JPS61192475A - Tool for polishing substrate - Google Patents

Tool for polishing substrate

Info

Publication number
JPS61192475A
JPS61192475A JP60034005A JP3400585A JPS61192475A JP S61192475 A JPS61192475 A JP S61192475A JP 60034005 A JP60034005 A JP 60034005A JP 3400585 A JP3400585 A JP 3400585A JP S61192475 A JPS61192475 A JP S61192475A
Authority
JP
Japan
Prior art keywords
substrate
polishing tool
tool
dynamic pressure
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60034005A
Other languages
Japanese (ja)
Other versions
JPH0530591B2 (en
Inventor
Junji Watanabe
純二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60034005A priority Critical patent/JPS61192475A/en
Publication of JPS61192475A publication Critical patent/JPS61192475A/en
Publication of JPH0530591B2 publication Critical patent/JPH0530591B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To float a semiconductor substrate and a crystal substrate to be polished from a polishing tool so that they are held in a non-contact state by preventing a processing liquid from percolating by filling the inclined faces of V-shaped grooves to produce a dynamic pressure in the V-shaped grooves. CONSTITUTION:A processing liquid 23 including isolated grains 22 dispersed therein is supplied between a substrate 16 and a polishing tool 11 and the tool 11 is relatively moved toward the left hand with respect to the substrate 16. Since the surface of V-shaped grooves 18 is filled with a molten layer 20, a processing liquid 23 is prevented from percolating from inclined faces 19 into the inside of the polishing tool 11 to produce a regular dynamic pressure in the V-shaped grooves 18. Thus, the substrate 16 is floated from the surface of the tool 11 to the position where the dynamic pressure and a processing pressure are balanced with each other so that the substrate 16 is held in a non-contact state. On the other hand, since nonwoven fabrics 14 are exposed as they are on flat portions 17, isolated grains 22 are liable to be captured by pores 15 and among textiles of resin 12 and furthermore the processing liquid 23 is percolated thereto, the surface of the substrate 16 is polished with excellent efficiency.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、メカノケミカルラッピングにより半導体基板
や結晶基板を高精度に平面研摩するための研摩用工具に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polishing tool for highly accurate surface polishing of semiconductor substrates and crystal substrates by mechanochemical lapping.

〈従来の技術〉 従来、シリコンやガリウム・砒素等の半導体基板或いは
サファイアやガドリニウム・ガリウム・ガーネット(G
GG)等の結晶基板を平面研摩して加工変質層を除去す
る方法の一つとして、ポリエステル等の樹脂繊維をポリ
ウレタン樹脂等で固めた不織布上に基板を重ね合わせ、
シリカ微粒子がアルカリ水溶液に懸濁された加工液をこ
れらの間に供給しな 、がら不織布と基板とをこすり合
わせて鏡面仕上げを行うメカノケミカルラッピングが知
られている。
<Conventional technology> Conventionally, semiconductor substrates made of silicon, gallium, arsenic, etc., or sapphire, gadolinium, gallium, garnet (G
One way to remove the damaged layer by surface polishing a crystal substrate such as GG) is to overlay the substrate on a nonwoven fabric made of resin fibers such as polyester hardened with polyurethane resin, etc.
Mechanochemical wrapping is known in which a nonwoven fabric and a substrate are rubbed together to achieve a mirror finish while a processing liquid in which fine silica particles are suspended in an alkaline aqueous solution is supplied between them.

このメカノケミカルラッピングは、シリカ微粒子の機械
的な研削作用とアルカリ水溶液の化学的な侵食作用とを
複合した高能率で加工変質層の少ない仕上げを行うこと
が可能であるが、不織布の摩耗が大きくて交換碩度が高
い上、研摩中の摩擦熱のために化学的侵食作用が増大し
易く、安定した高品質の加工面を得るためには厳密な工
程管理と熟練技術とが必要である。
This mechanochemical wrapping combines the mechanical grinding action of fine silica particles and the chemical erosion action of an alkaline aqueous solution, making it possible to achieve a finish with high efficiency and minimal processing damage, but it also causes a large amount of wear on the nonwoven fabric. In addition to high exchange purity, chemical erosion is likely to increase due to frictional heat during polishing, and strict process control and skilled techniques are required to obtain a stable and high-quality machined surface.

