JPS61189441A - Method for measuring concentration of solution - Google Patents

Method for measuring concentration of solution

Info

Publication number
JPS61189441A
JPS61189441A JP60028320A JP2832085A JPS61189441A JP S61189441 A JPS61189441 A JP S61189441A JP 60028320 A JP60028320 A JP 60028320A JP 2832085 A JP2832085 A JP 2832085A JP S61189441 A JPS61189441 A JP S61189441A
Authority
JP
Japan
Prior art keywords
signal
temp
soln
correction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028320A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Hiramoto
平本 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60028320A priority Critical patent/JPS61189441A/en
Publication of JPS61189441A publication Critical patent/JPS61189441A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Abstract

PURPOSE:To correct the error caused by a cooler and to measure the correct concn. of a soln. by subjecting the soln. concn. determined by measuring the quantity of the reflected light which is made incident at periodically changing incident angles on the liquid surface of the soln. to the correction by the soln. temp. and the correction by the temp. of a cooling medium which cools a measuring apparatus. CONSTITUTION:The light of a light source lamp 21 is projected through a sapphire window 8 to the surface of the soln. 9 at the periodically changing incident angles and the intensity of the reflected light changing in accordance with the change of the refractive index of the light by the change of the soln. concn. is detected by a detecting part 1 consisting of a photoelectric tube 26, the output signal from which is integrated by am amplifier 2(27). The correction y1=a1(T1-T0) (a1 is a temp. correction gain and T0 is a reference soln. temp.) by the signal T1 from the temp. sensor is added to said signal. The result thereof is fed as a concn. signal to a computer 4 which corrects the concn. signal by adding the primary delay element 1/(1+taus) (tau is the delay time constant) to said signal and adding the correction quantity y2=-a2(T2-T5)Q (T5 is a reference temp. Signal, a2 is then correction factor, Q is the flow rate of cooling water) by the temp. signal T2 from a temp. sensor 7 of a cooling water piping 6.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、溶液の濃度が変化すれば、光の屈折率が変
化し、臨界角が変化することを利用して、溶液表面から
の反射光線量を計測することによって、溶液の濃度を測
定する方法に係り、詳しくは、その補正手段に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention utilizes the fact that when the concentration of a solution changes, the refractive index of light changes and the critical angle changes. The present invention relates to a method of measuring the concentration of a solution by measuring the amount of light, and more specifically, to a correction means therefor.

[従来技術] プロセス流体の濃度を連続的に測定する平段として、従
来、前記原理を利用した屈折率式濃度計が一般に用いら
れている。第2図はその概略原理図を示す。第2図にお
いて、光源ランプ21から出た光は、凸レンズ22によ
って平行光線にされ、回転(移動)スリット23によっ
て、AがらBに周期的に移動する光の帯となる。この光
の帯は、凸レンズ24によって集光され、AからBまで
繰り返し移動し、照射方向も変化するけれども、常に、
サファイア窓8の一点25に到達するように設定されて
いる。サファイア窓8は半円柱状をなし、点25はほぼ
円の中心点となるように設定されている。サファイア窓
8の図の下側平面は計測すべき溶液9に接している。
[Prior Art] Conventionally, a refractive index concentration meter using the above principle has been generally used as a flat stage for continuously measuring the concentration of a process fluid. FIG. 2 shows a schematic diagram of its principle. In FIG. 2, light emitted from a light source lamp 21 is converted into parallel light beams by a convex lens 22, and becomes a light band that periodically moves from A to B by a rotating (moving) slit 23. This band of light is focused by the convex lens 24 and repeatedly moves from A to B, and the irradiation direction changes, but always
It is set to reach one point 25 of the sapphire window 8. The sapphire window 8 has a semi-cylindrical shape, and the point 25 is set to be approximately the center point of the circle. The lower plane of the sapphire window 8 in the drawing is in contact with the solution 9 to be measured.

