JPS61187564A - Temperature difference engine - Google Patents

Temperature difference engine

Info

Publication number
JPS61187564A
JPS61187564A JP2886485A JP2886485A JPS61187564A JP S61187564 A JPS61187564 A JP S61187564A JP 2886485 A JP2886485 A JP 2886485A JP 2886485 A JP2886485 A JP 2886485A JP S61187564 A JPS61187564 A JP S61187564A
Authority
JP
Japan
Prior art keywords
cylinder
piston
cylinders
pressure
pure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2886485A
Other languages
Japanese (ja)
Other versions
JPH0158321B2 (en
Inventor
Katsuya Ito
勝也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2886485A priority Critical patent/JPS61187564A/en
Publication of JPS61187564A publication Critical patent/JPS61187564A/en
Publication of JPH0158321B2 publication Critical patent/JPH0158321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/34Regenerative displacers having their cylinders at right angle, e.g. "Robinson" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/02Single-acting two piston engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To generate power by installing two cylinders in a parallel V-shape, circulating warm water around one cylinder and cold water around the other cylinder, and utilizing the pressure change due to the gasification and condensation of a fluid injected into each cylinder. CONSTITUTION:When a piston 6 in a cylinder 2 of two cylinders 2, 3 arranged in a parallel V-shape reaches the top, a valve 11 is closed and a valve 10 is opened, a pure fluid M stored in a high-pressure tank 20 via the pressure of a pressure pump 16 is momentarily injected to be gasified via the circulating warm water H around the cylinder 2. On the other hand, the high-temperature pure fluid M is absorbed into the cylinder 3 in which a piston is shifted to the bottom dead point at this time to be quickly cooled by the circulating cold water C around the cylinder 3. The piston 6 is pushed down by the high-pressure vapor generated in the cylinder 2 and the piston 7 is sucked upward by the negative pressure generated via the condensation of the fluid M in the cylinder 3, thus a crank 4 is rotated by utilizing these motions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、外燃機関である温度差エンジンに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a temperature difference engine that is an external combustion engine.

(従来技術) 従来、製鉄所や火力発電所では、大量の高温排気ガスな
どでヒートバイブを応用して十二分の蒸気を発生する事
ができ、タービンを回転させて発電等を行い、効率よく
再生利用をしていた。しかし、それ以下の中低温の排気
ガス及び排水等は温水を作って再利用するか、或いは温
水そのもので魚の養殖等に使用していた。これはヒート
パイプを応用して蒸気を発生させてタービンを回転させ
ても要量不足になり、発電量より自家消費量の方が多い
ため効率が悪く利用できなかった。
(Prior technology) Traditionally, in steel works and thermal power plants, it has been possible to generate more than enough steam by applying a heat vibrator to a large amount of high-temperature exhaust gas, which rotates a turbine to generate electricity. It was often recycled and reused. However, exhaust gases and wastewater at medium to low temperatures below this range were either made into hot water and reused, or the hot water itself was used for fish farming. Even if heat pipes were used to generate steam to rotate a turbine, the required amount would not be enough, and the amount of electricity consumed by the company itself would be greater than the amount of electricity generated, making it inefficient and unusable.

(発明が解決しようとする問題点) 本発明は、この様な欠点に鑑み、工業用廃熱である中低
温の排気ガス及び排水より有効な動力を取り出すことを
目的とするものである。
(Problems to be Solved by the Invention) In view of these drawbacks, the present invention aims to extract effective motive power from medium-low temperature exhaust gas and waste water, which are industrial waste heat.

(問題点を解決するための手段) 本発明は、2個のシリンダーを並列V字型に設置し、一
方のシリンダー周縁に温水を、他方のシリンダ−周縁に
冷水を各々循環させ、この両シリンダー内にクランク軸
に接続するピストンを嵌合し、両シリンダー間に高温ガ
ス用給気管及び低温半液体用給気管を設け、シリンダー
との接合部に各々バルブを設け、低温半液体用給気管の
途中にアームがクランク軸に歯車を介して連結してある
加圧ポンプを設け、両シリンダー及び両給気管内に純粋
流体を封入することにより、工業用廃熱である中低温の
排気ガス及び排水より有効な動力を取り出すものである
(Means for Solving the Problems) The present invention installs two cylinders in a parallel V-shape, circulates hot water around the periphery of one cylinder, and cold water around the periphery of the other cylinder. A piston that connects to the crankshaft is fitted inside, and an air supply pipe for high-temperature gas and an air supply pipe for low-temperature semi-liquid are installed between both cylinders, and a valve is provided for each at the joint with the cylinder. A pressurizing pump with an arm connected to the crankshaft via a gear is installed in the middle, and by filling both cylinders and both air supply pipes with pure fluid, medium-low temperature exhaust gas and waste water, which are industrial waste heat, are installed. It extracts more effective power.

