JPS61186476A - Photochemical reaction device - Google Patents

Photochemical reaction device

Info

Publication number
JPS61186476A
JPS61186476A JP2513985A JP2513985A JPS61186476A JP S61186476 A JPS61186476 A JP S61186476A JP 2513985 A JP2513985 A JP 2513985A JP 2513985 A JP2513985 A JP 2513985A JP S61186476 A JPS61186476 A JP S61186476A
Authority
JP
Japan
Prior art keywords
gas
chamber
substrate
light source
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2513985A
Other languages
Japanese (ja)
Inventor
Yasuo Tarui
垂井 康夫
Katsumi Aota
青田 克已
Tatsumi Hiramoto
立躬 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Citizen Watch Co Ltd
Original Assignee
Ushio Denki KK
Ushio Inc
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc, Citizen Watch Co Ltd filed Critical Ushio Denki KK
Priority to JP2513985A priority Critical patent/JPS61186476A/en
Publication of JPS61186476A publication Critical patent/JPS61186476A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deposition of the reactant on a plate-shaped body by segmenting the inside of a vessel to a light source chamber and substrate chamber and ejecting a photoreactive inert gas introduced into the light source chamber through the holes of the gas permeable and UV transmittable plate- shaped body into the substrate chamber. CONSTITUTION:The inside of the chamber 1 is segmented to the substrate chamber 1a and the light source 1b by the gas permeable and UV transmittable perforated plate 5. The photoreactive inert gas such as Ar is introduced into the chamber 1b where the gas is used as a discharge gas. The photoreactive gas such as silane gas is introduced into the substrate chamber 1a. The stable photochemical vapor growth is made possible without deposition of amorphous silicon on the plate 5 and without hindering the transmission of UV rays even after the long-term operation according to the above-mentioned method.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光化学反応装置に関するものである。[Detailed description of the invention] (b) Industrial application field The present invention relates to a photochemical reaction device.

(ロ) 発明の背景 最近電子複写機の感光ドラムや太陽電池などに使用され
るアモルファスシリコンの蒸着膜形成方法が研究されて
いる。また他方では酸化硅素、窒化硅素などの絶縁膜や
保護膜の形成にも蒸着方法が利用され、用途によっては
種々の蒸着方法が提案されているが、このなかでも光化
学反応を利用した光化学気相成長方法(光CVD法)は
被膜形成速度が早く、大面積部にも均一な被膜を形成で
きるなどの利点を有し、特に従来のプラズマCVD去に
より形成された膜より物性的に良好であること、および
より低温で成膜できることがわかりており、最近特に注
目を集めてきている。
(b) Background of the Invention Recently, research has been conducted into methods for forming vapor-deposited films of amorphous silicon used in photosensitive drums of electronic copying machines, solar cells, and the like. On the other hand, vapor deposition methods are also used to form insulating films and protective films such as silicon oxide and silicon nitride, and various vapor deposition methods have been proposed depending on the application. The growth method (photo-CVD method) has advantages such as a fast film formation speed and the ability to form a uniform film even on large areas, and in particular has better physical properties than films formed by conventional plasma CVD. It has been known that this method can be deposited at lower temperatures, and has recently attracted particular attention.

(/→ 従来の技術 従来の光化学反応を利用した気相成長もしくは堆積方法
は、紫外線をよく透過する窓を有する反応容器内に基板
を配置し、光反応用ガスを流すとともに、容器外から、
紫外線光源で当核ガスを光化学反応せしめ、その反応生
成物を基板に気相成長せしめるものであって、被膜形成
速度が著しく早く、大面積部にも均一な被膜を形成で・
きるなど大きな利点を有するが、反面、反応生成物が容
器の透過窓にも堆積してしまい、紫外線の透過を大きく
阻害する欠点があることがわかった。
(/→ Prior Art) In a conventional vapor phase growth or deposition method using a photochemical reaction, a substrate is placed in a reaction vessel that has a window that allows ultraviolet rays to pass through, a photoreaction gas is caused to flow, and the process is carried out from outside the vessel.
This method photochemically reacts the nuclear gas with an ultraviolet light source and causes the reaction product to grow on the substrate in a vapor phase.The film formation rate is extremely fast and a uniform film can be formed even on large areas.
However, on the other hand, it was found that the reaction product also accumulates on the transmission window of the container, which significantly inhibits the transmission of ultraviolet rays.