サファイアは光の屈折率が溶液9より大きいため、入射
光がAの場合は点25から図のように屈折して溶液9の
中に屈折光A゛ として入る。しかし、入射光がBの方
に移動し、臨界角になると、光は溶液中に屈折して入る
ことができず、全反射現象が生じ、強い反射光が光電管
26に達する。
Since sapphire has a higher refractive index than the solution 9, when the incident light is A, it is refracted from the point 25 as shown in the figure and enters the solution 9 as refracted light A'. However, when the incident light moves toward B and reaches the critical angle, the light cannot be refracted into the solution, a total internal reflection phenomenon occurs, and the strong reflected light reaches the phototube 26.

したがって、光電管26の出力は、入射光がAの角度で
は反射光は弱く、出力は低いが、Bの方に進み、臨界角
になると全反射して反射光は強く・出力は高くなり、B
まで続く。これを周期的に繰り返すので、光電管26か
らの出力は、第3図に示すように、山と谷のある波形と
なる。
Therefore, the output of the phototube 26 is that when the incident light is at angle A, the reflected light is weak and the output is low, but it progresses toward B, and when the critical angle is reached, it is totally reflected and the reflected light is strong and the output is high, and B
It lasts until Since this is repeated periodically, the output from the phototube 26 has a waveform with peaks and valleys, as shown in FIG.

溶液9の濃度が変化すると、光の屈折率が変化し、臨界
角も変化するので、光電管26の出力は、周期は一定で
あるが、山の幅が増加し谷の幅が減少するか、山の幅が
減少し谷の幅が増加する。したがって、光電管26から
の出力信号を積分すれば、反射光量の増減から臨界角の
変化がわかり、溶液の濃度を示す信号を出力させること
ができる。
When the concentration of the solution 9 changes, the refractive index of light changes and the critical angle also changes, so the output of the phototube 26 will have a constant period, but the width of the peaks will increase and the width of the valleys will decrease, or The width of the peaks decreases and the width of the valleys increases. Therefore, by integrating the output signal from the phototube 26, a change in the critical angle can be determined from an increase or decrease in the amount of reflected light, and a signal indicating the concentration of the solution can be output.

しかし、溶液の光屈折率は、濃度のみでなく、溶液の温
度によっても変化するので、第4図に示すように、計測
点付近の溶液温度を計測して、濃度出力信号を補償して
いる。すなわち、溶液温度T1を計測し、基準溶液温度
Toとの差(TI−To )に温度補正ゲインa1を乗
じた温度補正分出力y1を算出し、これを出力信号に加
減することによって温度補償された濃度信号を出力させ
ている。
However, the optical refractive index of a solution changes not only depending on the concentration but also on the temperature of the solution, so as shown in Figure 4, the concentration output signal is compensated by measuring the solution temperature near the measurement point. . That is, the temperature is compensated by measuring the solution temperature T1, calculating the temperature correction output y1 by multiplying the difference from the reference solution temperature To (TI-To) by the temperature correction gain a1, and adding or subtracting this to the output signal. A concentration signal is output.

[解決すべき問題点] ところが、溶液の温度が高い場合、計測機器の電気回路
等を熱から遮断して保護するため、冷却水管を設けて冷
却しているが、この冷却水温度によっても、第6図に示
すように、計器出力に誤差が生じることが判明した。
[Problems to be solved] However, when the temperature of the solution is high, a cooling water pipe is installed to protect the electrical circuits of the measuring equipment from the heat, but even with this cooling water temperature, As shown in FIG. 6, it was found that an error occurred in the meter output.

[発明の目的] そこで、この発明の目的は、計測機器を冷却する冷却装
置による誤差の補正をして、正しい溶液濃度を測定する
方法を実現することにある。
[Object of the Invention] Therefore, an object of the present invention is to realize a method of correcting the error caused by the cooling device that cools the measuring instrument and measuring the correct solution concentration.

[解決手段] この目的を達成するため、この発明は、溶液の液面へ周
期的に変化する入射角で投射される入射光の反射光線を
計測し、該計測値に溶液の温度による補正をして前記溶
液の濃度を測定する方法において、計測機器を冷却する
冷却媒体の温度による補正を加えることを特徴とする。
[Solution Means] In order to achieve this object, the present invention measures the reflected light beam of incident light projected onto the liquid surface of the solution at periodically changing incident angles, and corrects the measured value based on the temperature of the solution. The method for measuring the concentration of the solution is characterized in that a correction is made based on the temperature of a cooling medium that cools the measuring device.

