JPS59220633A - Plasma monitor - Google Patents

Plasma monitor

Info

Publication number
JPS59220633A
JPS59220633A JP58094086A JP9408683A JPS59220633A JP S59220633 A JPS59220633 A JP S59220633A JP 58094086 A JP58094086 A JP 58094086A JP 9408683 A JP9408683 A JP 9408683A JP S59220633 A JPS59220633 A JP S59220633A
Authority
JP
Japan
Prior art keywords
fluorescence
laser beam
wavelength
plasma
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094086A
Other languages
Japanese (ja)
Inventor
Hisajiro Osada
長田 久二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58094086A priority Critical patent/JPS59220633A/en
Publication of JPS59220633A publication Critical patent/JPS59220633A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To achieve a highly accurate measurement with a high sensitivity for a long time by providing a first means of detecting changes in the wavelength of a narrow band laser light and a second means of correcting the output of a fluorescent detector according to the wave changes detected therewith. CONSTITUTION:In a plasma utilizer 4, a laser light 2 excites a measuring chemical seed to generate a fluorescence 6, which leaves an optical window 5c, focused by a focusing system 7 and then, converted into an electrical signal proportional to the intensity of the fluorescence with a fluorescence detector 8. On the other hand, the same measuring chemical seed is sealed into a cell 9 at a constant density and likewise, a fluorescence detector 12 outputs an electrical signal proportional to the intensity of fluorescence. Outputs of both the devices are inputted into a fluorescence generation rate arithmetic unit 13 to correct variations based on changes in the wavelength of the laser light 2 among outputs of the fluorescence detector 8. A correct fluorescence generation rate in the plasma utilizer 4 is computed, outputted and indicated on a display 14.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマ利用装置に付設するプラズマモニタに
関すみものであシ、更に詳しくはプラズマ利用装置内の
プラズマ中の特定化学種を、レーザ励起螢光方式によシ
高感度で精度良く長時間に亘って測定することを可能に
したプラズマモニタに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a plasma monitor attached to a plasma utilization device, and more specifically, the present invention relates to a plasma monitor attached to a plasma utilization device. The present invention relates to a plasma monitor that uses a fluorescent method to make measurements with high sensitivity and accuracy over a long period of time.

〔発明の背景〕[Background of the invention]

従来から微量の原子や二原子分子等を高感度に検出する
手段として、レーザ励起螢光方式が知られている。この
レーザ励起螢光方式をプラズマ利用装置内のプラズマ中
の原子・二原子分子等の化学種の測定に利用し、プラズ
マモニタを構成する場合、従来技術では次の様な問題が
あった。即ち、測定対象となるプラズマ中の化学種は、
鋭い吸収スペクトルを有するので、励起用レーザ光とし
ては線幅の狭い波長安定性の高いもの金片いる必要があ
る。しかし、通常のレーザ光は多少の発振波長の変動が
あり、そのためレーザ励起方式を利用したプラズマモニ
タを長時間使用すると、上記化学種の測定精度が低下し
てしまうのである。
BACKGROUND OF THE INVENTION Conventionally, a laser excitation fluorescence method has been known as a means for detecting trace amounts of atoms, diatomic molecules, etc. with high sensitivity. When this laser-excited fluorescence method is used to measure chemical species such as atoms and diatomic molecules in plasma in a plasma utilization device and a plasma monitor is configured, the following problems have occurred with the conventional technology. In other words, the chemical species in the plasma to be measured are:
Since it has a sharp absorption spectrum, it is necessary to use a gold piece with a narrow linewidth and high wavelength stability as the excitation laser beam. However, the oscillation wavelength of normal laser light varies to some extent, and therefore, when a plasma monitor using a laser excitation method is used for a long time, the measurement accuracy of the above chemical species decreases.

