JPS61187363A - Optical integrated circuit device - Google Patents

Optical integrated circuit device

Info

Publication number
JPS61187363A
JPS61187363A JP60027823A JP2782385A JPS61187363A JP S61187363 A JPS61187363 A JP S61187363A JP 60027823 A JP60027823 A JP 60027823A JP 2782385 A JP2782385 A JP 2782385A JP S61187363 A JPS61187363 A JP S61187363A
Authority
JP
Japan
Prior art keywords
layer
diode
area
type
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027823A
Other languages
Japanese (ja)
Inventor
Shuichi Miura
秀一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60027823A priority Critical patent/JPS61187363A/en
Publication of JPS61187363A publication Critical patent/JPS61187363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To settle the crystal growth by once and to improve productivity and yield, by a method wherein a optical semiconductor element which is a PIN photo-diode and an electron element which is a J-FET are formed in a multi-layer semiconductor crystal having a hetero junction using this hetero junction. CONSTITUTION:A P<+> type area 22 is formed on a PIN diode forming area on a semi-insulating GaAs substrate 21 by diffusion of Zn and the like, and a P<-> type GaAs layer 23, an N-type Al0.3Ga0.7As layer 24 and an N-type GaAs layer 25 are stacked by laminating on the whole surface containing said P<+> type area 22 by molecular beam epitaxial growth method or the like. Next, mesas are formed to each area of a diode which is light receiving element and a J-FET adjoining to this, and the inter-element separation is performed, and the layer 25 of a diode light receiving part is removed, and an Au/Au/Zn/Au layer 26 which becomes a P-type area of the diode is cladded. After that, patterning is performed by cladding an Au/AuGe layer 27 on the whole surface, and an N-type area is formed on the diode, and a source area 27S and a drain area 27D are formed on the FET respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は0EIC(光集積回路)、特に受光素子と電界
果トランジスタ(FET)を含む0EICの構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an 0EIC (optical integrated circuit), and particularly to the structure of an 0EIC including a light receiving element and a field effect transistor (FET).

光半導体素子と電子素子を同一半導体基板上に集積する
と、浮遊容量等の影響が低減できるため、モノリシック
0EICの構造に関する研究が活発化している。
Since the effects of stray capacitance and the like can be reduced by integrating optical semiconductor elements and electronic elements on the same semiconductor substrate, research on the structure of monolithic 0EICs is becoming more active.

〔従来の技術〕[Conventional technology]

第2図は従来例による、PINダイオードとMES−F
ETを含む0EICの断面図である。
Figure 2 shows the PIN diode and MES-F according to the conventional example.
FIG. 2 is a cross-sectional view of 0EIC including ET.

左側は受光素子でPIN(p型−絶縁層−n型構造)ダ
イオードを、右側はMES−FET(Metal Se
m1conductor−Field Effect 
Transist。
The photodetector on the left is a PIN (p-type-insulating layer-n-type structure) diode, and the right side is a MES-FET (Metal Se
m1conductor-Field Effect
Transist.

r)を構成する。r).

図において、半絶縁性ガリウム砒素(S4−GaAs)
基板lのPINダイオードを形成しようとする領域をエ
ツチングして段差を形成し、段差を覆って基板全面にn
” −Ga As層2と、n−−GaAs層3と、高抵
抗−アルミニウムガリウム砒素     (IIR−A
le、 tGao、Js)層4とを順次エピタキシャル
成長する。
In the figure, semi-insulating gallium arsenide (S4-GaAs)
The region of the substrate l where the PIN diode is to be formed is etched to form a step, and the n is etched over the entire surface of the substrate, covering the step.
” -GaAs layer 2, n--GaAs layer 3, high resistance aluminum gallium arsenide (IIR-A
layer 4 (le, tGao, Js) are epitaxially grown in sequence.

ついでPINダイオード形成領域を耐蝕マスクで覆って
基板をエツチングし、PINダイオード形成領域以外の
n ”−GaAs層2と、n−−GaAs層3と、HR
−Alo、 5Gao、 7AS層4とを除去するとP
INダイオードとFET間に素子分離用の■溝16が形
成される。
Next, the PIN diode formation region is covered with a corrosion-resistant mask, and the substrate is etched to remove the n''-GaAs layer 2, the n--GaAs layer 3, and the HR region other than the PIN diode formation region.
- When Alo, 5Gao, and 7AS layers 4 are removed, P
A groove 16 for element isolation is formed between the IN diode and the FET.

