a result, the intake passage 8 upstream and downstream of the throttle valve 7 is
A bypass intake passage 10 is formed which bypasses and connects the two.

上記構成からなる空気ノズルを配設した燃料供給装置に
あっては、機関運転時吸気通路8の絞り弁7土下流側の
差圧によって絞り弁7上流側の空気が、開口端17aか
らバイパス吸気通路10内に導入され噴孔19a 、2
0aから相対向する2つの衝突する空気流とし−i射さ
れる。
In the fuel supply device equipped with the air nozzle configured as described above, during engine operation, air on the upstream side of the throttle valve 7 is drawn into the bypass intake from the opening end 17a due to the differential pressure on the downstream side of the throttle valve 7 in the intake passage 8. Nozzle holes 19a, 2 introduced into the passage 10
Two colliding air streams facing each other are emitted from 0a.

衝突した空気流は絞り弁7を経た吸入空気流と直交する
面内全放射状に拡散するため、これら噴孔19a。
These nozzle holes 19a because the collided airflow diffuses all radially in a plane orthogonal to the intake airflow that has passed through the throttle valve 7.

21aの間を通り抜けるように噴射弁9から噴射される
燃料が上記面内に押し拡げられるようにして拡散され該
燃料の微粒化を促進させる。
Fuel injected from the injection valve 9 so as to pass through the gaps 21a is spread and spread within the above-mentioned plane, promoting atomization of the fuel.

(このときの吸入空気流方向からみた噴射状態は第3図
Aのように扇状に拡散したようになる。
(At this time, the injection state seen from the direction of the intake air flow is like a fan-shaped diffuser as shown in FIG. 3A.

第3図Bは第2図と同方向から見たものである。FIG. 3B is viewed from the same direction as FIG. 2.

)又、該燃料の械散方向は吸入空気の流通方向に直交す
るから、拡散された燃料は吸入空気と効果的に混合され
混合気濃度の均一化を高める。
) Furthermore, since the direction of diffusion of the fuel is perpendicular to the flow direction of the intake air, the diffused fuel is effectively mixed with the intake air, thereby increasing the uniformity of the mixture concentration.

このように吸気通路内で既に充分に濃度を均一化された
混合気がブランチ部3を介してエンジン本体1の各気筒
に分配されるため、気筒間の混合気濃度が均一化し良好
な燃焼性が得られる。
In this way, the air-fuel mixture whose concentration has already been sufficiently homogenized in the intake passage is distributed to each cylinder of the engine body 1 via the branch section 3, so that the air-fuel mixture concentration among the cylinders becomes uniform, resulting in good combustibility. is obtained.

又、燃料微粒化の向上により混合気濃度の手薄限界を拡
げることができ、CO,HC及びNOx等排気有害成分
を低減できかつ燃費向上にもつながる。
Further, by improving fuel atomization, it is possible to widen the lean limit of the air-fuel mixture concentration, reduce harmful exhaust components such as CO, HC, and NOx, and lead to improved fuel efficiency.

上記噴孔19a、20aから噴射される空気流は絞り弁
7上下流の差圧が太きい絞り弁開度小の運転領域即ち低
負荷運転成いはアイドリング領域にむいて強大となるの
で上記混合気濃度の均一化はこれら運転領域で著しく効
果的となる。
The air flow injected from the nozzle holes 19a and 20a becomes stronger in the operating region where the differential pressure upstream and downstream of the throttle valve 7 is large and the throttle valve opening is small, that is, in low-load operation or idling region, so that the above-mentioned mixing occurs. Uniform air concentration is extremely effective in these operating regions.

尚、実験結果によれば本考案のように空気ノズルの1対
の噴孔ばこれら噴孔からの空気噴出を行なわないときの
第4図に示す燃料噴射状態で燃料が液膜流から液滴とな
って飛散しようとする境界の図示A点近傍を挾んで対向
させるのが最も効果的であるこちが確かめられた。
According to the experimental results, when the air nozzle has a pair of nozzle holes as in the present invention, in the fuel injection state shown in FIG. Therefore, it was confirmed that it is most effective to sandwich the particles near point A in the figure on the boundary where they are about to scatter.