即ち、第1図において、Fは測定対象となる化学種の吸
収曲線であり、Sl、S2.S3は励起用レーザ光のス
ペクトルを示している。測定開始前の調整によって、励
起用レーザ光の波長を測定化学種の吸収波長に合わせる
と、そのレーザ光スペクトルはSlのようにな9、測定
化学種のレーザ光による励起効率は最大になる。しかし
、長時間に亘って測定を続けると、周囲温度の影響等に
より、レーザ光の波長が分光器等では測定でき々い程、
微妙に変化1/ 、レーザ光スペクトルが例えばS2,
83の様に変化してしまう。こうなると、し〜ザ光によ
る測定化学種の励起効率は低下し、測定化学種の濃度が
同一であっても発生する螢光量が低下し、その結果プラ
ズマモニタによる化学種の測定精度が低下することにな
る。
That is, in FIG. 1, F is the absorption curve of the chemical species to be measured, and S1, S2 . S3 indicates the spectrum of the excitation laser beam. When the wavelength of the excitation laser beam is adjusted to match the absorption wavelength of the chemical species to be measured by adjustment before the start of measurement, the laser beam spectrum becomes like that of Sl9, and the excitation efficiency of the laser beam for the chemical species to be measured is maximized. However, if measurements are continued over a long period of time, the wavelength of the laser light may become too long to be measured with a spectrometer due to the influence of ambient temperature, etc.
If the laser light spectrum changes slightly by 1/, for example, S2,
It changes like 83. In this case, the excitation efficiency of the measured chemical species by the laser light decreases, and even if the concentration of the measured chemical species is the same, the amount of fluorescence generated decreases, resulting in a decrease in the measurement accuracy of the chemical species by the plasma monitor. It turns out.

〔発明の目的〕[Purpose of the invention]

本発明は上記した従来技術の欠点に鑑みなされたもので
、高感度でしかも長時間に亘って精度良く測定できるプ
ラズマモニタを提供することを目的と1−でいるつ し発明の概要〕 本発明のプラズマモニタは、プラズマ利用装置内に照射
される狭帯域レーザ光によって特定化学種のみを励起し
、その際に発生する螢光を螢光検出器で検出することに
よ勺、上記特定化学種の濃度を測定するものであり、上
記狭帯域レーザ光を上記特定化学種km人したセ、に照
射し、狭帯域レーザ光の波長変化を検出する第1の手段
と、第1の手段によって検出された波長変化に応じて、
上記螢光検出装置の出力を補正する第2の手段とを備え
てなυ、これによって狭帯域レーザ光の波長変化を除去
し、長時間に亘る精度の高い測定を可能にするものであ
る。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and aims to provide a plasma monitor that is highly sensitive and capable of measuring accurately over a long period of time. The plasma monitor excites only a specific chemical species with a narrow band laser beam irradiated into a plasma utilization device, and detects the fluorescence generated at that time with a fluorescence detector. a first means for irradiating said narrowband laser light onto said specific chemical species km and detecting a change in the wavelength of said narrowband laser light; and a first means for detecting by said first means. Depending on the wavelength change made,
and a second means for correcting the output of the fluorescence detection device, thereby eliminating wavelength changes of the narrow band laser beam and enabling highly accurate measurement over a long period of time.

〔発明の実施例〕[Embodiments of the invention]

以下添付の図面に示す実施例によって、更に詳細に本発
明について説明する。
The present invention will be described in more detail below with reference to embodiments shown in the accompanying drawings.

第2図は本発明の第1の実施例を示すブロック図である
。同図において、レーザ光臨1は測定化学種の吸収波長
と同一の発振波長のレーザ光2を放射する。レーザ光2
はビームスプリンタ3によって二方向に分割され、一方
においてプラズマ利用装置4内に光学窓5a’に介して
入射され、他方においてセル9に入射される。プラズマ
利用装置4において、レーザ光2は測定化学種を励起し
て螢光6を発生させ、その後光学窓5bから出て行く。
FIG. 2 is a block diagram showing a first embodiment of the present invention. In the figure, a laser beam 1 emits a laser beam 2 having the same oscillation wavelength as the absorption wavelength of the chemical species to be measured. Laser light 2
The beam is split into two directions by the beam splinter 3, and is incident on the plasma utilization device 4 through the optical window 5a' on one side, and incident on the cell 9 on the other side. In the plasma utilizing device 4, the laser beam 2 excites the chemical species to be measured to generate fluorescence 6, and then exits through the optical window 5b.