このため従来は、透過窓に特殊な油を塗布したり、アル
ゴンなどの不活性ガスをフローさせたりして透過窓に堆
積することを抑えていた。
For this reason, in the past, deposits on the transparent window were suppressed by coating the transparent window with a special oil or by flowing an inert gas such as argon.

に)発明が解決しようとする問題点 前記の油を塗布する方法は、堆積物を除去するのは容易
になるが、堆積そのものを防止する効果は小さく、また
不活性ガスを70−させる方法は、不活性ガス用のノズ
ルを紫外線が遮断されないように配置して、透過窓に一
様に吹付けるのが困難であり、これらの対策では十分な
(ホ)問題点を解決するための手段 そこで本発明は、簡単な構造であって、紫外線透過窓に
反応生成物が堆積して、紫外線の透過を阻害することの
ない光化学反応装置を提供することを目的とし、その構
成は、容器内をガス通過性でかつ紫外線透過性の板状体
で区画し、一方を紫外線光源が配設された光源室、他方
を被成膜基板が配置される基板室とし、光反応不活性ガ
スを光源室に、光反応ガスを基板室にそれぞれ外部より
導入し、かつこれらのガスを基板室より排出して光源室
より基板室への不活性ガスのガス流を作り、この不活性
ガスの該板状体よりの噴出流により、反応生成物が板状
体の表面に堆積することを防止し、紫外線の透過を減ら
すことなく長時間安定に光化学気相成長を行ううことを
特徴とするものである。
B) Problems to be Solved by the Invention The method of applying oil described above makes it easy to remove deposits, but the effect of preventing the deposit itself is small, and the method of applying inert gas to 70% However, it is difficult to arrange the inert gas nozzle so that the ultraviolet rays are not blocked and spray them uniformly onto the transparent window, and these measures are insufficient. An object of the present invention is to provide a photochemical reaction device that has a simple structure and does not inhibit the transmission of ultraviolet light due to the accumulation of reaction products on the ultraviolet light transmission window. The light source chamber is partitioned by a gas-permeable and ultraviolet-transparent plate-like body, one of which is a light source chamber in which an ultraviolet light source is installed, and the other a substrate chamber in which a substrate to be deposited is placed. First, a photoreactive gas is introduced into each substrate chamber from the outside, and these gases are discharged from the substrate chamber to create a gas flow of inert gas from the light source chamber to the substrate chamber, and the inert gas flows into the plate shape. The jet flow from the body prevents reaction products from depositing on the surface of the plate-like body, and photochemical vapor phase growth can be carried out stably for a long time without reducing the transmission of ultraviolet rays. .

(へ)作用 すなわち、容器はガス通過性かつ紫外線透過性の板状体
で内部において二分された二つの領蛾からなり、光反応
不活性ガスは光源室に導入され、前記ガス通過性かつ紫
外線透過性板状体のガス通過孔より被成膜基板を配置し
た基板室へ流れる。一方光反応ガスは被成膜基板を配置
した基板室へ外部より導入され、全体のガスの流れは光
源室より基板室へ流れ、したがって光反応ガスは光源室
へ流れ込まないばかりか、ガス通過性かつ紫外線透過性
板状体のガス通過孔からの不活性ガスの噴出流により、
反応性物質および反応中間物、最終反応物は、この板状
体からも遠ざけることができるので、光源室ならびに仕
切の板状体への堆積がさけられ、長時間安定に紫外線を
被成膜基板表面へ到達させることができる作用を及ぼす
(f) Function: The container consists of two halves internally divided by a gas-permeable and ultraviolet-transparent plate-like body, and the photoreactive inert gas is introduced into the light source chamber, and the gas-permeable and ultraviolet-ray permeable gas is The gas flows from the gas passage holes of the permeable plate to the substrate chamber in which the substrate to be deposited is placed. On the other hand, the photoreactive gas is introduced from the outside into the substrate chamber where the substrate to be film-formed is placed, and the overall gas flow is from the light source chamber to the substrate chamber. And by the jet flow of inert gas from the gas passage hole of the ultraviolet-transparent plate-like body,
Reactive substances, reaction intermediates, and final reactants can be kept away from this plate, so they can be prevented from accumulating on the light source chamber and the partition plate, and UV light can be stably applied to the substrate to be coated for a long period of time. It exerts an effect that can reach the surface.