即ち、液膜流部分は液膜の表面張力が太きいためここに
空気を吹きつけても微粒化が難しく、一方、液滴形成部
分は放射状に拡散しているため空気を集中的に吹きつけ
ることができず微粒化の効果が薄れるが、境界点近傍は
表面張力も小さくかつ集束度も太きいため空気吹きつけ
による微粒化の効果が最も著しいのである。
In other words, the surface tension of the liquid film is high in the liquid film flow area, so it is difficult to atomize it even if air is blown there.On the other hand, the droplet formation area is radially diffused, so air is blown in a concentrated manner. However, since the surface tension is low and the degree of convergence is large near the boundary point, the effect of atomization by air blowing is most remarkable.

又、本実施例ではノズルからの空気噴射を絞り弁I上下
流の差圧によって行なうようにしたから該差圧の大きな
アイドリンク時に釦いて特に空気噴出量が大きく効果的
であるが、全運転領域で空気噴出量を増大させようとす
る場合には空気ポンプ等でノズルに空気を供給すればよ
い。
In addition, in this embodiment, the air injection from the nozzle is performed by the differential pressure between the upstream and downstream sides of the throttle valve I, so when the pressure difference is large during idle linking, the air injection amount is particularly large and effective, but the air injection amount is large and effective. In order to increase the amount of air ejected in a region, air may be supplied to the nozzle using an air pump or the like.

本考案は以上説明したように噴射燃料流束を挾む両側か
ら該燃料流束の液膜流から液滴となって飛散しようとす
る境界点近傍に吸入空気流と平行な方向に相対向して吹
きつけられて衝突する空気流を生せしめたことにより、
燃料が一面内を放射状に拡散してその微粒化が著しく促
進されるため吸入空気との混合性が向上して各気筒の燃
料分配性、混合気濃度の均一化が向上する。
As explained above, the present invention provides a system in which the injected fuel flux is moved from both sides of the injected fuel flux toward the boundary point where the fuel flux is about to scatter as droplets from the liquid film flow in a direction parallel to the intake air flow. By creating colliding air currents,
Since the fuel is diffused radially in one plane and its atomization is significantly promoted, the mixing property with the intake air is improved, and the fuel distribution property of each cylinder and the uniformity of the mixture concentration are improved.

又、混合性が良くなるため混合気濃度の希薄化をより促
進することができるため排気対策上有利であり燃費向上
にもつながる。
In addition, since the mixing property is improved, the dilution of the air-fuel mixture concentration can be further promoted, which is advantageous in terms of exhaust gas countermeasures and leads to improved fuel efficiency.