発生した螢光6は光学窓5cからプラズマ利用装置4の
外部に出て、集光系7によって集光され、螢光検出装置
8によって螢光強度に比例した電気信号に変換される。
The generated fluorescent light 6 exits from the plasma utilization device 4 through the optical window 5c, is collected by the condensing system 7, and is converted by the fluorescent light detection device 8 into an electrical signal proportional to the fluorescent light intensity.

他方、セル9内にはプラズマ利用装置4内の測定化学種
と同じ化学種が封入されておυ、セル9はビームスプリ
ンタ3からのレーザ光2を導入・導出できる光学面を有
している。従って、ビームスプリッタ3からのレーザ光
2會受け、螢光10を発生する。螢光10は集光系11
によって螢光検出装置12に入射され、螢光検出装置1
2は螢光強度に比例した電気信号を出力する。セル9内
の化学種の濃度は一定であるため、螢光10の強度変化
はレーザ光2の波長変化に基づくものとなる。プラズマ
利用装置4においても、全く同様にレーザ光20波長変
化に基づく螢光6の強度変化が生じ、これが測定精度低
下の原因となっていだのであるから、螢光検出装置8,
12の出力を螢光発生率演算器に入力して、螢光検出装
置8の出力のうちのレーザ光2の波長変化に基づく変化
分を補正し、プラズマ利用装置4における正しい螢光発
生率全演算・出力する。そして、その値が表示装置14
で表示される。
On the other hand, the same chemical species as the measurement species in the plasma utilization device 4 is sealed in the cell 9, and the cell 9 has an optical surface that can introduce and guide the laser beam 2 from the beam splinter 3. . Therefore, two laser beams from the beam splitter 3 are received, and a fluorescent light 10 is generated. The fluorescent light 10 is a condensing system 11
The fluorescence is incident on the fluorescence detection device 12 by the fluorescence detection device 1.
2 outputs an electrical signal proportional to the fluorescence intensity. Since the concentration of chemical species within the cell 9 is constant, the intensity change of the fluorescent light 10 is based on the change in the wavelength of the laser beam 2. In the plasma utilization device 4, a change in the intensity of the fluorescent light 6 occurs in exactly the same way based on a change in the wavelength of the laser beam 20, which causes a decrease in measurement accuracy.
The output of 12 is input to the fluorescence generation rate calculation unit, and the change in the output of the fluorescence detection device 8 based on the change in the wavelength of the laser beam 2 is corrected, and the correct total fluorescence generation rate in the plasma utilization device 4 is determined. Calculate and output. Then, the value is displayed on the display device 14.
is displayed.

以上の説明から明らかな様に、第2図に示す第1の実施
例によれば、レーザ光源lの微小な温度変化(例えば0
.1℃程度)で生じてしまうレーザ光2の波長の微小変
化に基づく測定誤差を、補正することができ、その結果
長時間に亘って精度の高い測定を行なうことが可能に々
る。
As is clear from the above description, according to the first embodiment shown in FIG.
.. It is possible to correct measurement errors due to minute changes in the wavelength of the laser beam 2 that occur at a temperature of about 1° C.), and as a result, it is possible to perform highly accurate measurements over a long period of time.

尚、螢光検出装置12は、セル9での螢光測定がプラズ
マ光等の妨害なく実行できるため、分光器等の高価ガも
のを必要とせず、安価に構成できるものである。
The fluorescence detection device 12 can be constructed at low cost without requiring expensive equipment such as a spectrometer, since the fluorescence measurement in the cell 9 can be carried out without interference from plasma light or the like.

