JPH09280066A - Intake air controller of internal combustion engine - Google Patents

Intake air controller of internal combustion engine

Info

Publication number
JPH09280066A
JPH09280066A JP8095131A JP9513196A JPH09280066A JP H09280066 A JPH09280066 A JP H09280066A JP 8095131 A JP8095131 A JP 8095131A JP 9513196 A JP9513196 A JP 9513196A JP H09280066 A JPH09280066 A JP H09280066A
Authority
JP
Japan
Prior art keywords
control valve
intake
engine
fuel
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8095131A
Other languages
Japanese (ja)
Other versions
JP3365202B2 (en
Inventor
Nobuo Habu
信男 土生
Keiso Takeda
啓壮 武田
Hiroki Ichinose
宏樹 一瀬
Hidemi Onaka
英巳 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP09513196A priority Critical patent/JP3365202B2/en
Publication of JPH09280066A publication Critical patent/JPH09280066A/en
Application granted granted Critical
Publication of JP3365202B2 publication Critical patent/JP3365202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To ensure good combustion of air-fuel mixture irrespective of the time when an engine is warm and the time when the engine is cold and prevent an amount of fuel supplied to the engine when the engine is cold from deviating from normal amount of fuel. SOLUTION: A swirl control valve 17 is arranged in an intake air branch pipe 10, and a fuel injection valve 18 is arranged in an upper inner wall face 10a of the intake air branch pipe 10 on the downstream side of the swirl control valve 17. When an engine is warm, an angle position of the swirl control valve 17 is determined to form an air stream which is directed toward the upper inner wall face 10a so that an upper valve body part 17a of the swirl control valve 17 is maintained in a scope T, thereby promoting the turn of injection fuel into minute particles. When the engine is cold, the angle position of the swirl control valve 17 is determined to form an air current which is directed toward a lower inner wall face 10b so that a lower valve body part 17b of the swirl control valve 17 is maintained in a scope B, thereby preventing the adhesion of injection fuel on an inner wall face of an intake air port 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の吸気制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device for an internal combustion engine.

【0002】[0002]

【従来の技術】吸気通路内に吸入空気量を制御する吸気
制御弁を配置し、この吸気制御弁下流の吸気通路内に燃
料噴射弁を配置し、吸気制御弁を介し流通する空気が吸
気制御弁により吸気通路の中心軸線に関し燃料噴射弁と
同じ側に位置する吸気通路内壁面に向けて案内されるよ
うにした内燃機関の吸気制御装置が公知である(特開平
7−83062号公報参照)。この吸気制御装置では、
空気流を吸気制御弁により案内して燃料噴射弁からの噴
射燃料に衝突させ、それによって噴射燃料ができるだけ
微粒化されるようにしている。
2. Description of the Related Art An intake control valve for controlling an intake air amount is arranged in an intake passage, a fuel injection valve is arranged in an intake passage downstream of the intake control valve, and air flowing through the intake control valve is intake controlled. An intake control device for an internal combustion engine is known in which a valve is guided toward an inner wall surface of an intake passage located on the same side as a fuel injection valve with respect to a central axis of the intake passage (see JP-A-7-83062). . In this intake control device,
The air flow is guided by the intake control valve to collide with the fuel injected from the fuel injection valve, so that the injected fuel is atomized as much as possible.

【0003】[0003]