FETはエツチングにより露出した基板1のFET形成
領域にアンドープのGaAs層25と、n −GaAs
層6を順次エピタキシャル成長し、F E T tl域
以外の部分には5iJ4層7を被着し、ついでn−Ga
As層6上にAIよりなるゲート電極8と、金/金ゲル
マニウム(Au/AuGe)よりなるソース電極9、ド
レイン電極10を形成して構成される。
The FET includes an undoped GaAs layer 25 and an n-GaAs layer 25 in the FET formation region of the substrate 1 exposed by etching.
Layer 6 is epitaxially grown in sequence, 5iJ4 layer 7 is deposited on the portion other than the FET tl region, and then n-Ga
A gate electrode 8 made of AI, a source electrode 9 and a drain electrode 10 made of gold/gold germanium (Au/AuGe) are formed on the As layer 6.

PINダイオードは受光部のSi:+LL12開口し、
HR−Alo、 3Gao、 7AS層4に亜鉛(Zn
)を拡散してp壁領域1)を得る。p壁領域1)の上に
p型側電極としてへu/Zn/Au層12、金/チタン
(Au/Tf) 13と、n”−GaAs層2の上にn
型側電極としてAu/AuGe層14を形成して構成さ
れる。
The PIN diode opens at Si:+LL12 of the light receiving part,
HR-Alo, 3Gao, 7AS layer 4 contains zinc (Zn
) to obtain p-wall region 1). A u/Zn/Au layer 12 and a gold/titanium (Au/Tf) layer 13 are formed as p-type side electrodes on the p-wall region 1), and an n''-GaAs layer 2 is formed on the n''-GaAs layer 2.
An Au/AuGe layer 14 is formed as a mold side electrode.

つぎにFETとPINダイオードを結ぶ配!15を、5
iJ4層7上に八lでゲート電極8とAu/Ti層13
間層形3間る。この配線は■溝16の谷に沿って形成さ
れる。
Next, connect the FET and PIN diode! 15, 5
A gate electrode 8 and an Au/Ti layer 13 are formed on the iJ4 layer 7.
Interlayer type 3. This wiring is formed along the valley of the groove 16.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例の○EICでは、FETとPINダイオードを構
成する層構造の形成を別々のエピタキシャル成長で行う
ため、製造工程数が多く、また構造も複雑であった。
In the conventional EIC, the layer structure constituting the FET and the PIN diode was formed by separate epitaxial growth, so the number of manufacturing steps was large and the structure was complicated.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、ヘテロ接合を有する多層半導体結
晶に該同一のヘテロ接合を用いて、光半導体素子と電子
素子を形成してなる光集積回路装置により達成される。
The above problem can be solved by an optical integrated circuit device in which an optical semiconductor element and an electronic element are formed by using the same heterojunction in a multilayer semiconductor crystal having a heterojunction.

前記光半導体素子がヘテロ接合PINホトダイオード、
前記電子素子かヘテロ接合電界効果トランジスタよりな
る0BICには特に有効である。
the optical semiconductor element is a heterojunction PIN photodiode;
This is particularly effective for OBIC, which consists of the electronic device or a heterojunction field effect transistor.

〔作用〕[Effect]

受光素子としてのPINダイオードは、光が吸収されな
い禁制帯幅の大きいウィンド層を最上層にしたヘテロ接
合を有する構造が有利である。
The PIN diode as a light receiving element has an advantageous structure having a heterojunction in which the uppermost layer is a window layer with a large forbidden band width in which no light is absorbed.

このようなPINダイオードを用いた場合も、従来の0
BICではヘテロ接合が基板内にあるのに、単に普通の
FETの構造を採用していた。
Even when using such a PIN diode, the conventional 0
Although the BIC has a heterojunction within the substrate, it simply uses the structure of an ordinary FET.

本発明では、0EIC内に折角存在するヘテロ接合を用
いてHBMT(高電子易動度トランジスタ)を形成する
。このようにすると受光素子と電子素子を同じ層構造を
用いて形成できるので、エピタキシャル成長は1回でよ
く、従って製造が容易に、構造が簡単に、かつ高速応答
が可能になる。
In the present invention, an HBMT (high electron mobility transistor) is formed using a heterojunction that is present in an 0EIC. In this way, the light-receiving element and the electronic element can be formed using the same layer structure, so epitaxial growth only needs to be performed once, and therefore manufacturing is easy, the structure is simple, and high-speed response is possible.

〔実施例〕〔Example〕

第1図は本発明による、PINダイオードとHEMTを
含む0BICの1部所面を示す斜視図である。
FIG. 1 is a perspective view of a portion of an OBIC including a PIN diode and a HEMT according to the present invention.

従来例と同様、左側は受光素子でPINダイオードを、
右側はHEMTを構成する。
As with the conventional example, the left side is a photodetector with a PIN diode,
The right side constitutes the HEMT.

図の構造を得るためのプロセスの概要はつぎの通りであ
る。
An overview of the process for obtaining the diagram structure is as follows.