特に、絞り弁をバイパスするバイパス吸気通路を介して
、空気を噴射するようにノズルを設ければ吸入空気流量
の小さいアイドリング時にむいても、大きい差圧を利用
して霧化の向上が図かれるのでその効果が著しく発揮さ
れる。
In particular, if a nozzle is installed to inject air through a bypass intake passage that bypasses the throttle valve, it is possible to improve atomization by utilizing a large differential pressure even during idling when the intake air flow rate is small. Therefore, the effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシングルポイントインジェクションタイ
プの燃料供給装置を示す断面図、第2図は本考案は同タ
イプのものに適用した実施例を示す断面図、第3図は第
2図の装置にお・ける燃料噴射状態を示す図でAは吸入
空気の流通方向からみたもの、Bは第2図と同方向から
みたもの、第4図は空気ノズルの配置例を示す図である
。 6・・・ライザスト−ブ部、7・・・絞り弁、8・・・
吸気通路、9・・・燃料噴射弁、10・・・バイパス吸
気通路、19a 、 20a・・・噴孔。
Fig. 1 is a cross-sectional view showing a conventional single point injection type fuel supply device, Fig. 2 is a cross-sectional view showing an embodiment in which the present invention is applied to the same type of fuel supply device, and Fig. 3 is a cross-sectional view showing a conventional single point injection type fuel supply device. In the diagrams showing the fuel injection state, A is a view seen from the direction of flow of intake air, B is a view seen from the same direction as FIG. 2, and FIG. 4 is a view showing an example of the arrangement of air nozzles. 6... riser stove part, 7... throttle valve, 8...
Intake passage, 9...fuel injection valve, 10...bypass intake passage, 19a, 20a...nozzle hole.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)絞り弁下流かつライザ部上流の吸気通路に燃料噴
射弁を臨1せた内燃機関の燃料供給装置に釦いて、燃料
噴射弁から噴射される燃料流束の液膜流から液滴となっ
て飛散しようとする境界点近傍にその一対O噴孔が吸入
空気の流通方向に平行でかり燃料の噴射中心軸を含む面
内にあって該燃料の噴射中心軸をほぼ直角に挾んで対向
し相互に衝突するように空気を吹きつける空気ノズルを
配設したことを特徴とする多気筒内燃機関の燃料供給装
置。
(1) A button is pressed on the fuel supply system of an internal combustion engine in which a fuel injection valve is placed in the intake passage downstream of the throttle valve and upstream of the riser part, and droplets are removed from the liquid film flow of the fuel flux injected from the fuel injection valve. Near the boundary point where the fuel is about to scatter, the pair of O injection holes are parallel to the flow direction of the intake air, are located in a plane that includes the central axis of fuel injection, and are opposed to each other with the central axis of fuel injection at almost right angles. 1. A fuel supply device for a multi-cylinder internal combustion engine, characterized in that air nozzles are arranged to blow air so as to collide with each other.
(2)空気ノズルは絞り弁をバイパスしてその上流と下
流の吸気通路を連通ずるバイパス吸気通路の出口端に設
けてなる実用新案登録請求の範囲第1項記載の多気筒内
燃機関の燃料供給装置。
(2) Fuel supply for a multi-cylinder internal combustion engine according to claim 1, wherein the air nozzle is provided at the outlet end of a bypass intake passage that bypasses a throttle valve and communicates intake passages upstream and downstream thereof. Device.
JP1978032028U 1978-03-15 1978-03-15 Fuel supply system for multi-cylinder internal combustion engine Expired JPS581653Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978032028U JPS581653Y2 (en) 1978-03-15 1978-03-15 Fuel supply system for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978032028U JPS581653Y2 (en) 1978-03-15 1978-03-15 Fuel supply system for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS54137620U JPS54137620U (en) 1979-09-25
JPS581653Y2 true JPS581653Y2 (en) 1983-01-12

Family

ID=28884749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978032028U Expired JPS581653Y2 (en) 1978-03-15 1978-03-15 Fuel supply system for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS581653Y2 (en)

Also Published As

Publication number Publication date
JPS54137620U (en) 1979-09-25

Similar Documents

Publication Publication Date Title
JPS5950850B2 (en) Internal combustion engine intake system
US4438743A (en) Internal combustion engine
JPS581654Y2 (en) Intake system for fuel-injected internal combustion engines
JPH07133727A (en) Air intake device of internal combustion engine
US4253441A (en) Fuel supply system for multi-cylinder engine equipped with fuel injector
KR100399109B1 (en) Intake apparatus of internal combustion engine
JPS581653Y2 (en) Fuel supply system for multi-cylinder internal combustion engine
JPS6215490Y2 (en)
JP2003013826A (en) Fuel supply device of engine
JPS62223456A (en) Fuel injection type internal combustion engine
JP3686090B2 (en) Engine fuel supply system
JPH0413415Y2 (en)
JP2578472Y2 (en) Multi-injection nozzle for vaporizer
JP3286772B2 (en) Air assist type fuel injection valve
JP2906895B2 (en) Fuel supply device for internal combustion engine
JPH09177641A (en) Intake device of internal combustion engine
JPH0550070U (en) Intake device for internal combustion engine
JPS61116026A (en) Intake-air device in internal-combustion engine
JP3147571B2 (en) Intake device for internal combustion engine
JP2003013741A (en) Air-fuel mixture supply system for internal combustion engine
JPH029092Y2 (en)
JP3786050B2 (en) Intake device for internal combustion engine
JPH048251Y2 (en)
JPS61234266A (en) Intake apparatus of engine
JPS5813084Y2 (en) Intake system for multi-cylinder internal combustion engine