【発明が解決しようとする課題】ところが、このように
空気流を噴射燃料に向けて案内するようにすると噴射燃
料が空気流によって吸気通路内壁面に向けて偏向せしめ
られ、その結果この吸気通路内壁面に付着する場合があ
る。この場合、機関温間時であると吸気通路内壁面に付
着した燃料は速やかに蒸発して吸気通路内壁面から離脱
する。しかしながら、機関冷間時であると付着燃料の蒸
発速度が低いのでこの付着燃料は吸気通路内壁面から速
やかに離脱せず、その結果機関に供給される燃料量が正
規の燃料量からずれるという問題点がある。また、付着
燃料は吸気通路内壁面上で凝集した後に燃焼室内に流入
する恐れがあり、この場合燃焼室内において燃料を良好
に燃焼させるのが困難であるので排気通路内に多量の未
燃HCが排出されるという問題点がある。
However, when the air flow is guided toward the injected fuel as described above, the injected fuel is deflected by the air flow toward the inner wall surface of the intake passage, and as a result, the inside of the intake passage is deviated. May adhere to the wall. In this case, when the engine is warm, the fuel adhering to the inner wall surface of the intake passage is quickly evaporated and separated from the inner wall surface of the intake passage. However, when the engine is cold, the rate of evaporation of the adhered fuel is low, so the adhered fuel does not quickly separate from the inner wall surface of the intake passage, and as a result, the amount of fuel supplied to the engine deviates from the normal amount of fuel. There is a point. Further, the adhered fuel may flow into the combustion chamber after aggregating on the inner wall surface of the intake passage. In this case, it is difficult to satisfactorily burn the fuel in the combustion chamber, so that a large amount of unburned HC is generated in the exhaust passage. There is a problem of being discharged.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明によれば、吸気通路内に吸入空気量を制御する
吸気制御弁を配置し、この吸気制御弁下流の吸気通路内
に燃料噴射弁を配置した内燃機関において、機関温間時
には吸気制御弁を介し流通する空気が吸気制御弁により
吸気通路の中心軸線に関し燃料噴射弁と同じ側に位置す
る吸気通路内壁面に向けて案内され、機関冷間時には吸
気制御弁を介し流通する空気が吸気制御弁により吸気通
路の中心軸線に関し燃料噴射弁と反対側に位置する吸気
通路内壁面に向けて案内されるように吸気制御弁の開弁
時における角度位置を定めている。すなわち、機関温間
時には吸気制御弁により案内された空気流が噴射燃料に
指向されるのでこの空気流によって噴射燃料の微粒化が
促進される。機関冷間時には吸気制御弁により案内され
た空気流が燃料噴射弁と反対側の吸気通路内壁面に指向
されるので吸気通路内壁面に付着する燃料量が低減され
る。
In order to solve the above problems, according to the present invention, an intake control valve for controlling the intake air amount is arranged in the intake passage, and a fuel is provided in the intake passage downstream of the intake control valve. In an internal combustion engine having an injection valve, the air flowing through the intake control valve is guided by the intake control valve toward the inner wall surface of the intake passage located on the same side as the fuel injection valve with respect to the central axis of the intake passage when the engine is warm. When the engine is cold, the intake control valve opens so that the air flowing through the intake control valve is guided by the intake control valve toward the inner wall surface of the intake passage located on the side opposite to the fuel injection valve with respect to the central axis of the intake passage. It defines the angular position when the valve is opened. That is, when the engine is warm, the air flow guided by the intake control valve is directed to the injected fuel, so that atomization of the injected fuel is promoted by this air flow. When the engine is cold, the air flow guided by the intake control valve is directed to the inner wall surface of the intake passage opposite to the fuel injection valve, so that the amount of fuel adhering to the inner wall surface of the intake passage is reduced.

【0005】[0005]

【発明の実施の形態】図1から図3までを参照すると、
1はシリンダブロック、2はピストン、3はシリンダヘ
ッド、4はピストン2とシリンダヘッド3間に形成され
る燃焼室、5は吸気ポート、6は排気ポート、7は吸気
弁、8は排気弁、9は点火栓をそれぞれ示す。吸気ポー
ト5はそれぞれ対応する吸気枝管10を介してサージタ
ンク11に接続され、サージタンク11は吸気ダクト1
2を介してエアフローメータ13に接続される。一方、
排気ポート6は共通の排気マニホルド14に接続され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS.
1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber formed between the piston 2 and the cylinder head 3, 5 is an intake port, 6 is an exhaust port, 7 is an intake valve, 8 is an exhaust valve, Reference numerals 9 respectively indicate spark plugs. The intake ports 5 are connected to the surge tank 11 via the corresponding intake branch pipes 10, and the surge tank 11 is connected to the intake duct 1
It is connected to the air flow meter 13 via 2. on the other hand,
The exhaust port 6 is connected to a common exhaust manifold 14.