(ト)実施例 以下、図面に示す実施例に基いて本発明を具体的に説明
する。
(g) Examples Hereinafter, the present invention will be specifically explained based on examples shown in the drawings.

容器1は、被成膜基板が設置された基板室1aと、紫外
線を発生させる光源室1bとよりなり、基板室1aには
、光反応性ガスの導入孔6と、減圧装置(図示せず)に
接続される排気孔8が設けられ、内部中央には石英ガラ
ス製の基板支持台9が上下動可能に配設されている。そ
して下方にはCaF、、 LiF、 MgF、などの紫
外線をよく透過する結晶板で作られた多孔板5が設けら
れており、ガス通過性かつ紫外線透過性板状体h1bと
基板室1aを区画している。光源室1bには放電用電極
3,3が設置されており、光反応不活性ガスのアルゴン
が、放電用電極6゜3が設置される導入孔2より導入さ
れ、放電ガスとして使用される。特に短波長紫外線を強
くするためには1例えば1チ程度の水素を混入してもよ
い。そして、多孔板5には多数の噴出孔51が設けられ
ており、この噴出孔51より放電用光反応不活性ガスが
上方の基板室1aに噴出するようになっている。この噴
出孔51は、スリット状などでもよく、要は紫外線を透
過する材料からなり、その表面からガスが一様に噴出で
きるものであればよい。この光源室1bにおける紫外線
発生源は、無電極放電でも、通常の低圧水銀ランプなど
の光源を設置してもよく、要は光化学反応に必要な波長
を放出する紫外線源であればよい。
The container 1 consists of a substrate chamber 1a in which a substrate to be film-formed is installed, and a light source chamber 1b that generates ultraviolet rays. ), and a substrate support stand 9 made of quartz glass is arranged in the center of the interior so as to be movable up and down. A porous plate 5 made of a crystal plate such as CaF, LiF, MgF, etc. that is highly transparent to ultraviolet rays is provided below, and partitions the gas permeable and ultraviolet ray transparent plate h1b and the substrate chamber 1a. are doing. Discharge electrodes 3, 3 are installed in the light source chamber 1b, and argon, a photoreactive inert gas, is introduced through the introduction hole 2 in which the discharge electrode 6.3 is installed, and is used as a discharge gas. In particular, in order to strengthen the short-wavelength ultraviolet rays, about 1, for example, about 1 H of hydrogen may be mixed. The porous plate 5 is provided with a large number of ejection holes 51, from which the photoreactive inert gas for discharge is ejected into the upper substrate chamber 1a. This ejection hole 51 may be in the form of a slit, etc., as long as it is made of a material that transmits ultraviolet rays and allows gas to be ejected uniformly from its surface. The ultraviolet light generation source in the light source chamber 1b may be an electrodeless discharge or a light source such as an ordinary low-pressure mercury lamp, and in short, any ultraviolet light source that emits the wavelength necessary for photochemical reaction may be used.