[作用] この発明は、以上の構成としたので、溶液の濃度の変化
による光の屈折率の変化によって臨界角が変化し、反射
光量が変化することを利用して、反射光量を計測して濃
度を出力させるにあたり、溶液温度による補正と共に、
冷却装置によって冷却される機器の状態によって生じる
誤差の補正も行うので、正確な測定値を得ることができ
る。
[Function] Since the present invention has the above configuration, the amount of reflected light is measured by utilizing the fact that the critical angle changes and the amount of reflected light changes due to a change in the refractive index of light due to a change in the concentration of the solution. When outputting the concentration, along with correction by solution temperature,
Since it also corrects errors caused by the state of the equipment cooled by the cooling device, accurate measurement values can be obtained.

[実施例] 以下この発明を図示の実施例について説明する。[Example] The present invention will be described below with reference to the illustrated embodiments.

第1図は、この発明の詳細な説明図である。検出部1は
、第2図に示すような構成となっており、例えば、はう
酸回収装置のような装置のプロセス溶液の流路に接する
サファイア窓8.投光部、受光部の光電管等、増幅部等
からなり、前述のように、溶液濃度の変化を反射光量の
変化として検出するものである。検出部Iからの出力信
号は、ケーブル3により増幅器2へ送られる。増幅器2
では、光電管26からの矩形波状出力信号を積分し、図
示しない溶液温度センサからの信号T、によって、第4
図に示す補正yl =21  (Tt  To )を加
えて濃度信号とし、ケーブル11によってコンピュータ
4に送る。
FIG. 1 is a detailed explanatory diagram of the present invention. The detection unit 1 has a configuration as shown in FIG. 2, and includes, for example, a sapphire window 8 which is in contact with a process solution flow path of a device such as a hydrogen chloride recovery device. It consists of a light emitting part, a phototube in a light receiving part, an amplifying part, etc., and, as mentioned above, changes in solution concentration are detected as changes in the amount of reflected light. The output signal from the detection section I is sent to the amplifier 2 via a cable 3. amplifier 2
Then, the rectangular waveform output signal from the phototube 26 is integrated, and the fourth
The correction yl =21 (Tt To ) shown in the figure is added to form a density signal, which is sent to the computer 4 via the cable 11.

一方、検出部1には、高温の溶液9からの熱を遮断して
、検出部1の計測装置を保護するため、冷却水管6が設
けられている。この配管に温度センサ7が設けられてい
る。温度センサ7は検出部lの下流側または上・下流の
両方に設けるのがよい場合もあろう。温度センサ7から
の信号はケーブル13によりコンピュータ4に送られる
On the other hand, the detection unit 1 is provided with a cooling water pipe 6 in order to block heat from the high-temperature solution 9 and protect the measuring device of the detection unit 1. A temperature sensor 7 is provided in this pipe. In some cases, it may be preferable to provide the temperature sensor 7 on the downstream side or both upstream and downstream of the detection section l. The signal from temperature sensor 7 is sent to computer 4 via cable 13.

コンピュータ4では、増幅器2からの濃度信号が光学系
の振動等のため「ゆらぎ」を有し安定し平滑・安定化し
ている。τは遅れ時定数であり、具体例では約30秒に
設定している。Sはラプラス変換の演算子d/dtであ
る。
In the computer 4, the concentration signal from the amplifier 2 has "fluctuations" due to vibrations of the optical system, etc., and is stabilized, smoothed, and stabilized. τ is a delay time constant, which is set to about 30 seconds in the specific example. S is the Laplace transform operator d/dt.

また、冷却装置の温度センサ7からの温度信号T2によ
る補正Ny2を計算する。
Also, a correction Ny2 is calculated based on the temperature signal T2 from the temperature sensor 7 of the cooling device.

y2 =−a2 (T2−Ts )  ・Qa2は冷却
水温度による補正係数、Tsは基準となる温度信号、Q
は冷却水流量である。冷却水流1iQは一定としている
。この冷却水温度T2による補正1y2を濃度信号に加
えて濃度信号を補正する。
y2 = -a2 (T2 - Ts) ・Qa2 is a correction coefficient based on cooling water temperature, Ts is a reference temperature signal, Q
is the cooling water flow rate. The cooling water flow 1iQ is assumed to be constant. The correction 1y2 based on this cooling water temperature T2 is added to the concentration signal to correct the concentration signal.