【0006】吸気ダクト12内にはアクセルペダルの踏
み込み量が大きくなると開度が大きくなるスロットル弁
15が配置される。また、各吸気枝管10内には電磁式
または負圧式のアクチュエータ16により駆動されるス
ワール制御弁17が配置され、スワール制御弁17下流
の吸気枝管10内には燃料噴射弁18が配置される。こ
の場合、バタフライ弁から構成されるスワール制御弁1
7の弁軸17dは図3からわかるようにほぼ吸気枝管1
0の中心軸線J−J上に配置され、吸気枝管10の中心
軸線J−Jよりも上方に位置する吸気枝管10の壁面を
上方内壁面10aと称すると、燃料噴射弁18は上方内
壁面10a内に配置される。なお、吸気枝管10の中心
軸線J−Jに関し燃料噴射弁18と反対側に位置する吸
気枝管10の壁面を下方内壁面10bと称する。また、
アクチュエータ16および燃料噴射弁18は電子制御ユ
ニット20からの出力信号に基づいて制御される。
Inside the intake duct 12, there is arranged a throttle valve 15 whose opening degree increases as the depression amount of the accelerator pedal increases. A swirl control valve 17 driven by an electromagnetic or negative pressure actuator 16 is arranged in each intake branch pipe 10, and a fuel injection valve 18 is arranged in the intake branch pipe 10 downstream of the swirl control valve 17. It In this case, the swirl control valve 1 composed of a butterfly valve
As can be seen from FIG. 3, the valve shaft 17d of No. 7 is substantially the intake branch pipe 1
When the wall surface of the intake branch pipe 10 that is arranged on the central axis line JJ of 0 and is located above the central axis line JJ of the intake branch pipe 10 is referred to as an upper inner wall surface 10a, the fuel injection valve 18 has an upper inner wall surface 10a. It is arranged in the wall surface 10a. The wall surface of the intake branch pipe 10 located on the side opposite to the fuel injection valve 18 with respect to the central axis J-J of the intake branch pipe 10 is referred to as a lower inner wall surface 10b. Also,
The actuator 16 and the fuel injection valve 18 are controlled based on the output signal from the electronic control unit 20.

【0007】特に図2を参照すると、吸気ポート5およ
び排気ポート6はそれぞれ一対の吸気ポート5a,5b
および一対の排気ポート6a,6bを備えており、これ
ら吸気ポート5a,5bおよび各排気ポート6a,6b
内にはそれぞれ吸気弁7a,7bおよび排気弁8a,8
bが配置されている。スワール制御弁17の弁軸17d
に関し吸気枝管10の上方内壁面10a側に位置するス
ワール制御弁17の弁体部分を上方弁体部分17aと称
すると、図2に示されるように吸気ポート5a側に位置
する上方弁体部分17aには切欠き17cが設けられ
る。したがって、スワール制御弁17が閉弁されたとき
には吸入空気の大部分がこの切欠き17cを介して流通
することになる。なお、スワール制御弁17の弁軸17
dに関し上方弁体部分17aと反対側に位置するスワー
ル制御弁17の弁体部分を下方弁体部分17bと称す
る。
With particular reference to FIG. 2, the intake port 5 and the exhaust port 6 are respectively a pair of intake ports 5a and 5b.
And a pair of exhaust ports 6a and 6b are provided, and the intake ports 5a and 5b and the exhaust ports 6a and 6b are provided.
Intake valves 7a, 7b and exhaust valves 8a, 8
b is arranged. Valve shaft 17d of swirl control valve 17
2, the valve body portion of the swirl control valve 17 located on the upper inner wall surface 10a side of the intake branch pipe 10 is referred to as an upper valve body portion 17a. As shown in FIG. 2, the upper valve body portion located on the intake port 5a side is shown. The notch 17c is provided in 17a. Therefore, when the swirl control valve 17 is closed, most of the intake air flows through the cutout 17c. In addition, the valve shaft 17 of the swirl control valve 17
The valve body portion of the swirl control valve 17 located on the opposite side of the upper valve body portion 17a with respect to d is referred to as a lower valve body portion 17b.

【0008】本実施態様において吸気制御弁を構成する
スワール制御弁17の角度位置は例えば機関運転状態に
応じて閉弁位置、全開位置、および閉弁位置と全開位置
間の中間位置のうちのいずれかに制御される。この場
合、スワール制御弁17が開弁しているときに、上方弁
体部分17aが図3に示す範囲T内にあるか、或いは下
方弁体部分17bが範囲B内にあるようにスワール制御
弁17の角度位置が定められている。すなわち、スワー
ル制御弁17が開弁しているときに、上方弁体部分17
aが弁軸17dに関し下流側に位置するか、或いは下方
弁体部分17bが弁軸17dに関し下流側に位置するよ
うにスワール制御弁17の回動方向が定められている。
In the present embodiment, the angular position of the swirl control valve 17 constituting the intake control valve is either a closed position, a fully open position, or an intermediate position between the closed position and the fully open position, depending on the engine operating state, for example. Controlled by In this case, when the swirl control valve 17 is open, the upper valve body portion 17a is within the range T shown in FIG. 3, or the lower valve body portion 17b is within the range B so that the swirl control valve 17 17 angular positions are defined. That is, when the swirl control valve 17 is open, the upper valve body portion 17
The rotational direction of the swirl control valve 17 is determined so that a is located downstream with respect to the valve shaft 17d or the lower valve body portion 17b is located downstream with respect to the valve shaft 17d.