(1)p”型領域形成 5I−GaAs基板21上のPINり□゛イオード形成
しようとする領域にZnを拡散、またはベリリウム(B
e)をイオン注入してp゛型領領域22形成する。
(1) Formation of p” type region 5I-Diffusion of Zn or beryllium (B) into the region where the PIN or diode is to be formed on the GaAs substrate 21.
e) is ion-implanted to form a p-type region 22.

(2)結晶成長 分子線エピタキシャル成長(MBE)法、または有機金
属気相成長(MOCVD)法により、アンドープのp−
GaAs層23. n−A10. mGao、 715
層24、n−GaAs層25を順次成長する。
(2) Undoped p-
GaAs layer 23. n-A10. mGao, 715
A layer 24 and an n-GaAs layer 25 are sequentially grown.

各層のキャリア濃度(cm−’)  と厚さ (μm)
は(cm−”)   (μm) p−GaAs Ji23    ・3.50n−A10
.:+Gao、?八S 層2へ:    2xlO18
0−,06n −GaAs  層25        
 :    2xlO”      0.05である。
Carrier concentration (cm-') and thickness (μm) of each layer
is (cm-”) (μm) p-GaAs Ji23 ・3.50n-A10
.. :+Gao,? 8S To layer 2: 2xlO18
0-,06n-GaAs layer 25
: 2xlO" 0.05.

(3)素子間分離 PINダイオードとHEMTのそれぞれの領域にメサを
形成して素子間分離を行う。
(3) Element Isolation A mesa is formed in each region of the PIN diode and HEMT to perform element isolation.

(4)  オーミックコンタクト形成 PINダイオード受光部のn−GaAs層25を除去し
、PINダイオードのp型側電極としてAu/Zn/A
u層26を形成する。
(4) Ohmic contact formation The n-GaAs layer 25 of the PIN diode light receiving part is removed, and Au/Zn/A is used as the p-type side electrode of the PIN diode.
A u layer 26 is formed.

つぎに基板表面にAu/AuGe層27を蒸着し、パタ
ーニングしてPINダイオードのn型側に27A1HE
MTのソース、ドレインに273.27Dを形成し、2
7A 、27S 、27Dを覆ってAu/Ti層28A
 、2BS、28Dを被着して各電極を形成する。
Next, an Au/AuGe layer 27 is deposited on the substrate surface and patterned to form a 27A1HE layer on the n-type side of the PIN diode.
273.27D is formed on the source and drain of MT, and 2
Au/Ti layer 28A covering 7A, 27S, 27D
, 2BS, and 28D to form each electrode.

f5)  Alショットキゲート形成と配線^1529
を用いて、ゲート電極29GとPINダイオードのn型
側電極とHEMTのゲートを結ぶ配線29−を形成する
f5) Al Schottky gate formation and wiring ^1529
is used to form a wiring 29- connecting the gate electrode 29G, the n-type electrode of the PIN diode, and the gate of the HEMT.

p ”−GaAs層23は、HEMTにおいては電子供
給層n−AlGaAs層24より電子が供給されて2次
元電子ガス(2DEC,)jiJが形成される。
In the HEMT, electrons are supplied to the p''-GaAs layer 23 from the electron supply layer n-AlGaAs layer 24 to form a two-dimensional electron gas (2DEC, )jiJ.

このp−GaAs層23はHEMTだけの場合はもっと
薄<0.5μm程度でよいが、0BICの場合は受光部
において0.8μmの波長の光が十分吸収できるように
厚くしている。
This p-GaAs layer 23 may be thinner, about <0.5 μm, in the case of only HEMT, but in the case of 0BIC, it is made thick enough to absorb light with a wavelength of 0.8 μm in the light receiving section.

実施例においては、GaAs系の半導体について説明し
たが、インジウム燐(rnP)系等その他の半導体につ
いても本発明は適用可能である。
In the embodiment, a GaAs-based semiconductor has been described, but the present invention is also applicable to other semiconductors such as indium phosphide (rnP)-based semiconductors.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明による0BICでは、
1回の結晶成長により、FETとPINダイオードを同
時に形成できるため、プロセスが極めて容易に、かつ構
造が簡単になり歩留りを含めた生産性が向上する。
As explained in detail above, in the 0BIC according to the present invention,
Since the FET and the PIN diode can be formed at the same time by one crystal growth, the process is extremely easy and the structure is simple, improving productivity including yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による、PINダイオードとHEMTを
含む0EICの1部所面を示す斜視図、第2図は従来例
による、PINダイオードとMES−FETを含む0B
ICの断面図である。 図において、 21は5l−GaAs基板、 22はp゛型領領域 23はp −−GaAs  層、 24はn −A10. :+Gao、Js層、25はn
−GaAs層、 26はAu/Zn/AU層、 27はAu/AuGe Hl 28はAu/Ti層、 29は^1層
FIG. 1 is a perspective view showing a part of an 0EIC including a PIN diode and a HEMT according to the present invention, and FIG. 2 is a perspective view of an 0B including a PIN diode and a MES-FET according to a conventional example.
It is a sectional view of an IC. In the figure, 21 is a 5l-GaAs substrate, 22 is a p-type region 23 is a p--GaAs layer, and 24 is an n-A10. :+Gao, Js layer, 25 is n
-GaAs layer, 26 is Au/Zn/AU layer, 27 is Au/AuGe Hl, 28 is Au/Ti layer, 29 is ^1 layer