(発明の作用) 本発明の作用について説明する。(Action of invention) The operation of the present invention will be explained.

本発明は、純粋流体をシリンダー及び給気管内に閉じ込
め加熱して純粋流体を気体として膨張させ、その圧力を
ピストンに吸収させ、また加熱され、高温高圧気体とな
った純粋流体は、冷水を循環させであるシリンダーにて
冷却され、収縮の力により同様にピストンに力を伝える
ため1対のシリンダーによって中速であるが高出力を得
ることができる。
In the present invention, a pure fluid is confined in a cylinder and an air supply pipe and heated to expand the pure fluid as a gas, and the pressure is absorbed by a piston.The pure fluid that is heated and becomes a high-temperature, high-pressure gas is circulated through cold water. The piston is cooled by the cylinder, and the force of contraction is similarly transmitted to the piston, so it is possible to obtain medium speed but high output with a pair of cylinders.

(実施例) 本発明を実施例の図に基づいて説明する。(Example) The present invention will be explained based on figures of embodiments.

第1図乃至第5図に示す様に、本発明に係る温度差エン
ジン1は、シリンダー2及びシリンダー3を並列V字型
に設置し、一方のシリンダー2周縁に温水Hを、他方の
シリンダー3周縁に冷水Cを各々循環させ、上記シリン
ダー2及びシリンダー3内にクランク軸5に接続するピ
ストン6及びピストン7を各々嵌合し、シリンダー2及
びシリンダー3間に高温ガス用給気管8及び低温半液体
用給気管9を設け、シリンダー2及びシリンダー3との
接合部に各々バルブ10、バルブ11、バルブ12及び
バルブ13を設け、低温半液体用給気管9の途中にアー
ム14がクランク軸5に歯車15を介して連結してある
加圧ポンプ16を設け、上記シリンダー2、シリンダー
3及び高温ガス用給気管8、低温半液体用給気管9内に
純粋流体Mを封入してある。また、この加圧ポンプ16
とシリンダー2間に設けた低温半液体用給気管9の途中
に高圧タンク20を設け、この加圧ポンプ16とシリン
ダー3間に設けた低温半液体用給気管9の途中に低圧タ
ンク19を設けである。
As shown in FIGS. 1 to 5, the temperature difference engine 1 according to the present invention has a cylinder 2 and a cylinder 3 installed in parallel in a V-shape, and hot water H is supplied to the periphery of one cylinder 2 and the other cylinder 3. A piston 6 and a piston 7 connected to the crankshaft 5 are fitted into the cylinders 2 and 3, respectively, and a high-temperature gas supply pipe 8 and a low-temperature gas supply pipe 8 are connected between the cylinders 2 and 3. A liquid air supply pipe 9 is provided, and valves 10, 11, 12, and 13 are provided at the joints with the cylinders 2 and 3, respectively, and an arm 14 is connected to the crankshaft 5 in the middle of the low temperature semi-liquid air supply pipe 9. A pressurizing pump 16 connected via a gear 15 is provided, and a pure fluid M is sealed in the cylinders 2, 3, high-temperature gas supply pipe 8, and low-temperature semi-liquid supply pipe 9. In addition, this pressure pump 16
A high-pressure tank 20 is provided in the middle of the low-temperature semi-liquid air supply pipe 9 provided between the pressurizing pump 16 and the cylinder 2, and a low-pressure tank 19 is provided in the middle of the low-temperature semi-liquid air supply pipe 9 provided between the pressurizing pump 16 and the cylinder 3. It is.