【0009】電子制御ユニット20はデジタルコンピュ
ータからなり、双方向性バス21を介して相互に接続さ
れたROM(リードオンリメモリ)22、RAM(ラン
ダムアクセスメモリ)23、CPU(マイクロプロセッ
サ)24、入力ポート25、および出力ポート26を具
備する。シリンダブロック1には機関冷却水温に比例し
た出力電圧を発生する水温センサ27が取り付けられ、
この水温センサ27の出力電圧はAD変換器28を介し
て入力ポート25に入力される。サージタンク11には
サージタンク11内の圧力に比例した出力電圧を発生す
る圧力センサ29が取り付けられ、この圧力センサ29
の出力電圧はAD変換器30を介して入力ポート25に
入力される。CPU24では圧力センサ29の出力に基
づいて吸入空気量が算出される。また、入力ポート25
にはクランクシャフトが例えば30度回転する毎に出力
パルスを発生するクランク角センサ31が接続される。
CPU24ではこの出力パルスに基づいて機関回転数が
算出される。一方、出力ポート26はそれぞれ対応する
駆動回路32を介してアクチュエータ16および各燃料
噴射弁18に接続される。
The electronic control unit 20 comprises a digital computer, and a ROM (read only memory) 22, a RAM (random access memory) 23, a CPU (microprocessor) 24, and an input which are mutually connected via a bidirectional bus 21. It has a port 25 and an output port 26. A water temperature sensor 27 that generates an output voltage proportional to the engine cooling water temperature is attached to the cylinder block 1.
The output voltage of the water temperature sensor 27 is input to the input port 25 via the AD converter 28. A pressure sensor 29 that generates an output voltage proportional to the pressure inside the surge tank 11 is attached to the surge tank 11.
Is output to the input port 25 via the AD converter 30. The CPU 24 calculates the intake air amount based on the output of the pressure sensor 29. Also, the input port 25
A crank angle sensor 31 that generates an output pulse each time the crankshaft rotates, for example, 30 degrees is connected to.
The CPU 24 calculates the engine speed based on the output pulse. On the other hand, the output port 26 is connected to the actuator 16 and each fuel injection valve 18 via the corresponding drive circuit 32.

【0010】次に、まず機関温間時におけるスワール制
御弁17の制御方法について説明する。機関低負荷運転
時においてスワール制御弁17は閉弁される。スワール
制御弁17が閉弁されると上述したように吸気枝管10
内を流通する大部分の空気が切欠き17cを介して流通
する。この空気のほとんどは次いで吸気ポート5aを介
して燃焼室4内に流入し、斯くして燃焼室4内にらせん
状のスワールSが形成される(図2参照)。このように
燃焼室4内にスワールSが形成されると燃焼室4内にお
いて混合気を良好に燃焼させることができ、したがって
排気マニホルド14内に排出される未燃HC量を低減す
ることができる。
Next, a method of controlling the swirl control valve 17 when the engine is warm will be described. The swirl control valve 17 is closed during engine low load operation. When the swirl control valve 17 is closed, as described above, the intake branch pipe 10
Most of the air flowing inside flows through the notch 17c. Most of this air then flows into the combustion chamber 4 via the intake port 5a, thus forming a spiral swirl S in the combustion chamber 4 (see FIG. 2). When the swirl S is formed in the combustion chamber 4 as described above, the air-fuel mixture can be satisfactorily combusted in the combustion chamber 4, and thus the amount of unburned HC discharged into the exhaust manifold 14 can be reduced. .

【0011】機関負荷が高くなって機関中負荷運転とな
るとスワール制御弁17が開弁されて閉弁位置と全開位
置間の中間位置にされる。この場合、スワール制御弁1
7の上方弁体部分17aが図3に示す範囲T内にあるよ
うにスワール制御弁17の角度位置が定められる。すな
わち、スワール制御弁17の上方弁体部分17aが弁軸
17dよりも下流側に位置される。その結果、図4に示
されるように吸気枝管10内を流通する空気の多くがス
ワール制御弁17により案内されて上方内壁面10aと
上方弁体部分17a間に形成される間隙40aを介し流
通し、斯くして上方内壁面10aに向かう空気流Aが形
成される。この空気流Aは次いで燃料噴射弁18から噴
射された噴射燃料Fに衝突し、その結果噴射燃料Fの微
粒化が促進される。したがって、燃焼室4内において混
合気を良好に燃焼させることができ、機関中負荷運転時
にも排気マニホルド14内に排出される未燃HC量を低
減することができる。
When the engine load increases and the engine operates under medium load, the swirl control valve 17 is opened to an intermediate position between the closed position and the fully open position. In this case, swirl control valve 1
The angular position of the swirl control valve 17 is determined so that the upper valve body portion 17a of No. 7 is within the range T shown in FIG. That is, the upper valve body portion 17a of the swirl control valve 17 is located downstream of the valve shaft 17d. As a result, as shown in FIG. 4, most of the air flowing in the intake branch pipe 10 is guided by the swirl control valve 17 and flows through the gap 40a formed between the upper inner wall surface 10a and the upper valve body portion 17a. Then, thus, the airflow A toward the upper inner wall surface 10a is formed. This air flow A then collides with the injected fuel F injected from the fuel injection valve 18, and as a result, atomization of the injected fuel F is promoted. Therefore, the air-fuel mixture can be satisfactorily combusted in the combustion chamber 4, and the amount of unburned HC discharged into the exhaust manifold 14 can be reduced even during the engine medium load operation.