基板支持台9には図示略の温度調節器が取付けられてお
り、これに支持される基板7は、外径が1605wのア
ルミナ板であってぜ約150℃に1熱されている。なお
、この基板支持台9をターンテーブル状に回転可能とし
たり、容器1内を移動可能とし、運搬機構で基板7を出
し入れして、多数の基板7を効率よく処理できるように
することができる。導入孔6は単独もしくはキャリアー
ガスとともに分解蒸層用のシラ/ガに保持された基板7
が配置された領域に対向して配置されている。この導入
孔6.6には温度調節器を設け、カス温度を最適に調整
してやると光化学反応が増進されて好ましい。
A temperature regulator (not shown) is attached to the substrate support stand 9, and the substrate 7 supported by this is an alumina plate having an outer diameter of 1605 W and is heated to approximately 150°C. Note that this substrate support stand 9 can be made rotatable like a turntable or movable within the container 1, and the substrates 7 can be taken in and out using a transport mechanism, so that a large number of substrates 7 can be processed efficiently. . The introduction hole 6 is used alone or together with a carrier gas for a substrate 7 held in a shell/gather for a decomposition vapor layer.
It is placed opposite to the area where is placed. It is preferable to provide a temperature regulator in this introduction hole 6.6 to optimally adjust the temperature of the scum, since this will enhance the photochemical reaction.

しかして上記装置において、容器1内が減圧されて光反
応不活性ガスであるアルゴンが導入孔2より200SC
CM乃至2000SCCMで導入されて、放電用電極6
,6間において放電領域4が形成さn1紫外線が発生さ
れる。そして導入孔6.6エリ、5SCCM乃至100
 SCCMの7ランガスが導入され、多孔板5を透過し
た紫外線が基板7に向は照射され、これにエリシラ/ガ
スが光分解し、アモルファスシリコンが基板7上に堆積
される。例えば放電による消費電力1Kmで放電領域4
を形成せしめると、約53mれた基板7には、160n
m以下の波長の紫外線が10 ””/dの強度で照射さ
れ、1 nrシ秒以上の極めて早い速度で被膜が形成さ
れる。このとき、光反応性ガスの一部分は、下降して多
孔板5の方向に進むが、第3図の矢印で示すように、電
極6.3間の放電ガスとして使用された光反応不活性ガ
スであるアルゴンガスが噴出孔51より噴出しているの
で、光反応性ガスが噴出孔51を通って光源室1bVc
Ili!れ込まないばかりか、噴出孔51より減圧され
た基板室1’aの空間に噴出した不活性ガスは、噴出と
同時に左右に拡赦し、多孔板5の上面にフローするので
、多孔板5に反応生成物が堆積することはない。このよ
うに多孔板5にはアモルファスシリコンが堆積すること
がないので、長時間操業して4くもらず、紫外線の透過
が阻害されない。
In the above apparatus, the pressure inside the container 1 is reduced and argon, which is a photoreactive inert gas, is introduced from the introduction hole 2 at 200 SC.
Introduced from CM to 2000SCCM, discharge electrode 6
, 6, a discharge region 4 is formed and n1 ultraviolet rays are generated. And introduction hole 6.6 area, 5SCCM to 100
SCCM 7 run gas is introduced, and the substrate 7 is irradiated with ultraviolet rays that have passed through the porous plate 5, and the Elysira/gas is photodecomposed and amorphous silicon is deposited on the substrate 7. For example, if the power consumption due to discharge is 1 km, the discharge area is 4.
When formed, the substrate 7, which is about 53m long, has a thickness of 160n.
Ultraviolet rays with a wavelength of less than m are irradiated with an intensity of 10 ''/d, and a film is formed at an extremely fast rate of 1 nr s or more. At this time, a portion of the photoreactive gas descends and travels toward the perforated plate 5, but as shown by the arrow in FIG. Since argon gas is ejected from the ejection hole 51, the photoreactive gas passes through the ejection hole 51 and enters the light source chamber 1bVc.
Ili! Not only is the inert gas not injected into the reduced pressure space of the substrate chamber 1'a from the ejection hole 51, the inert gas expands to the left and right at the same time as the ejection, and flows to the upper surface of the perforated plate 5. No reaction products are deposited. In this way, since amorphous silicon does not accumulate on the porous plate 5, it does not fog up even during long-time operation, and the transmission of ultraviolet rays is not inhibited.