次に、濃度と屈折率との関係は、第5図に示すように、
必ずしも比例関係にないため、計器の出力に比例して濃
度を表示させると、誤差が生じる。
Next, the relationship between concentration and refractive index is as shown in Figure 5.
Since the relationship is not necessarily proportional, errors will occur if the concentration is displayed in proportion to the meter's output.

特に、計器スパンが狭く、微少な屈折率変化を濃度変化
として読みとる場合には、その誤差が問題になる。そこ
で、被測定溶液の性状によって異なる計器出力に対する
溶液濃度特性のグラフのデータを変換関数15としてコ
ンピュータに記憶させておき、以上の補正された信号に
、この変換関数15をかけて濃度信号に変換して出力さ
せ、CRT5に表示させたり、プリンタで紙に記録させ
たり、記憶媒体に記憶させたりする。
In particular, when the instrument span is narrow and a minute change in refractive index is read as a change in concentration, this error becomes a problem. Therefore, the data of the graph of the solution concentration characteristics with respect to the meter output, which varies depending on the properties of the solution to be measured, is stored in the computer as a conversion function 15, and the above-corrected signal is multiplied by this conversion function 15 to convert it into a concentration signal. The information is then output and displayed on the CRT 5, recorded on paper using a printer, or stored on a storage medium.

以上のとおり、この実施例によれば、溶液の光屈折率は
濃度によって変化することを利用して、反射光の光量を
計測して濃度を知る方法において、溶液温度による補正
と共に、マイクロコンピュータにより、冷却水温度によ
る補正y2を加えたので誤差を小とすることができたが
、この実施例ではさらに、−次おくれ要素を加えて、計
測値の「ゆらぎ」の平滑化・安定化を図った。
As described above, according to this embodiment, in the method of determining the concentration by measuring the amount of reflected light by taking advantage of the fact that the optical refractive index of a solution changes depending on the concentration, in addition to correction based on the solution temperature, a microcomputer is used. By adding the correction y2 based on the cooling water temperature, we were able to reduce the error, but in this example, we also added a -order lag element to smooth out and stabilize the "fluctuations" in the measured values. Ta.

また、溶液性状による出力対濃度の対応が非線形であっ
ても、そのとおりの関数演算をさせたので、被計測溶液
の性状に応じた補正を行うことができ、さらに正確な濃
度を測定することができる。
In addition, even if the correspondence between output and concentration is non-linear due to the properties of the solution, the function is calculated accordingly, so corrections can be made according to the properties of the solution to be measured, allowing more accurate concentration measurements. I can do it.

なお、溶液の温度による補正、 )’1 =al  (TI −To )も、コンビエー
タ4に演算させるように構成してもよいことは勿論であ
る。
Note that it goes without saying that the correction based on the temperature of the solution, )'1 = al (TI - To ), may also be configured to be calculated by the combiator 4.