【0012】スワール制御弁17の上方弁体部分17a
が図3の範囲T内にあるとこのスワール制御弁17によ
り案内された空気流Aは次いで吸気ポート5の上方内壁
面に沿いつつ流動して燃焼室4内に流入する。その結
果、燃焼室4内において、シリンダ軸線に対し直交する
軸線回りの旋回流、すなわちいわゆるタンブル流が形成
され、したがって燃焼室4内において混合気をさらに良
好に燃焼させることができる。
The upper valve body portion 17a of the swirl control valve 17
Is within the range T in FIG. 3, the air flow A guided by the swirl control valve 17 then flows along the upper inner wall surface of the intake port 5 and flows into the combustion chamber 4. As a result, a swirling flow around the axis orthogonal to the cylinder axis, that is, a so-called tumble flow is formed in the combustion chamber 4, so that the air-fuel mixture can be burned more favorably in the combustion chamber 4.

【0013】機関負荷がさらに高くなって機関高負荷運
転となるとスワール制御弁17を全開にして多量の吸入
空気を確保する。ところで、スワール制御弁17が中間
位置にある場合、上述のようにスワール制御弁17を介
し流通する空気流Aを噴射燃料に向け案内して噴射燃料
に衝突させるようにすると図5に示されるように噴射燃
料F’が偏向せしめられて吸気ポート5の内壁面に付着
する場合がある。この場合、吸気ポート5内壁面の温度
が高い機関温間時であると吸気ポート5内壁面に付着し
た付着燃料は速やかに蒸発して吸気ポート5内壁面から
離脱する。
When the engine load is further increased and engine high load operation is performed, the swirl control valve 17 is fully opened to secure a large amount of intake air. By the way, when the swirl control valve 17 is in the intermediate position, when the airflow A flowing through the swirl control valve 17 is guided toward the injected fuel and collides with the injected fuel as described above, as shown in FIG. The injected fuel F ′ may be deflected and adhere to the inner wall surface of the intake port 5. In this case, when the temperature of the inner wall surface of the intake port 5 is high and the engine is warm, the adhered fuel attached to the inner wall surface of the intake port 5 quickly evaporates and separates from the inner wall surface of the intake port 5.

【0014】ところが、吸気ポート5内壁面の温度が低
い機関冷間時であると付着燃料の蒸発速度が低いのでこ
の付着燃料は吸気ポート5内壁面から速やかに離脱しな
い。その結果、燃焼室4内に供給される燃料量が正規の
燃料量からずれてしまうことになり、このため機関過渡
運転時における応答性が悪化する。また、付着燃料は吸
気ポート5内壁面上で凝集した後に燃焼室4内に流入す
る恐れがあり、この場合燃焼室4内において燃料を良好
に燃焼させるのが困難であるので排気マニホルド14内
に多量の未燃HCが排出されることになる。
However, when the temperature of the inner wall surface of the intake port 5 is low and the engine is cold, the evaporation speed of the adhered fuel is low, so that the adhered fuel does not quickly separate from the inner wall surface of the intake port 5. As a result, the amount of fuel supplied into the combustion chamber 4 deviates from the regular amount of fuel, which deteriorates the responsiveness during engine transient operation. Further, the adhered fuel may flow into the combustion chamber 4 after condensing on the inner wall surface of the intake port 5, and in this case, it is difficult to satisfactorily burn the fuel in the combustion chamber 4, so that the exhaust manifold 14 is provided. A large amount of unburned HC will be discharged.