そこで、動圧流体軸受の原理を応用して基板を不織布の
表面から浮上させ、基板と不織布とを非接触の状態に保
持して摩擦熱の発生を防止し、加工液の流動のみにより
基板を平面研削する方法が特公昭54−30800号公
報等において提案されている。
Therefore, by applying the principle of hydrodynamic bearing, the substrate is floated above the surface of the nonwoven fabric, and the substrate and the nonwoven fabric are kept in a non-contact state to prevent the generation of frictional heat. A method of surface grinding has been proposed in Japanese Patent Publication No. 54-30800.

この無接触ラッピングの加工原理を表す第3図に示すよ
うに、基板1が重ねられる研摩用工具2の表面には、こ
の基板1と対向する平担部3と、基板1に対する研摩用
工具2の相対移動方向(図中、左方向)と直角な方向(
図の紙面に対して垂直な方向)に延びるV溝部4とが前
記相対移動方向に沿って交互に形成されている。■溝部
4には基板1に対する研摩用工具2の相対移動方向側ほ
ど漸次溝の深さが深くなる動圧発生用の傾斜面5が形成
され、これら基板1と研摩用工具2との間には遊離砥粒
6を腐食液7中に分散させた加工液8が供給されている
As shown in FIG. 3 showing the processing principle of this non-contact lapping, the surface of the polishing tool 2 on which the substrate 1 is stacked has a flat part 3 facing the substrate 1, and a polishing tool 2 for the substrate 1. direction perpendicular to the relative movement direction (left direction in the figure) (
V-grooves 4 extending in a direction perpendicular to the plane of the drawing are alternately formed along the relative movement direction. ■In the groove portion 4, an inclined surface 5 for generating dynamic pressure is formed, and the depth of the groove gradually becomes deeper toward the direction of relative movement of the polishing tool 2 with respect to the substrate 1, and between the substrate 1 and the polishing tool 2. A machining liquid 8 in which free abrasive grains 6 are dispersed in a corrosive liquid 7 is supplied.

従って、基板1に対して研摩用工具2を図中、左方向に
相対移動させると、この時の研摩用工具2の相対移動方
向に沿った加工液8の圧力分布を表す第4図に示すよう
に、■溝部4にて加工液8による動圧が発生し、基板1
はこの動圧と加工圧力とが釣り合った位置に研摩用工具
2に対して浮上する。そして、□ 加工″e8の流動に
伴う基板1と遊離砥粒6との衝突及び加工液8の化学作
用により基板1の表面が加工されて行くのである。
Therefore, when the polishing tool 2 is moved relative to the substrate 1 in the left direction in the figure, the pressure distribution of the working fluid 8 along the relative movement direction of the polishing tool 2 at this time is shown in FIG. 4. Dynamic pressure is generated by the machining fluid 8 in the groove 4, and the substrate 1
floats relative to the polishing tool 2 at a position where this dynamic pressure and processing pressure are balanced. Then, the surface of the substrate 1 is processed by the collision between the substrate 1 and the free abrasive grains 6 due to the flow of □ processing "e8" and the chemical action of the processing liquid 8.

〈発明が解決しようとする問題点〉 不織布で形成された研摩用工具を用いて無接触ラッピン
グを行う場合、一般に不織布は無数の気孔があるために
加工液の浸透性が良好であり、この結果としてV溝部で
の動圧の発生が不充分となり易く、実際問題として基板
と研摩用工具とが接触状態となることが多い。
<Problems to be Solved by the Invention> When non-contact lapping is performed using an abrasive tool made of non-woven fabric, the permeability of machining fluid is generally good because non-woven fabric has numerous pores; As a result, the generation of dynamic pressure in the V-groove tends to be insufficient, and as a practical matter, the substrate and the polishing tool often come into contact with each other.