第2図に示す様に、シリンダー2内のピストン6が頂点
に達する際、バルブ11は閉じ、バルブ10は開き、高
圧タンク20内に加圧ポンプ16の圧力で貯えられた純
粋流体Mが一瞬のうちに注入される。シリンダー3では
、高温の気体となった純粋流体Mが一杯に吸入される。
As shown in FIG. 2, when the piston 6 in the cylinder 2 reaches the top, the valve 11 closes and the valve 10 opens, and the pure fluid M stored in the high pressure tank 20 under the pressure of the pressurizing pump 16 momentarily flows. It will be injected soon. The pure fluid M, which has become a high-temperature gas, is fully sucked into the cylinder 3.

この際、バルブ12は閉じる。また、シリンダー3内に
吸入された高温の気体となった純粋流体Mはシリンダー
3周縁を循環している冷水Cにより急激に冷却され、ま
たシリンダー2内に吸入された純粋流体Mはシリンダー
2周縁を循環している温水Hにより気化され、シリンダ
ー2内の蒸気圧が上昇する。
At this time, the valve 12 is closed. In addition, the pure fluid M that has become a high-temperature gas that has been sucked into the cylinder 3 is rapidly cooled by the cold water C that is circulating around the circumference of the cylinder 3, and the pure fluid M that has been sucked into the cylinder 2 is rapidly cooled by the cold water C that is circulating around the circumference of the cylinder 2. It is vaporized by the hot water H circulating through the cylinder 2, and the steam pressure inside the cylinder 2 increases.

第3図に示す様に、シリンダー2内の高圧の蒸気となっ
た純粋流体Mはピストン6を押し下げ、クランク4を矢
印F方向に回転させる。また、シリンダー3内に吸入さ
れた純粋流体Mはシリンダー3周縁を循環する冷水Cに
より放熱して、強い凝縮が発生し、そのためにピストン
7は吸い上げられ、クランク4を矢印F方向に回転させ
る。
As shown in FIG. 3, the pure fluid M in the form of high-pressure steam inside the cylinder 2 pushes down the piston 6, causing the crank 4 to rotate in the direction of arrow F. Further, the pure fluid M sucked into the cylinder 3 radiates heat by the cold water C circulating around the circumference of the cylinder 3, and strong condensation occurs, which causes the piston 7 to be sucked up and rotate the crank 4 in the direction of arrow F.

第4図に示す様に、シリンダー3内の゛ピストン7が頂
点に達する少し手前でバルブ13が開き、凝縮した純粋
流体Mを排出し、この純粋流体Mは低圧タンク19内へ
集められる。この時には、加圧ポンプ16の働きで低温
半液体用給気管9内は低圧になり、低圧タンク19内に
純粋流体Mが入り易くなる。このため、パル、フ゛13
が開くと同時に吸入が始まり、バルブ13はすぐに閉じ
る。また、クランク4が回転し、A点にピストン7のア
ーム17が位置すると、バルブ11及びバルブ12が同
時に開き、シリンダー2ではクランク4の回転惰力でピ
ストン6を押し上げ、高温高圧の蒸気となった純粋流体
Mは高温ガス用給気管8を通ってシリンダー3内に吸入
される。
As shown in FIG. 4, just before the piston 7 in the cylinder 3 reaches its peak, the valve 13 opens and discharges the condensed pure fluid M, which is collected in the low pressure tank 19. At this time, the pressure inside the low-temperature semi-liquid air supply pipe 9 becomes low due to the action of the pressurizing pump 16, and the pure fluid M easily enters the low-pressure tank 19. For this reason, Pal, F13
Inhalation begins as soon as the valve 13 opens, and the valve 13 closes immediately. Furthermore, when the crank 4 rotates and the arm 17 of the piston 7 is positioned at point A, the valves 11 and 12 open simultaneously, and in the cylinder 2, the piston 6 is pushed up by the rotational inertia of the crank 4, resulting in high-temperature and high-pressure steam. The pure fluid M is drawn into the cylinder 3 through the hot gas supply pipe 8.

第5図に示す様に、シリンダー3でもピストン7が惰力
で下がり、蒸気となった純粋流体Mを吸入する。この働
きは抵抗がほとんどなく、エネルギーの消耗もない。
As shown in FIG. 5, the piston 7 in the cylinder 3 also moves down due to inertia and sucks in the pure fluid M that has become steam. This action has almost no resistance and does not consume energy.