第3図は本発明の第2の実施例を示すブロック図であシ
、第2図に示す第1の実施例と同一部分は同一符号を付
してその説明を省略する。この第2の実施例が第1の実
施例と異なっている点は、ハーフミラ−15でビームス
グリツタ3からのレーザ光2を2分割し、−万全光電変
換器16に直接照射し、他方をセル9を介して光電変換
器17に照射し、光電変換器16 、17の出力全吸収
率演算器18に入力して、レーザ光2がセル9中の一定
濃度の測定化学種に吸収される割合を求めることである
FIG. 3 is a block diagram showing a second embodiment of the present invention, and the same parts as those in the first embodiment shown in FIG. 2 are given the same reference numerals and their explanations will be omitted. The difference between this second embodiment and the first embodiment is that the laser beam 2 from the beam sinter 3 is divided into two parts by a half mirror 15, and is irradiated directly onto a perfect photoelectric converter 16, while the other is The laser beam 2 is irradiated to the photoelectric converter 17 through the cell 9, inputted to the output total absorption rate calculator 18 of the photoelectric converters 16 and 17, and is absorbed by the measured chemical species at a constant concentration in the cell 9. It is to find the proportion.

この吸収される割合はプラズマ利用装置4内の測定化学
種でも同一であり、螢光光量は吸収光景に比例する。従
って、吸収率演算器18の出力と螢光検出装置8の出力
を螢光発生率演算器13に入力し、螢光検出装置8の出
力を吸収率演算器18の出力で補正することによシ、レ
ーザ光2の波長の微小変化に基づく測定誤差を補正する
ことが可能になる。
This rate of absorption is the same for the chemical species to be measured within the plasma utilization device 4, and the amount of fluorescent light is proportional to the absorption scene. Therefore, by inputting the output of the absorption rate calculation unit 18 and the output of the fluorescence detection device 8 to the fluorescence generation rate calculation unit 13, and correcting the output of the fluorescence detection unit 8 with the output of the absorption rate calculation unit 18. Second, it becomes possible to correct measurement errors based on minute changes in the wavelength of the laser beam 2.