[発明の効果] 以上説明したように、この発明によれば、溶液の濃度測
定において、計測機器を冷却する冷却装置による熱的条
件によって生じる測定値の誤差を補正し、正確な測定値
を得ることができる。また、実施例のように構成すれば
、−次お(れ要素を負荷することにより測定値の安定化
を図ることができ、さらに、出力対濃度関数を設定して
演算させることによって、被計測溶液の性状に応じてそ
の性状毎に誤差を除去することができる。
[Effects of the Invention] As explained above, according to the present invention, when measuring the concentration of a solution, it is possible to correct the error in the measurement value caused by the thermal conditions caused by the cooling device that cools the measuring instrument, and to obtain an accurate measurement value. be able to. In addition, if configured as in the example, it is possible to stabilize the measured value by loading the -order element, and furthermore, by setting and calculating the output vs. concentration function, it is possible to stabilize the measured value by Errors can be removed depending on the properties of the solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の説明図、第2図は屈折率式濃度計の原
理説明図、第3図は光電管の出カバターン、第4図は溶
液温度による補正ブロック線図、第5図は計器出力対濃
度のグラフ、第6図は冷却水温度対計器出力のグラフで
ある。 図において、■は検出部、4はコンピュータ、5はCR
T、6は冷却水配管、7は温度センサ、8はサファイア
窓、9は溶液、12は一次お(れ要素、14は冷却温度
補正、15は変換関数である。 復代理人  弁理士 原田幸男 第1図
Fig. 1 is an explanatory diagram of the embodiment, Fig. 2 is an explanatory diagram of the principle of the refractive index concentration meter, Fig. 3 is the output pattern of the phototube, Fig. 4 is a correction block diagram based on solution temperature, and Fig. 5 is the instrument. Graph of Power vs. Concentration. FIG. 6 is a graph of cooling water temperature vs. instrument output. In the figure, ■ is the detection unit, 4 is the computer, and 5 is the CR.
T, 6 is the cooling water pipe, 7 is the temperature sensor, 8 is the sapphire window, 9 is the solution, 12 is the primary element, 14 is the cooling temperature correction, and 15 is the conversion function. Sub-agent Yukio Harada, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims] 溶液の液面へ周期的に変化する入射角で投射される入射
光の反射光線を計測し、該計測値に溶液の温度による補
正をして前記溶液の濃度を測定する方法において、計測
機器を冷却する冷却媒体の温度による補正を加えること
を特徴とする溶液の濃度測定方法。
A method of measuring the concentration of the solution by measuring the reflected light beam of incident light projected onto the liquid surface of the solution at an incident angle that changes periodically, and correcting the measured value by the temperature of the solution, the method includes: A method for measuring the concentration of a solution, characterized by adding correction based on the temperature of a cooling medium to be cooled.
JP60028320A 1985-02-18 1985-02-18 Method for measuring concentration of solution Pending JPS61189441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028320A JPS61189441A (en) 1985-02-18 1985-02-18 Method for measuring concentration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028320A JPS61189441A (en) 1985-02-18 1985-02-18 Method for measuring concentration of solution

Publications (1)

Publication Number Publication Date
JPS61189441A true JPS61189441A (en) 1986-08-23

Family

ID=12245318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028320A Pending JPS61189441A (en) 1985-02-18 1985-02-18 Method for measuring concentration of solution

Country Status (1)

Country Link
JP (1) JPS61189441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268720A (en) * 1997-03-27 1998-10-09 Ricoh Co Ltd Device for removing image forming material from image carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268720A (en) * 1997-03-27 1998-10-09 Ricoh Co Ltd Device for removing image forming material from image carrier

Similar Documents

Publication Publication Date Title
WO1987007018A1 (en) Oxygen measurement using visible radiation
US7079232B2 (en) Focus detecting unit, and refractive index measuring apparatus and non-contact thermometer using the same
JPH01502296A (en) Laser interferometric distance meter that measures length using an interferometer method
CN110160989A (en) A kind of detection method and detection device of trace gas
US4655597A (en) Micro-displacement measuring apparatus using a semiconductor laser
JPS61189441A (en) Method for measuring concentration of solution
JPS63182550A (en) Gas sensor
US20220034807A1 (en) Gas analysis system and gas analysis method
JPH0436622A (en) Method and device for detecting wavelength of laser light
JPH07110966A (en) Method and apparatus for measurement of warp of substance
JPS60253952A (en) Measurement system for gas concentration
JPH01235834A (en) Signal processing system of laser system gas sensor
Müller et al. Time resolved DGV based on laser frequency modulation
JPS6252436A (en) Gas detector
JP2932829B2 (en) Wavelength fluctuation measurement device
JPH05206235A (en) Measuring method for particle
JP3057943B2 (en) Film thickness measuring device
JPH0113527B2 (en)
JP3077725B2 (en) Refractive index measuring method and apparatus
JPH0577272B2 (en)
RU576824C (en) Radioisotope thickness of surface density
JP2022163283A (en) Electronic distance meter and optical comb distance meter
JPS59220633A (en) Plasma monitor
JP2805956B2 (en) Thickness measuring device
JPH01150805A (en) Measuring instrument for groove shape of optical disk substrate