この次は、また始めの工程に移り、順次繰り返し行われ
る。
After this, the process returns to the beginning and is repeated in sequence.

本実施例では、1回転で全ての工程を行うため、エネル
ギーのロスが少なく、1気筒で行うとすると、加熱冷却
を交互に繰り返して行わなければならないので、二重に
エネルギーが消費され、また1回転に要する時間が長い
ため、2気筒にしてある。また、周縁に温水Hを循環さ
せであるシリンダー2の内面上部に突起部18を設けで
あるのは、純粋流体Mを吸入した際、接触部分が多くな
り、蒸気となった純粋流体Mの動きを活発にして膨張速
度を早めるためである。また、加圧ポンプ16を設置す
ることにより、周縁に冷水Cを循環させであるシリンダ
ー3内において、収縮過程で排出する純粋流体Mを瞬時
にシリンダー3外に排出することができ、周縁に温水H
を循環させであるシリンダー2内において、圧縮した純
粋流体Mを液体の状態で大量に注入できるため、膨張量
が多くなり、高出力のエンジンとなる。また、排出と吸
入の時間が短縮され、排出される半波化した純粋流体M
を加圧によって液体とすることができる。
In this example, all processes are performed in one revolution, so there is little energy loss.If it were performed in one cylinder, heating and cooling would have to be repeated alternately, so energy would be consumed twice. Since it takes a long time for one rotation, it is equipped with two cylinders. In addition, the protrusion 18 is provided on the upper inner surface of the cylinder 2, which circulates the hot water H around the periphery, because when the pure fluid M is inhaled, there are many contact parts, and the movement of the pure fluid M that becomes steam. This is to activate the gas and accelerate the expansion speed. In addition, by installing the pressurizing pump 16, the pure fluid M discharged during the contraction process can be instantly discharged to the outside of the cylinder 3 by circulating cold water C around the periphery of the cylinder 3. H
Since a large amount of compressed pure fluid M can be injected in a liquid state into the cylinder 2 by circulating it, the amount of expansion increases, resulting in a high output engine. In addition, the discharge and suction time is shortened, and the half-wave pure fluid M to be discharged
can be made into a liquid by applying pressure.

これは、圧縮ポンプの消費エネルギーを取り返す働きを
するものである。
This serves to recover the energy consumed by the compression pump.

尚、本実施例では2個のシリンダーを並列に設置して2
気筒であるが、1対を直列にしてもよく、4.6気筒の
様に多気筒としてもよい。また、本実施例では工業用廃
熱を利用したが、温泉と雪解は水の温度差を利用しても
よい。
In addition, in this example, two cylinders are installed in parallel and two cylinders are installed in parallel.
A pair of cylinders may be arranged in series, or a plurality of cylinders such as 4.6 cylinders may be arranged. Furthermore, although industrial waste heat is used in this embodiment, the temperature difference between hot spring water and snow melting may be used instead.