【0015】そこで、本実施態様では機関冷間時のとき
にスワール制御弁17を開弁位置にすべきときにはスワ
ール制御弁17の下方弁体部分17bが図3に示す範囲
B内にあるようにスワール制御弁17の角度位置を定め
ている。すなわち、下方弁体部分17bが弁軸17dよ
りも下流に位置される。その結果、図6に示されるよう
に吸気枝管10内を流通する多くの空気がスワール制御
弁17により案内されて下方内壁面10bと下方弁体部
分17b間に形成される間隙40bを介し流通し、斯く
して下方内壁面10bに向かう空気流Aが形成される。
したがって、噴射燃料Fが空気流Aにより偏向されて吸
気ポート5内壁面に付着するのが阻止される。斯くし
て、燃焼室4内に供給される燃料量が正規の燃料量から
ずれるのが阻止され、また燃焼室4内における混合気の
良好な燃焼が確保される。
Therefore, in the present embodiment, when the swirl control valve 17 should be in the open position when the engine is cold, the lower valve body portion 17b of the swirl control valve 17 is set within the range B shown in FIG. The angular position of the swirl control valve 17 is defined. That is, the lower valve body portion 17b is located downstream of the valve shaft 17d. As a result, as shown in FIG. 6, a large amount of air flowing through the intake branch pipe 10 is guided by the swirl control valve 17 and flows through the gap 40b formed between the lower inner wall surface 10b and the lower valve body portion 17b. Then, thus, the airflow A toward the lower inner wall surface 10b is formed.
Therefore, the injected fuel F is prevented from being deflected by the airflow A and adhering to the inner wall surface of the intake port 5. In this way, the amount of fuel supplied into the combustion chamber 4 is prevented from deviating from the regular amount of fuel, and good combustion of the air-fuel mixture in the combustion chamber 4 is ensured.

【0016】本実施態様では機関冷却水温THWに基づ
いて機関冷間時であるか機関温間時であるかを判断して
いる。すなわち、機関冷却水温THWが予め定められた
設定温度T1、例えば40度よりも低いときに機関冷間
時であると判断し、設定温度T1よりも高いときに機関
温間時であると判断するようにしている。なお、吸気枝
管10または吸気ポート5の壁面、エンジンオイル、吸
入空気、燃料、排気ガスなどの温度に基づいて、機関冷
間時であるか機関温間時であるかを判断するようにして
もよい。
In this embodiment, whether the engine is cold or the engine is warm is judged based on the engine cooling water temperature THW. That is, when the engine cooling water temperature THW is lower than a predetermined set temperature T1, for example, 40 degrees, it is determined that the engine is cold, and when it is higher than the set temperature T1, it is determined that the engine is warm. I am trying. It should be noted that whether the engine is cold or the engine is warm is determined based on the temperatures of the intake branch pipe 10 or the wall surface of the intake port 5, engine oil, intake air, fuel, exhaust gas, and the like. Good.

【0017】図7は上述の実施態様を実行するためのル
ーチンである。このルーチンは予め定められた設定時間
毎の割り込みによって実行される。図7を参照すると、
まずステップ50では水温センサ27により検出された
機関冷却水温THWが設定温度T1よりも高いか否かが
判別される。THW>T1のとき、すなわち機関温間時
には次いでステップ51に進み、スワール制御弁17の
上方弁体部分17aが図3に示す範囲T内にあるように
スワール制御弁17の回動方向が選択される。次いでス
テップ53に進む。一方、THW≦T1のとき、すなわ
ち機関冷間時には次いでステップ52に進み、スワール
制御弁17の下方弁体部分17bが図3に示す範囲B内
にあるようにスワール制御弁17の回動方向が選択され
る。次いでステップ53に進む。
FIG. 7 is a routine for executing the above-described embodiment. This routine is executed by interruption every predetermined set time. Referring to FIG.
First, at step 50, it is judged if the engine cooling water temperature THW detected by the water temperature sensor 27 is higher than the set temperature T1. When THW> T1, that is, when the engine is warm, the routine proceeds to step 51, where the rotation direction of the swirl control valve 17 is selected so that the upper valve body portion 17a of the swirl control valve 17 is within the range T shown in FIG. It Then, it proceeds to step 53. On the other hand, when THW ≦ T1, that is, when the engine is cold, the routine proceeds to step 52, where the rotation direction of the swirl control valve 17 is set so that the lower valve body portion 17b of the swirl control valve 17 is within the range B shown in FIG. To be selected. Then, it proceeds to step 53.