Claims (3)

【特許請求の範囲】[Claims] (1)ヘテロ接合を有する多層半導体結晶に該同一のヘ
テロ接合を用いて、光半導体素子と電子素子を形成して
なる光集積回路装置。
(1) An optical integrated circuit device in which an optical semiconductor element and an electronic element are formed using the same heterojunction in a multilayer semiconductor crystal having a heterojunction.
(2)前記光半導体素子がヘテロ接合PINホトダイオ
ードであることを特徴とする特許請求の範囲第1項記載
の光集積回路装置。
(2) The optical integrated circuit device according to claim 1, wherein the optical semiconductor element is a heterojunction PIN photodiode.
(3)前記電子素子がヘテロ接合電界効果トランジスタ
であることを特徴とする特許請求の範囲第1項記載の光
集積回路装置。
(3) The optical integrated circuit device according to claim 1, wherein the electronic element is a heterojunction field effect transistor.
JP60027823A 1985-02-15 1985-02-15 Optical integrated circuit device Pending JPS61187363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027823A JPS61187363A (en) 1985-02-15 1985-02-15 Optical integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027823A JPS61187363A (en) 1985-02-15 1985-02-15 Optical integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61187363A true JPS61187363A (en) 1986-08-21

Family

ID=12231669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027823A Pending JPS61187363A (en) 1985-02-15 1985-02-15 Optical integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61187363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193276A (en) * 1986-02-20 1987-08-25 Canon Inc Photoelectric conversion device
EP0258530A2 (en) * 1986-09-01 1988-03-09 Licentia Patent-Verwaltungs-GmbH Photoreceiver
JPS63182851A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Optical semiconductor device
JPS63182850A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Light-receiving device for optical semiconductor device
EP0371380A2 (en) * 1988-11-29 1990-06-06 Siemens Aktiengesellschaft Photodiode-FET combination with an enhanced layer structure
EP0392480A2 (en) * 1989-04-12 1990-10-17 Sumitomo Electric Industries, Ltd. Method of manufacturing a semiconductor integrated circuit device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193276A (en) * 1986-02-20 1987-08-25 Canon Inc Photoelectric conversion device
EP0258530A2 (en) * 1986-09-01 1988-03-09 Licentia Patent-Verwaltungs-GmbH Photoreceiver
EP0258530A3 (en) * 1986-09-01 1990-04-25 Licentia Patent-Verwaltungs-GmbH Photoreceiver
JPS63182851A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Optical semiconductor device
JPS63182850A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Light-receiving device for optical semiconductor device
EP0371380A2 (en) * 1988-11-29 1990-06-06 Siemens Aktiengesellschaft Photodiode-FET combination with an enhanced layer structure
EP0392480A2 (en) * 1989-04-12 1990-10-17 Sumitomo Electric Industries, Ltd. Method of manufacturing a semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
EP0233725B1 (en) Opto-Electronic Device and Method for its Manufacture
US4625225A (en) Integrated light detection or generation means and amplifying means
EP0232431A1 (en) Semiconductor device
US5101246A (en) Photo-functional device
US5357127A (en) Pin heterojunction photo diode with undercut gate jifet
US4829346A (en) Field-effect transistor and the same associated with an optical semiconductor device
JPS61187363A (en) Optical integrated circuit device
US5084410A (en) Method of manufacturing semiconductor devices
JPH0327577A (en) Light emitting diode array
JPH042191A (en) Semiconductor laser
JPH02199877A (en) Optical receiver and photoelectric integrated circuit
JPS6334994A (en) Photoelectric integrated circuit device and manufacture thereof
JPH069241B2 (en) Method for manufacturing optoelectronic integrated circuit
JPS6262477B2 (en)
JPS59181060A (en) Semiconductor device
JPS61174775A (en) Semiconductor device
JPH01117069A (en) Manufacture of field-effect transistor
JPS5892259A (en) Composite semiconductor device
JPH06244452A (en) Photoelectronic integrated circuit
JPS61154085A (en) Semiconductor photoreceptor
JPH0644614B2 (en) Method for manufacturing optoelectronic integrated circuit
JPS6324692A (en) Manufacture of multifunction semiconductor device
JPS60211972A (en) Optical integrated circuit
KR960002646B1 (en) The compound semiconductor device and the manufacturing method thereof
JPS6037149A (en) Semiconductor device