(発明の効果) 本発明に係る温度差エンジンによれば、工業用廃熱であ
る中低温の排気ガス及び排水によりシリンダー内に閉じ
込めた純粋流体を気体として膨張させ、その圧力をピス
トンに吸収させ、高温高圧の気体となった純粋流体は冷
水を循環させであるシリンダー内にて冷却され、その収
縮力により同様にピストンに力を伝えるため2個を1対
とするシリンダーによって中速であるが高出力を得るこ
とができ、また少ない温度差でも流体(例えばフロンガ
ス)を変えることにより動力として使用でき、非常に便
利である。
(Effects of the Invention) According to the temperature difference engine of the present invention, the pure fluid confined in the cylinder is expanded as a gas by medium-low temperature exhaust gas and waste water, which are industrial waste heat, and the pressure thereof is absorbed by the piston. The pure fluid, which has become a high-temperature, high-pressure gas, is cooled in a cylinder by circulating cold water, and its contraction force similarly transmits force to the piston, which is then moved at a medium speed by a pair of cylinders. High output can be obtained, and even a small temperature difference can be used as power by changing the fluid (for example, chlorofluorocarbon gas), making it very convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る温度差エンジンの縦断面図、第2
図乃至第5図は一連の工程の縦断面図である。 (主要部分の符合の説明) l・・・温度差エンジン 2.3・ ・・シリンダー 5・・・クランク軸 6.7・・・ピストン 8・・・高温ガス用給気管 9・・・低温半液体用給気管 10.11.12.13・・・バルブ 14・・・アーム 15・・・歯車 16・・・加圧ポンプ M・・・純粋流体 第1図 12図 第 3 図 @4図 薯5図 手続補正書(任意) 昭和60年3 月25日 特許庁長官   志 賀    学 殿(特許庁審判長
              殿) 娼ン〕(特許庁審
査官              殿)1、事件の表示 昭和60年 特  3′[願第28864号2、発明の
名称    温度差エンジン3、補正する者 事件との関係      特許出願人 住所(居所) 岐阜県大垣市木戸町142番地の3イト
ウ 力ツヤ 天義(ゑ蒜) 伊藤勝也 4、代理人 7゜補正の対象 明細書の「図面の簡単な説明」の欄8
、補正の内容 別紙の通り 明m書の第9頁第16行目の「(主要部分の符合の説明
)」を、「(主要部分の符号の説明)」と櫂正する。 以上
FIG. 1 is a longitudinal sectional view of a temperature difference engine according to the present invention, and FIG.
Figures 5 through 5 are longitudinal cross-sectional views of a series of steps. (Explanation of signs of main parts) l...Temperature difference engine 2.3...Cylinder 5...Crankshaft 6.7...Piston 8...High temperature gas supply pipe 9...Low temperature half Air supply pipe for liquid 10.11.12.13... Valve 14... Arm 15... Gear 16... Pressure pump M... Pure fluid Figure 1 Figure 12 Figure 3 Figure @ 4 Figure 5 Procedural Amendment (optional) March 25, 1985 Manabu Shiga, Commissioner of the Patent Office (Chief Adjudicator of the Patent Office) (Examiner of the Patent Office) 1. Indication of the case 1985 Patent 3' [Application No. 28864 2, Title of the invention Temperature difference engine 3, Relationship with the amended person case Patent applicant address (residence) 3 Ito, 142 Kido-cho, Ogaki City, Gifu Prefecture Chikara Tsuya Tengi (Ebiru) Katsuya Ito 4. Subject of amendment by agent 7° “Brief explanation of drawings” column 8 of the specification
, Contents of the amendment As shown in the attached document, "(Explanation of the symbols of the main parts)" on page 9, line 16 of the Memorandum is corrected to "(Explanation of the codes of the main parts)". that's all

Claims (1)

【特許請求の範囲】[Claims] 2個のシリンダーを並列V字型に設置し、一方のシリン
ダー周縁に温水を、他方のシリンダー周縁に冷水を各々
循環させ、この両シリンダー内にクランク軸に接続する
ピストンを嵌合し、両シリンダー間に高温ガス用給気管
及び低温半液体用給気管を設け、シリンダーとの接合部
に各々バルブを設け、低温半液体用給気管の途中にアー
ムがクランク軸に歯車を介して連結してある加圧ポンプ
を設け、両シリンダー及び両吸気管内に純粋流体を封入
してなる温度差エンジン。
Two cylinders are installed in a parallel V-shape, hot water is circulated around the periphery of one cylinder, and cold water is circulated around the periphery of the other cylinder.A piston connected to the crankshaft is fitted into both cylinders, and both cylinders are connected to each other. An air supply pipe for high-temperature gas and an air supply pipe for low-temperature semi-liquid are provided in between, and a valve is provided at each joint with the cylinder, and an arm is connected to the crankshaft via a gear in the middle of the air supply pipe for low-temperature semi-liquid. A temperature difference engine equipped with a pressure pump and with pure fluid sealed in both cylinders and both intake pipes.
JP2886485A 1985-02-15 1985-02-15 Temperature difference engine Granted JPS61187564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2886485A JPS61187564A (en) 1985-02-15 1985-02-15 Temperature difference engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2886485A JPS61187564A (en) 1985-02-15 1985-02-15 Temperature difference engine

Publications (2)

Publication Number Publication Date
JPS61187564A true JPS61187564A (en) 1986-08-21
JPH0158321B2 JPH0158321B2 (en) 1989-12-11