第4図は本発明の第3の実施例金示すブロック図であυ
、第3図に示す第2の実施例と同一部分は同一符号を付
してその説明全省略する。第3図に示す第2の実施例と
異なっている点は、レーザ光源1がパルス1/−ザ光源
で形成され、セル9に音波検出器]9が付設されている
ことである。この第3の実施例は、セル9内にパルスレ
ーザ光2を導入し、パルスレーザ光2をセル9内の測定
化学種が吸収する際に生じる音波の強さを測定し、この
測定値と光電変換器16の出力とから測定化学種の吸収
率を求め、螢光検出装置8の出力を補正す 、るもので
ある。セル9内で音波が発生する原因は、パルスレーザ
光を吸収することにより、吸収されだエネルギが熱に変
わp、その結果ガスが急激に膨張することにある。その
場合、この音波の強さはレーザ光2の吸収率に比例する
。従って、光電変換器】6でレーザ光2の強度を求め、
音波検出器19で音波の強さを求め、両者を吸収率演算
器18に入力することにより、吸収率が算出される。従
って、吸収率演算器1Bの出力で螢光検出装置8の出力
を補正することにより、レーザ光2の波長の微小変化に
基づく誤差を補正することが可能になる。
FIG. 4 is a block diagram showing a third embodiment of the present invention.
, parts that are the same as those in the second embodiment shown in FIG. The difference from the second embodiment shown in FIG. 3 is that the laser light source 1 is formed by a pulse 1/- laser light source, and the cell 9 is provided with a sonic wave detector ]9. In this third embodiment, a pulsed laser beam 2 is introduced into a cell 9, and the intensity of the sound wave generated when the pulsed laser beam 2 is absorbed by a chemical species to be measured in the cell 9 is measured. The absorption rate of the measured chemical species is determined from the output of the photoelectric converter 16, and the output of the fluorescence detection device 8 is corrected. The reason why sound waves are generated in the cell 9 is that by absorbing the pulsed laser light, the absorbed energy is converted into heat, and as a result, the gas expands rapidly. In that case, the intensity of this sound wave is proportional to the absorption rate of the laser beam 2. Therefore, the intensity of the laser beam 2 is determined using the photoelectric converter]6,
The absorption rate is calculated by determining the intensity of the sound wave with the sound wave detector 19 and inputting both to the absorption rate calculator 18. Therefore, by correcting the output of the fluorescence detection device 8 with the output of the absorption factor calculator 1B, it becomes possible to correct errors caused by minute changes in the wavelength of the laser beam 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザ光源内の温度変化等で生じるレ
ーザ光の発振波長の微妙な変化が原因と疫る測定化学種
の励起効率変化を補正できるので、長時間に亘って高感
度で高精度の測定が可能になる効果がある。
According to the present invention, it is possible to correct for changes in the excitation efficiency of the measured chemical species caused by subtle changes in the oscillation wavelength of the laser light caused by temperature changes within the laser light source, so that high sensitivity and high performance can be achieved over a long period of time. This has the effect of making it possible to measure accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定化学種の吸収曲線と励起用レーザ光のスペ
クトルを示す図、第2図は本発明の第1の実施例を示す
図、第3図は本発明の第2の実施例を示す図、第4図は
本発明の第3の実施例を示す図である訂− 1・・・レーザ光源、2・・・レーザ光、3・・・ビー
ムスプリンタ、4・・・プラズマ利用装置、6.10・
・・螢光、7.11・・・集光系、8,12・・・螢光
検出装置、9・・・セル、13・・・螢光発生率演算器
、14・・・表示装置、15・・・ハーフミラ−116
、17・・・光電変換器、18・・・吸収率演算器、1
9・・・音波検出器。 代理人 弁理士  秋 本 正 実 第1 図 第2因 4;;j 3図 ”;、r、S 4図
FIG. 1 is a diagram showing the absorption curve of the measured chemical species and the spectrum of the excitation laser beam, FIG. 2 is a diagram showing the first embodiment of the present invention, and FIG. 3 is a diagram showing the second embodiment of the present invention. FIG. 4 is a diagram showing a third embodiment of the present invention. 1. Laser light source, 2. Laser light, 3. Beam splinter, 4. Plasma utilization device. , 6.10・
... Fluorescent light, 7.11... Light collection system, 8, 12... Fluorescence detection device, 9... Cell, 13... Fluorescence generation rate calculator, 14... Display device, 15...Half mirror-116
, 17... Photoelectric converter, 18... Absorption rate calculator, 1
9...Sound wave detector. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Cause 4;;j Figure 3'';, r, S Figure 4

Claims (1)