これに対し、加工液の浸透性がほとんどないウレタンゴ
ム等の研摩用工具を用いた場合には、■溝部での動圧を
充分に発生させることが可能であるが、平担部での遊離
砥粒の保持性が悪いために加工能率が不織布による研摩
用工具の場合よりも著しく低い欠点がある。
On the other hand, when using a polishing tool made of urethane rubber, etc., which has almost no permeability to machining fluid, it is possible to generate sufficient dynamic pressure in the grooves, but it is possible to generate a sufficient amount of dynamic pressure in the grooves. Due to the poor retention of abrasive grains, the processing efficiency is significantly lower than that of a polishing tool made of non-woven fabric.

本発明はかかる従来のメカノケミカル無接触ラッピング
に用いる研摩用工具の不具合に鑑み、加工能率が高くし
かも基板に対して非接触の状態を保持し得る研摩用工具
を提供することを目的とする。
In view of the problems of the conventional polishing tools used in mechanochemical contactless lapping, it is an object of the present invention to provide a polishing tool that has high processing efficiency and can maintain a non-contact state with respect to the substrate.

く問題点を解決するための手段〉 本発明の研摩用工具は、基板に対して相対移動すると共
にこの基板との間に遊離砥粒を分散させた加工液を流し
て前記基板を平面研摩する樹脂繊維不織布で形成された
研摩用工具であって、前記相対移動方向と交差する方向
に延びるV 1JItと前記基板と対向する平担部とが
前記相対移動方向に沿って交互に配列し、前記V溝部に
はこの研摩用工具の前記相対移動方向側ほど溝の深さが
深くなって当該研摩用工具から前記基板を浮上させる動
圧発生用の傾斜面が形成され、この傾斜面には前記加工
液の浸透を防止する目止め処理がなされていることを特
徴とするものである。
Means for Solving the Problems> The polishing tool of the present invention moves relative to a substrate and flows a machining liquid in which free abrasive grains are dispersed between the tool and the substrate, thereby flattening the substrate. A polishing tool made of resin fiber nonwoven fabric, wherein V1JIt extending in a direction crossing the relative movement direction and a flat part facing the substrate are alternately arranged along the relative movement direction, and the The V-groove portion is formed with an inclined surface for generating dynamic pressure, which becomes deeper toward the relative movement direction of the polishing tool, and which causes the substrate to levitate from the polishing tool. It is characterized by a sealing treatment that prevents the penetration of machining fluid.

く作   用〉 基板と対向する研摩用工具の平担部は樹脂繊維不織布が
そのまま露出しており、樹脂繊維相互のからみ合いの部
分や気孔の部分等に・ 加工液中の遊離砥粒が捕捉され
、遊離砥粒の研削作用と加工液自体の化学作用との複合
効果で基板表面は高能率で平面研摩される。又、研摩用
工具のV溝部の傾斜面は目止め処理されて加工液の浸透
現象がほとんどなく、従って基板と研摩用工具との相対
移動によって■溝部には理論値に近い充分な動圧が発生
する。
Effect> The resin fiber non-woven fabric is exposed on the flat part of the polishing tool facing the substrate, and free abrasive grains in the processing fluid are captured in the intertwined parts of the resin fibers, the pores, etc. The combined effect of the grinding action of the free abrasive grains and the chemical action of the processing fluid itself polishes the surface of the substrate with high efficiency. In addition, the sloped surface of the V-groove of the polishing tool is sealed, so there is almost no permeation of machining fluid, and therefore, sufficient dynamic pressure close to the theoretical value is generated in the groove due to the relative movement between the substrate and the polishing tool. Occur.

この結果、基板は研摩用工具に接触することなく無接触
ラッピングが確実に行われる。
As a result, contactless lapping is ensured without the substrate coming into contact with the polishing tool.