Family

ID=12260240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2886485A Granted JPS61187564A (en) 1985-02-15 1985-02-15 Temperature difference engine

Country Status (1)

Country Link
JP (1) JPS61187564A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422877A (en) * 2005-02-04 2006-08-09 Duncan James Parfitt Piston-and-cylinder machine, eg for generating electricity, using the vacuum created by condensing vapour
CN103899431A (en) * 2014-04-30 2014-07-02 郭远军 V-shaped negative pressure power device and acting method thereof
CN103925020A (en) * 2014-04-30 2014-07-16 郭远军 V type high and low pressure power machine and acting method thereof
CN103925110A (en) * 2014-04-30 2014-07-16 郭远军 V type high and low pressure power device and acting method thereof
CN103939231A (en) * 2014-04-30 2014-07-23 郭远军 Horizontally opposed type negative pressure power device and working method thereof
CN103939230A (en) * 2014-04-30 2014-07-23 郭远军 Inline type negative pressure power equipment and acting method thereof
CN103982323A (en) * 2014-05-15 2014-08-13 刘英德 Negative-pressure engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422877A (en) * 2005-02-04 2006-08-09 Duncan James Parfitt Piston-and-cylinder machine, eg for generating electricity, using the vacuum created by condensing vapour
CN103899431A (en) * 2014-04-30 2014-07-02 郭远军 V-shaped negative pressure power device and acting method thereof
CN103925020A (en) * 2014-04-30 2014-07-16 郭远军 V type high and low pressure power machine and acting method thereof
CN103925110A (en) * 2014-04-30 2014-07-16 郭远军 V type high and low pressure power device and acting method thereof
CN103939231A (en) * 2014-04-30 2014-07-23 郭远军 Horizontally opposed type negative pressure power device and working method thereof
CN103939230A (en) * 2014-04-30 2014-07-23 郭远军 Inline type negative pressure power equipment and acting method thereof
CN103925110B (en) * 2014-04-30 2015-11-04 郭远军 A kind of V-type high low pressure power equipment and work method thereof
CN103982323A (en) * 2014-05-15 2014-08-13 刘英德 Negative-pressure engine
CN103982323B (en) * 2014-05-15 2015-08-12 刘英德 Negative pressure motor

Also Published As

Publication number Publication date
JPH0158321B2 (en) 1989-12-11

Similar Documents

Publication Publication Date Title
RU2171385C2 (en) Gas-turbine system with heat recuperation cycle and method of its operation
US6672063B1 (en) Reciprocating hot air bottom cycle engine
WO2015165200A1 (en) Parallel motion heat energy power machine and work-doing method therefor
CN105464730B (en) A kind of residual neat recovering system of low-temperature flue gas and low temperature hot fluid
FI101167B (en) Utilization of low-value heat in a supercharged thermal power plant
JP2007107490A (en) External combustion engine and structure thereof
JPS61187564A (en) Temperature difference engine
WO2015165199A1 (en) Rotor high and low pressure power device and work-doing method therefor
WO2015165201A1 (en) Inline-type heat energy power device and work-doing method therefor
CN107923265B (en) Heat engine
CN104321514A (en) Isothermal compression type heat engine
CN106640416A (en) Low speed marine diesel engine EGR cooler S-CO2 and ORC combined cycle waste heat utilization system
CN108757069B (en) Gravity heat engine for gas-liquid two-phase flow
CN107636261A (en) Supercritical steam cycle method including isothermal expansion and the free-piston heat engine for including the fluid pressure type Energy extraction for the round-robin method
JP3640411B2 (en) Waste heat recovery system
CN107339822A (en) Steam condensate afterheat utilizing system and residual-heat utilization method
CN206131762U (en) Two beam type limekiln waste heat utilization systems based on organic rankine cycle
JPS56156407A (en) Pankine cycle device for automobile
CN207081245U (en) Steam condensate afterheat utilizing system
EP2176518A2 (en) An apparatus for generating rotary power, an engine and a method of generating rotary power
KR101623418B1 (en) stirling engine
JP2001248409A (en) Exhaust heat recovery system
CN207813708U (en) The residual neat recovering system and its steam heating type oil sump of marine engine
CN208010477U (en) A kind of engine
CN205349440U (en) Low temperature hot -fluid recycle system