【特許請求の範囲】 1、 プラズマ利用装置内に照射される狭帯域レーザ光
によって特定化学種のみを励起し、その際に発生する螢
光を螢光検出器で検出することによ)、上記特定化学種
の濃度を測定するプラズマモニタにおいて、上記狭帯域
レーザ光を上記特定化学種を封入したセルに照射し、狭
帯域レーザ光の波長変化を検出する第1の手段と、第1
の手段によって検出された波長変化に応じて上記螢光検
出装置の出力を補正する第2の手段を備えていることを
特徴とするプラズマモニタ。 2、 上記第1の手段は、セルに狭帯域レーザ光を照射
することによって発生する螢光の強度を測定する螢光検
出装置で構成され、測定された螢光の強度変化を狭帯域
レーザ光の波長変化としてとらえることを特徴とする特
許請求の範囲第1項記載のプラズマモニタ。 3 上記第1の手段は、セル内で吸収されるし一ザ光の
吸収率を測定する手段で構成され、測定された吸収率の
変化全狭帯域レーザ光の波長変化としてとらえることを
特徴とする特許請求の範囲第1項記載のプラズマモニタ
。 4、 上記謔帯域レーザ光はパルスレーザ光であり、か
つ上記吸収率を測定する手段がレーザ励起によってセル
内で発生する音波全検出する音波検出器とパルスレーザ
光の強度を検出する光電変換器とから構成されているこ
とを特徴とする特許請求の範囲第3項記載のプラズマモ
ニタ。
[Claims] 1. By exciting only a specific chemical species with a narrow band laser beam irradiated into a plasma utilization device and detecting the fluorescence generated at that time with a fluorescence detector), the above In a plasma monitor for measuring the concentration of a specific chemical species, a first means for irradiating the narrow band laser beam onto a cell encapsulating the specific chemical species and detecting a change in the wavelength of the narrow band laser beam;
A plasma monitor comprising second means for correcting the output of the fluorescence detection device according to the wavelength change detected by the means. 2. The first means is comprised of a fluorescence detection device that measures the intensity of fluorescence generated by irradiating the cell with narrowband laser light, and detects changes in the intensity of the measured fluorescence using the narrowband laser light. 2. The plasma monitor according to claim 1, wherein the plasma monitor detects the change in wavelength as a change in wavelength. 3. The first means is characterized in that it is comprised of a means for measuring the absorption rate of laser light absorbed within the cell, and that the change in the measured absorption rate is regarded as a change in the wavelength of the entire narrowband laser beam. A plasma monitor according to claim 1. 4. The bandpass laser beam is a pulsed laser beam, and the means for measuring the absorption rate includes a sonic detector that detects all the sound waves generated within the cell by laser excitation and a photoelectric converter that detects the intensity of the pulsed laser beam. A plasma monitor according to claim 3, characterized in that it is comprised of:
JP58094086A 1983-05-30 1983-05-30 Plasma monitor Pending JPS59220633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094086A JPS59220633A (en) 1983-05-30 1983-05-30 Plasma monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094086A JPS59220633A (en) 1983-05-30 1983-05-30 Plasma monitor

Publications (1)

Publication Number Publication Date
JPS59220633A true JPS59220633A (en) 1984-12-12

Family

ID=14100657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094086A Pending JPS59220633A (en) 1983-05-30 1983-05-30 Plasma monitor

Country Status (1)

Country Link
JP (1) JPS59220633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330746A (en) * 1986-07-17 1988-02-09 コミサリア ア レネルジイ アトミク Element determination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330746A (en) * 1986-07-17 1988-02-09 コミサリア ア レネルジイ アトミク Element determination device

Similar Documents

Publication Publication Date Title
CN107064012B (en) Quartz enhanced photoacoustic spectroscopy gas-detecting device and method based on beat effect
CN104280362B (en) A kind of superheated vapor laser spectrum on-line detecting system
CN105067564B (en) A kind of optical fiber gas concentration detection method with temperature compensation capability
EP0449573A2 (en) Gas detection device
JPH01301149A (en) Method and apparatus for gas analysis
CN109991189B (en) Fixed point wavelength modulation gas concentration measuring device based on wave number drift correction and measuring method thereof
CN104237135A (en) System and method for detecting CO gas based on quartz tuning fork enhanced photoacoustic spectrometry technology
DE602004000374D1 (en) GAS DETECTION METHOD AND GAS DETECTOR EQUIPMENT
CN107037003A (en) A kind of system that moisture content in high-purity gas is detected based on cavity ring down spectroscopy technology
CN111562055A (en) Infrared imaging and concentration detection device and method for methane gas leakage
US3180984A (en) Stabilized comparison analyzer and method of analyzing
JPS63182550A (en) Gas sensor
JPS61194332A (en) Method and device for measuring gas concentration
JPS59220633A (en) Plasma monitor
JP2760681B2 (en) Method and apparatus for measuring iodine concentration in gas
RU132548U1 (en) FIRE PHOTOMETER
JPS58223041A (en) Spectrochemical analysis device
JPS608735A (en) Plasma monitoring apparatus
JPS6197552A (en) Measurement of concentration level for uranium
JP2009063364A (en) Gas detection device
KR100465965B1 (en) Apparatus for measuring the density of gas using laser multi-pass gas cell
JPS5957143A (en) Measurement of nox concentration
JPS6161333B2 (en)
JPH01253635A (en) Method and apparatus for fluorescence analysis
JPH06148070A (en) Method and instrument for analyzing isotopic ratio