く実 施 例〉 本発明による研摩用工具の一実施例による加工状態を表
す第1図及びこの7iFFII用工具の拡大組織を表す
第2図に示すように、研摩用工具11はポリエステル繊
維等の樹脂繊維12を無配列に三次元的にからみ合わせ
てポリウレタン樹脂等の結合剤13で所定の形状に成形
固化した不織布14で形成されており、無数の気孔15
を有しているが、上述した樹脂繊維12や結合剤13の
具体例としては例示以外のものでも当然かまわない。こ
の研摩用工具11の表面には、平面研摩される基板16
と対向する平担部17と、この基板16に対する研摩用
工具11の相対移動方向(第1図中、左方向)と直角な
方向(第1図において紙面に垂直な方向)に延びる■溝
部18とが前記相対移動方向に沿って交互に形成されて
いる。■溝部18には基板16に対する研摩用工具11
の相対移動方向側ほど漸次溝の深さが深くなる動圧発生
用の傾斜面19が形成されており、本実施例ではとの■
溝部18の表面が■溝部18と対応した形状の図示しな
いヒータにより約200℃に加熱圧縮溶融成形され、樹
脂m維12や結合剤13が溶は合って気孔15が封じら
れた溶融層20を表面に有し、その内側に気孔15が圧
縮された状態で残留する圧縮過密層21を有する。この
ように、本実施例ではV溝部18の表面の加熱により傾
斜面19の目止め処理を行っているが、■溝部18の表
面に樹脂液を含浸させたり或いは樹脂膜を接着や塗布等
の手段で形成させることでも目止め処理として機能する
Embodiment As shown in FIG. 1 showing the processing state of an embodiment of the polishing tool according to the present invention and FIG. 2 showing the enlarged structure of this 7iFFII tool, the polishing tool 11 is made of polyester fiber or the like. It is made of a nonwoven fabric 14 in which resin fibers 12 are three-dimensionally intertwined in a non-arranged manner and molded and solidified into a predetermined shape with a binder 13 such as polyurethane resin, and has numerous pores 15.
However, specific examples of the resin fibers 12 and binder 13 described above may of course be other than those exemplified. The surface of this polishing tool 11 has a substrate 16 to be flat-polished.
a groove portion 18 extending in a direction perpendicular to the direction of relative movement of the polishing tool 11 with respect to the substrate 16 (left direction in FIG. 1) (direction perpendicular to the plane of the paper in FIG. 1); are formed alternately along the relative movement direction. ■The groove part 18 has a polishing tool 11 for the substrate 16.
A slope surface 19 for generating dynamic pressure is formed in which the depth of the groove becomes gradually deeper toward the relative movement direction of
The surface of the groove 18 is heated, compressed and melt-molded at approximately 200° C. using a heater (not shown) having a shape corresponding to the groove 18, and the resin m fibers 12 and the binder 13 are melted together to form a molten layer 20 in which the pores 15 are sealed. It has a compressed overcrowded layer 21 on the surface and inside thereof, in which the pores 15 remain in a compressed state. As described above, in this embodiment, the inclined surface 19 is sealed by heating the surface of the V-groove portion 18. It also functions as a sealing process by forming it by means of other means.

基板16と研摩用工具11との間に遊離砥粒22を分散
させた加工液23を供給し、基板16に対して研摩用工
具11を第1図中、左方向に相対移動させると、■溝部
18の表面は溶融層20により目止め処理されているた
め、傾斜面19から研摩用工具11内部への加工液23
の浸透が阻止され、正規の動圧がV溝部18にて発生し
、この動圧と加工圧力とが釣り合った位置に基板16は
研摩用工具11の表面から浮上して非接触状態に保持さ
れる。一方、平担部17では不織布14がそのまま露出
して気孔15や樹脂繊維12間に遊離砥粒22が捕捉さ
れ易くなっており、しかも加工液23がここに浸透して
来るため、加工液23の流動に伴う基板16と遊離砥粒
22との衝突及び加工液23自体の化学作用により、基
板16の表面が高能率で研摩されて行く。
When the machining liquid 23 in which free abrasive grains 22 are dispersed is supplied between the substrate 16 and the polishing tool 11, and the polishing tool 11 is moved relative to the substrate 16 in the left direction in FIG. Since the surface of the groove portion 18 is sealed with the molten layer 20, the machining fluid 23 flows from the inclined surface 19 into the polishing tool 11.
The substrate 16 floats above the surface of the polishing tool 11 and is held in a non-contact state at a position where this dynamic pressure and the processing pressure are balanced. Ru. On the other hand, in the flat part 17, the nonwoven fabric 14 is exposed as it is, and the free abrasive grains 22 are easily captured between the pores 15 and the resin fibers 12. Moreover, the machining fluid 23 permeates there. The surface of the substrate 16 is polished with high efficiency due to the collision between the substrate 16 and the free abrasive grains 22 due to the flow and the chemical action of the processing liquid 23 itself.