【0018】ステップ53では機関低負荷運転時である
か否かが判別される。機関低負荷運転時のときには次い
でステップ54に進み、スワール制御弁17が閉弁さ
れ、または閉弁位置に保持される。次いで処理サイクル
を終了する。ステップ53において機関低負荷運転時で
ないときには次いでステップ55に進み、機関中負荷運
転時であるか否かが判別される。機関中負荷運転時のと
きには次いでステップ56に進み、スワール制御弁17
が中間位置にされ、または中間位置に保持される。次い
で処理サイクルを終了する。
At step 53, it is judged if the engine is under low load operation. When the engine is under low load operation, the routine proceeds to step 54, where the swirl control valve 17 is closed or held at the closed position. Next, the processing cycle ends. When it is determined in step 53 that the engine is not operating under low load, the routine proceeds to step 55, where it is determined whether the engine is operating under medium load. During engine load operation, the routine proceeds to step 56, where the swirl control valve 17
Are placed in or held in the intermediate position. Next, the processing cycle ends.

【0019】ステップ55において機関中負荷運転時で
ないとき、すなわち機関高負荷運転時には次いでステッ
プ57に進み、スワール制御弁17が全開にされ、また
は全開位置に保持される。次いで処理サイクルを終了す
る。これまで述べてきた実施態様では吸気制御弁上流の
吸気ダクト4内にスロットル弁15を設けてこのスロッ
トル弁によっても吸入空気量を制御するようにしてい
る。しかしながら、スロットル弁を設けることなく吸気
制御弁をいわゆる独立スロットル弁から構成して吸気制
御弁のみによって対応する気筒の吸入空気量を制御する
ようにすることもできる。また、これまで述べてきた実
施態様では吸気制御弁をバタフライ弁から構成している
が、吸気制御弁をロータリ弁から構成することもでき
る。
In step 55, when the engine is not operating under medium load, that is, when the engine is operating under high load, the routine proceeds to step 57, where the swirl control valve 17 is fully opened or is held at the fully opened position. Next, the processing cycle ends. In the embodiment described so far, the throttle valve 15 is provided in the intake duct 4 upstream of the intake control valve, and the intake air amount is also controlled by this throttle valve. However, it is also possible to configure the intake control valve from a so-called independent throttle valve without providing a throttle valve and control the intake air amount of the corresponding cylinder by only the intake control valve. Further, although the intake control valve is composed of a butterfly valve in the embodiments described so far, the intake control valve may be composed of a rotary valve.

【0020】[0020]

【発明の効果】機関温間時であろうと機関冷間時であろ
うと混合気を良好に燃焼させることができるので排気通
路内に排出される未燃HC量を低減でき、しかも機関冷
間時において機関に供給される燃料量が正規の燃料量か
らずれるのを阻止できる。
EFFECT OF THE INVENTION Since the air-fuel mixture can be satisfactorily burned whether the engine is warm or the engine is cold, the amount of unburned HC discharged into the exhaust passage can be reduced and the engine is cold. It is possible to prevent the fuel amount supplied to the engine from deviating from the regular fuel amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】内燃機関の部分平面断面図である。FIG. 2 is a partial plan sectional view of an internal combustion engine.

【図3】スワール制御弁周りの部分拡大図である。FIG. 3 is a partially enlarged view around a swirl control valve.

【図4】機関温間時におけるスワール制御弁を示す、図
3と同様な部分拡大図である。
FIG. 4 is a partially enlarged view similar to FIG. 3, showing a swirl control valve when the engine is warm.

【図5】好ましくない例を示す、図3と同様な部分拡大
図である。
FIG. 5 is a partially enlarged view similar to FIG. 3, showing an unfavorable example.

【図6】機関冷間時におけるスワール制御弁を示す、図
3と同様な部分拡大図である。
FIG. 6 is a partial enlarged view similar to FIG. 3, showing a swirl control valve when the engine is cold.

【図7】スワール制御弁の制御を実行するためのフロー
チャートである。
FIG. 7 is a flowchart for executing control of a swirl control valve.

【符号の説明】[Explanation of symbols]

1…機関本体 4…燃焼室 5…吸気ポート 10…吸気枝管 10a…上方内壁面 10b…下方内壁面 17…スワール制御弁 17a…上方弁体部分 17b…下方弁体部分 18…燃料噴射弁 27…水温センサ A…空気流 F…噴射燃料 J−J…吸気枝管の中心軸線 DESCRIPTION OF SYMBOLS 1 ... Engine main body 4 ... Combustion chamber 5 ... Intake port 10 ... Intake branch pipe 10a ... Upper inner wall surface 10b ... Lower inner wall surface 17 ... Swirl control valve 17a ... Upper valve body portion 17b ... Lower valve body portion 18 ... Fuel injection valve 27 ... water temperature sensor A ... air flow F ... injected fuel JJ ... intake branch central axis