なお、多孔板5として用い念CaF、等の結晶板は、耐
熱性が低いので、本実施例で示した放電により紫外線を
発生させる場合、放電アークの熱で損傷しないようにそ
の配置位置を設計することか必要であるが、発光管に例
えばサファイヤを用いた低圧水銀ランプを使用する場合
は、う/グからの発熱は比較的小さいので、特別な考慮
なして使用することができる。また発光管にサファイヤ
や合成石英を用いたラングを紫外線光源として紫外線放
出放電部4の代りに用いた場合には多孔#L5tfiす
7アイヤ又は合成石英を用いてもよい。
Note that the crystal plate used as the porous plate 5, such as CaF, has low heat resistance, so when generating ultraviolet rays by the discharge shown in this example, the placement position must be designed so that it will not be damaged by the heat of the discharge arc. However, when using a low-pressure mercury lamp using, for example, sapphire for the arc tube, the heat generated from the lamp is relatively small, so it can be used without special consideration. In addition, when a rung using sapphire or synthetic quartz for the arc tube is used as the ultraviolet light source in place of the ultraviolet light emitting discharge section 4, porous #L5tfi 7 aier or synthetic quartz may be used.

(ホ)発明の詳細 な説明したように、本発明は、容器内の光化学反応性ガ
スの給排機構を有する基板室と、光反応不活性ガスの放
電により紫外線を発生する光源室を、ガス通過性かつ紫
外線透過性の板状体で仕切り、光源室に光反応不活性ガ
スを、基板室に光反応性ガスをそれぞれ外部より導入し
、全体として、光源室より基板室へのガス流を作り、板
状体より不活性ガスが噴出するようにした横波であるか
ら、ノズルなどで紫外線が遮断されることなく、多孔板
の表面に不活性ガスが一様にフローするので、光反応生
成物が光源室に入り込まないばかりか、板状体に堆積す
ることもない。さらに光源室と基板室の圧力差を小さく
できるから、通常の光CVDの窓におけるように、1気
圧近くの圧力差に耐える必要がなく、板状体の強度は比
較的小さくすることができ、経済上の効果も大きい。
(E) Detailed Description of the Invention As described above, the present invention provides a substrate chamber having a supply and discharge mechanism for photochemically reactive gas in a container, and a light source chamber that generates ultraviolet rays by discharging a photoreactive inert gas. A light-reactive inert gas is introduced into the light source chamber, a photo-reactive gas is introduced into the substrate chamber from the outside, and the gas flow from the light source chamber to the substrate chamber is controlled as a whole. Since the transverse wave is made so that inert gas is ejected from the plate-shaped body, the inert gas uniformly flows over the surface of the perforated plate without blocking ultraviolet rays by nozzles, etc., so that photoreactions are generated. Not only does the material not enter the light source chamber, but it also does not accumulate on the plate. Furthermore, since the pressure difference between the light source chamber and the substrate chamber can be made small, there is no need to withstand a pressure difference of nearly 1 atm as in a normal photo-CVD window, and the strength of the plate-shaped body can be made relatively small. The economic effects are also significant.

従って本発明によれば、簡単な構造であって、紫外線透
過が阻害されず、長時間にわたり安定に操業9叱な光化
学反応装置を提供することができる。
Therefore, according to the present invention, it is possible to provide a photochemical reaction device that has a simple structure, does not inhibit ultraviolet transmission, and can be operated stably over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の断面図、第2図は多孔板の斜視
図、第6図は不活性ガス噴出状況の説明図である。 1・・−容器 1a・・・基板室 1b・・・光源室2
・・不活性ガス導入孔 3・・・放電用電極4・・・紫
外線放出放電部 5・・・多孔板6・・・光反応性ガス
導入孔 7・・・被成膜基板8・・・排気孔 9・・・
基板支持台 51・・・ガス噴出孔
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a perspective view of a perforated plate, and FIG. 6 is an explanatory diagram of an inert gas jetting situation. 1...-Container 1a... Substrate chamber 1b... Light source chamber 2
... Inert gas introduction hole 3 ... Discharge electrode 4 ... Ultraviolet light emitting discharge section 5 ... Porous plate 6 ... Photoreactive gas introduction hole 7 ... Film-forming substrate 8 ... Exhaust hole 9...
Substrate support stand 51... gas ejection hole

Claims (1)

【特許請求の範囲】[Claims] 容器内をガス通過性でかつ紫外線透過性の板状体で区画
し、一方を紫外線光源が配設された光源室、他方を被成
膜基板が配置される基板室とし、光反応不活性ガスを光
源室に、光反応ガスを基板室にそれぞれ外部より導入し
、かつこれらのガスを基板室より排出して光源室より基
板室への不活性ガスのガス流を作り、この不活性ガスの
該板状体よりの噴出流により、反応生成物が板状体の表
面に堆積することを防止してなることを特徴とする光化
学反応装置。
The inside of the container is partitioned by gas-permeable and ultraviolet-transparent plate-like bodies, one of which is a light source chamber where an ultraviolet light source is installed, and the other is a substrate chamber where a substrate to be deposited is placed, and a photoreactive inert gas is used. A photoreactive gas is introduced into the light source chamber and a photoreactive gas is introduced into the substrate chamber from the outside, and these gases are discharged from the substrate chamber to create a gas flow of inert gas from the light source chamber to the substrate chamber. A photochemical reaction device characterized in that the jet flow from the plate-like body prevents reaction products from being deposited on the surface of the plate-like body.
JP2513985A 1985-02-14 1985-02-14 Photochemical reaction device Pending JPS61186476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2513985A JPS61186476A (en) 1985-02-14 1985-02-14 Photochemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2513985A JPS61186476A (en) 1985-02-14 1985-02-14 Photochemical reaction device

Publications (1)

Publication Number Publication Date
JPS61186476A true JPS61186476A (en) 1986-08-20

Family

ID=12157641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2513985A Pending JPS61186476A (en) 1985-02-14 1985-02-14 Photochemical reaction device

Country Status (1)

Country Link
JP (1) JPS61186476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178570A (en) * 2005-12-27 2007-07-12 Ricoh Co Ltd Photoreceptor and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594434A (en) * 1982-06-30 1984-01-11 Matsushita Electric Ind Co Ltd Vapor phase reactor
JPS59129772A (en) * 1983-01-18 1984-07-26 Ushio Inc Photochemical vapor deposition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594434A (en) * 1982-06-30 1984-01-11 Matsushita Electric Ind Co Ltd Vapor phase reactor
JPS59129772A (en) * 1983-01-18 1984-07-26 Ushio Inc Photochemical vapor deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178570A (en) * 2005-12-27 2007-07-12 Ricoh Co Ltd Photoreceptor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5527417A (en) Photo-assisted CVD apparatus
US5211995A (en) Method of protecting an organic surface by deposition of an inorganic refractory coating thereon
JP2001521293A5 (en)
WO2006068846A3 (en) Dense coating formation by reactive deposition
WO2009077658A1 (en) Method and apparatus for generating plasma
TW200609377A (en) Method for depositing thin film and thin film deposition system having separate jet orifices for spraying purge gas
JPS61186476A (en) Photochemical reaction device
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JP2001214277A (en) Deposited film deposition system and deposited film deposition method
JPH0737818A (en) Method and device for plasma cvd film formation
JPS60209248A (en) Photochemical reaction device
JPS60212220A (en) Photochemical reaction apparatus
JP3224238B2 (en) Thin film forming equipment
JPH0480116B2 (en)
WO2020115980A1 (en) Film-forming apparatus and film-forming method
GB2194966A (en) Deposition of films
JPH08169708A (en) Formation of silicon film and silicon film forming device
JP2723053B2 (en) Method and apparatus for forming thin film
SU901352A1 (en) Coating device
JP3174787B2 (en) Optical CVD equipment
JPH07240379A (en) Method and device for forming thin film
JPS59209643A (en) Photochemical vapor phase deposition device
JPS60212225A (en) Photochemical reaction apparatus
JPH0355839A (en) Thin film forming method and photoreaction equipment
JPH0563551B2 (en)