因に、本発明の研摩用工具を使用して直径3インチのシ
リコン単結晶基板をpH12のアルカリ水溶液中に粒子
径が1マイクロメートル〜1.4マイクロメートルのジ
ルコニウムシリケートを懸濁させた加工液にて1平方セ
ンチメートル当り100グラムの加工圧力で研摩した所
、第3図に示したものと同様に1時間当り15マイクロ
メートルの厚みを研摩することができ、加工液の浸透性
がほとんどないウレタンゴム等の研摩用工具を用いたも
のの8倍弱の研摩能力が得られた。又、加工面の$面1
1?:lk/l?n+avli9n人ll11m*hj
t板と研摩用工具とを接触状態で研摩した場合よりも充
分に小さい値となった。
Incidentally, using the polishing tool of the present invention, a silicon single crystal substrate with a diameter of 3 inches was polished using a processing solution in which zirconium silicate with a particle size of 1 to 1.4 micrometers was suspended in an alkaline aqueous solution with a pH of 12. When polished at a processing pressure of 100 grams per square centimeter, a thickness of 15 micrometers can be polished per hour, similar to the one shown in Figure 3, and the urethane rubber has almost no permeability to the processing fluid. The polishing ability was slightly less than 8 times that using a polishing tool such as the above polishing tool. Also, $ side 1 of the processed side
1? :lk/l? n+avli9n peoplell11m*hj
This value was sufficiently smaller than that obtained when the T plate and the polishing tool were polished in contact with each other.

〈発明の効果〉 本発明によると、■溝部の目止め処理により充分な動圧
を発生させることができ、しかも平担部での遊離砥粒の
捕捉性に優れてい両ため、加工能率の高い無接触ラッピ
ングを実現することが可能である。
<Effects of the Invention> According to the present invention, sufficient dynamic pressure can be generated by sealing the grooves, and the flat part has excellent capture of loose abrasive grains, resulting in high machining efficiency. It is possible to achieve contactless wrapping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による研摩用工具の一実施例の加工状態
を表す断面図、第2図はその組織の 。 拡大図、第3図は従来の無接触ラッピングの加工状態を
表す断面図、第4図はその動圧の発生分布を長すグラフ
である。 又、図中の符号で11は研摩用工具、12は樹脂繊維、
14は不織布、16は基板、17は平担部、18は■溝
部、19は傾斜面、20は溶融層、22は遊離砥粒、2
3は加工液である。 第1図 打2図 第3図 第4図 工具位置
FIG. 1 is a sectional view showing the processing state of an embodiment of the polishing tool according to the present invention, and FIG. 2 is a diagram showing its structure. The enlarged view and FIG. 3 are cross-sectional views showing the processing state of conventional non-contact lapping, and FIG. 4 is a graph showing the distribution of dynamic pressure generated. Also, in the figure, 11 is a polishing tool, 12 is a resin fiber,
14 is a nonwoven fabric, 16 is a substrate, 17 is a flat part, 18 is a groove part, 19 is an inclined surface, 20 is a molten layer, 22 is a free abrasive grain, 2
3 is a processing fluid. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Tool position

Claims (1)

【特許請求の範囲】[Claims] 基板に対して相対移動すると共にこの基板との間に遊離
砥粒を分散させた加工液を流して前記基板を平面研摩す
る樹脂繊維不織布で形成された研摩用工具であって、前
記相対移動方向と交差する方向に延びるV溝部と前記基
板と対向する平担部とが前記相対移動方向に沿って交互
に配列し、前記V溝部にはこの研摩用工具の前記相対移
動方向側ほど溝の深さが深くなって当該研摩用工具から
前記基板を浮上させる動圧発生用の傾斜面が形成され、
この傾斜面には前記加工液の浸透を防止する目止め処理
がなされていることを特徴とする基板研摩用工具。
A polishing tool formed of a resin fiber nonwoven fabric that moves relative to a substrate and flat-surface polishes the substrate by flowing a machining liquid with free abrasive particles dispersed between the substrate and the substrate, wherein the polishing tool moves in the direction of relative movement. V-groove portions extending in a direction intersecting with the substrate and flat portions facing the substrate are arranged alternately along the relative movement direction, and the V-groove portion has a groove deeper toward the relative movement direction of the polishing tool. an inclined surface for generating dynamic pressure that increases the depth and lifts the substrate from the polishing tool;
A tool for polishing a substrate, characterized in that the inclined surface is sealed to prevent penetration of the machining fluid.
JP60034005A 1985-02-22 1985-02-22 Tool for polishing substrate Granted JPS61192475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034005A JPS61192475A (en) 1985-02-22 1985-02-22 Tool for polishing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034005A JPS61192475A (en) 1985-02-22 1985-02-22 Tool for polishing substrate

Publications (2)

Publication Number Publication Date
JPS61192475A true JPS61192475A (en) 1986-08-27
JPH0530591B2 JPH0530591B2 (en) 1993-05-10

Family

ID=12402319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034005A Granted JPS61192475A (en) 1985-02-22 1985-02-22 Tool for polishing substrate

Country Status (1)

Country Link
JP (1) JPS61192475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001568A (en) * 1995-12-08 2003-01-08 Saint-Gobain Abrasives Inc Improvement of abrasive disc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001568A (en) * 1995-12-08 2003-01-08 Saint-Gobain Abrasives Inc Improvement of abrasive disc

Also Published As

Publication number Publication date
JPH0530591B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
CN1312740C (en) Grinding work holding disk, work grinding device and grinding method
KR101152462B1 (en) Method for polishing the edge of a semiconductor wafer
CN102049723B (en) Method for polishing semiconductor wafer
CN102205520B (en) Method for double-side polishing of semiconductor wafer
CN110788743B (en) Magnetic field controllable slow-release magnetic substance thickening fluid flow polishing pad and polishing method
US4258508A (en) Free hold down of wafers for material removal
CN111032284B (en) Microreplicated polished surfaces with enhanced coplanarity
JPS61192475A (en) Tool for polishing substrate
Ikeno et al. Development of chipping-free dicing technology applying electrophoretic deposition of ultrafine abrasives
JP2000354950A (en) Polishing pad, polishing device and method to manufacture polished body having flat surface
JP2011502055A (en) Method and device for mechanically processing diamond
JPS61192476A (en) Tool for polishing substrate
CN109909868A (en) A kind of TFT-LCD glass surface grinding device and method
US3141273A (en) Polishing synthetic resin lenses
Wang et al. Experimental study on micro-deliquescence ultra-precision polishing with fine water mist for KDP crystal
US12048980B2 (en) Surface projection polishing pad
Liu et al. Experimental study on high-efficiency polishing for potassium dihydrogen phosphate (KDP) crystal by using two-phase air—water fluid
Liu et al. Fabrication of ultra-fine diamond abrasive tools by sol-gel
JPH0398759A (en) Polishing pad and manufacture thereof
Umehara Novel Magnetic Fluid Polishing with the Control of Force and Distribution of Non-magnetic Abrasives
JPH01153265A (en) Jig
JP2003260642A (en) Mirror grinding method and its device
JP2017136662A (en) Abrasive pad
CN101633150B (en) Polishing pad and method for forming microstructure thereof
Yin et al. Experimental Study on Effects of Translational Movement on Surface Planarity in Magnetorheological Planarization Process