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 69/00 360 F02M 69/00 360C 360B (72)発明者 大仲 英巳 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02M 69/00 360 F02M 69/00 360C 360B (72) Inventor Hidemi Ohnaka 1 Toyota Town, Toyota City, Aichi Prefecture Street address Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気通路内に吸入空気量を制御する吸気
制御弁を配置し、該吸気制御弁下流の吸気通路内に燃料
噴射弁を配置した内燃機関において、機関温間時には吸
気制御弁を介し流通する空気が該吸気制御弁により吸気
通路の中心軸線に関し燃料噴射弁と同じ側に位置する吸
気通路内壁面に向けて案内され、機関冷間時には吸気制
御弁を介し流通する空気が該吸気制御弁により吸気通路
の中心軸線に関し燃料噴射弁と反対側に位置する吸気通
路内壁面に向けて案内されるように吸気制御弁の開弁時
における角度位置を定めた吸気制御装置。
1. An internal combustion engine in which an intake control valve for controlling an intake air amount is arranged in an intake passage, and a fuel injection valve is arranged in an intake passage downstream of the intake control valve. The air flowing through the intake control valve is guided toward the inner wall surface of the intake passage located on the same side as the fuel injection valve with respect to the central axis of the intake passage, and when the engine is cold, the air flowing through the intake control valve is the intake air. An intake control device in which an angular position of the intake control valve when the valve is opened is determined so that the control valve guides the intake control valve toward an inner wall surface of the intake passage located on the side opposite to the fuel injection valve with respect to the central axis of the intake passage.
JP09513196A 1996-04-17 1996-04-17 Intake control device for internal combustion engine Expired - Fee Related JP3365202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09513196A JP3365202B2 (en) 1996-04-17 1996-04-17 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09513196A JP3365202B2 (en) 1996-04-17 1996-04-17 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09280066A true JPH09280066A (en) 1997-10-28
JP3365202B2 JP3365202B2 (en) 2003-01-08

Family

ID=14129276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09513196A Expired - Fee Related JP3365202B2 (en) 1996-04-17 1996-04-17 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3365202B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257566A1 (en) * 2002-12-10 2004-07-01 Adam Opel Ag Control of an internal combustion engine uses inlet valve position determination based upon measured air mass flow rate
JP2006329161A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for internal combustion engine
WO2007135840A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Air intake device for internal combustion engine
JP2012159042A (en) * 2011-02-01 2012-08-23 Toyota Motor Corp Internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257566A1 (en) * 2002-12-10 2004-07-01 Adam Opel Ag Control of an internal combustion engine uses inlet valve position determination based upon measured air mass flow rate
JP2006329161A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for internal combustion engine
WO2007135840A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Air intake device for internal combustion engine
US7958863B2 (en) 2006-05-24 2011-06-14 Toyota Jidosha Kabushiki Kaisha Intake device for internal combustion engine
JP2012159042A (en) * 2011-02-01 2012-08-23 Toyota Motor Corp Internal combustion engine

Also Published As

Publication number Publication date
JP3365202B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US7455044B2 (en) Intake device of internal combustion engine
JP3250475B2 (en) Control device for in-cylinder injection type internal combustion engine
JP2008111342A (en) Control device of internal combustion engine
JP2003262175A (en) Internal combustion engine
JPH09280066A (en) Intake air controller of internal combustion engine
JP2001221087A (en) Engine controller for multiple-cylinder engine
JP2002276381A (en) Intake device for internal combustion engine
JPH0861072A (en) Intake controller for engine
JP3726901B2 (en) Internal combustion engine control device and swirl generator
JP3557314B2 (en) Intake device for internal combustion engine
JPH03199627A (en) Intake air device for engine
JP4662173B2 (en) Control device for internal combustion engine
JP2008057463A (en) Intake control device and control method for engine
JPS61116026A (en) Intake-air device in internal-combustion engine
JPS6350427Y2 (en)
JPH0550070U (en) Intake device for internal combustion engine
JPH0627799Y2 (en) Internal combustion engine intake system
JPS6161918A (en) Air intake device of internal-combustion engine
JPH048251Y2 (en)
JPS624648Y2 (en)
JP2002371856A (en) Variable swirl controller for diesel engine
KR830000292B1 (en) Intake control method of internal combustion engine
JPH0343388Y2 (en)
JP2005054600A (en) Start controller of internal combustion engine
JPH02267317A (en) Combustion control device for diesel engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees