JPS61186454A - Fe-base sintered alloy having superior corrosion and wear resistances - Google Patents

Fe-base sintered alloy having superior corrosion and wear resistances

Info

Publication number
JPS61186454A
JPS61186454A JP2793885A JP2793885A JPS61186454A JP S61186454 A JPS61186454 A JP S61186454A JP 2793885 A JP2793885 A JP 2793885A JP 2793885 A JP2793885 A JP 2793885A JP S61186454 A JPS61186454 A JP S61186454A
Authority
JP
Japan
Prior art keywords
alloy
content
sintered
sintered alloy
superior corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2793885A
Other languages
Japanese (ja)
Other versions
JPH0354174B2 (en
Inventor
Mutsuhiko Sugano
菅野 睦彦
Shunzo Iwahashi
岩橋 俊三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2793885A priority Critical patent/JPS61186454A/en
Publication of JPS61186454A publication Critical patent/JPS61186454A/en
Publication of JPH0354174B2 publication Critical patent/JPH0354174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a Fe-base sintered alloy having superior corrosion and wear resistances by blending Fe with specified amounts of Cr, Ni, Mn, P, B and C. CONSTITUTION:The composition of alloy powder is composed of, by weight, 16-26% Cr, 8-16% Ni, 1-5% Mn, 0.05-1.2% P, 0.02-1.2% B, 0.05-0.5% C and the balance Fe with inevitable impurities. The alloy powder is press- compacted to form a green compact, and this green compact is sintered in a reducing atmosphere or in vacuum. The sintered compact is is aged at 500-750 deg.C so as to provide prescribed hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた耐食性と耐摩耗性を有するFe基
焼結合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Fe-based sintered alloy having excellent corrosion resistance and wear resistance.

〔従来の技術〕[Conventional technology]

従来、例えば自動車クーラー用コンプレッサーノズルや
工業用カメラのマウント部品などの複雑な形状を有し、
かつすぐれた耐食性と耐摩耗性が要求される部品の製造
には、被剛性のあまり良好でないステンレス鋼溶製材か
らの削り出し製造よりコスト面で有利な各種の焼結ステ
ンレス鋼が用いられている。
Traditionally, products with complex shapes, such as compressor nozzles for automobile coolers and mount parts for industrial cameras,
Various types of sintered stainless steel are used to manufacture parts that require excellent corrosion and wear resistance, as they are more cost-effective than machined stainless steel materials that are less rigid. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの従来焼結ステンレス鋼は、比較的すぐ
れた耐食性をもつものの、一般の焼結部品がそうである
ように、溶製材に比して密度が低いことに原因して、ビ
ッカース硬さで200以上の高硬度を得ることは困難で
あり、耐食性に合せて耐摩耗性が要求されるこれらの用
途においては、比較的短時間で使用寿命に至るものであ
った。
However, although these conventional sintered stainless steels have relatively good corrosion resistance, like general sintered parts, their Vickers hardness is lower due to their lower density than molten materials. It is difficult to obtain a high hardness of 200 or more, and in these applications where wear resistance as well as corrosion resistance is required, the service life has been reached in a relatively short period of time.

一方、上記従来焼結ステンレス鋼の硬さを高めるために
、その炭素含有量を多くする試みもなされたが、この場
合には耐食性の劣化を招き、上記の要求を十分満足する
特性を具備させることができないものである。
On the other hand, attempts have been made to increase the carbon content in order to increase the hardness of the conventional sintered stainless steel, but this leads to a deterioration in corrosion resistance. It is something that cannot be done.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、耐食性
および耐摩耗性を具備した材料を開発すべく研究を行な
った結果、重量%で(以下%は重置%を示す)、 Cr:16〜26%。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material with corrosion resistance and wear resistance, and as a result, in weight % (hereinafter % indicates weighted %), Cr: 16-26%.

Ni:8〜16%。Ni: 8-16%.

Mn:1〜5%。Mn: 1-5%.

P:0.05〜1,2%。P: 0.05-1.2%.

3:0.02〜1.2%。3: 0.02-1.2%.

C:0.05〜0.5%。C: 0.05-0.5%.

を含有し、残りがFeと不可避不純物からなる組成を有
するFe基焼結合金は、密度が高く、かつ硬さも高く、
時効処理を行なえばさらに高硬度となり、したがってす
ぐれた耐摩耗性を有し、さらにすぐれた耐食性も兼ね備
えるという知見を得たのである。
The Fe-based sintered alloy, which has a composition of
They discovered that aging treatment results in even higher hardness, which results in superior wear resistance and even better corrosion resistance.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成を上記の通りに限定した理由を説明
する。
This invention was made based on the above knowledge, and the reason why the component composition was limited as described above will be explained below.

(a)Or Cr成分には素地に固溶して合金の耐食性を高めると共
に、MnおよびPなどの成分と結合して硬質析出物を形
成し、もって合金の硬さを高める作用があるが、その含
有量が16%未満では前記作用に所望の効果が得られず
、一方26%を越えて含有させると合金の靭性が低下す
るようになることから、その含有量を16〜26%と定
めた。
(a) Or The Cr component has the effect of increasing the corrosion resistance of the alloy by forming a solid solution in the base material, and also by combining with components such as Mn and P to form hard precipitates, thereby increasing the hardness of the alloy. If the content is less than 16%, the desired effect cannot be obtained, while if the content exceeds 26%, the toughness of the alloy will decrease. Therefore, the content is set at 16 to 26%. Ta.

(b)Ni Ni成分には、素地に固溶して、素地のオーステナイト
相を安定化させ、かつ溶体化処理時に溶質成分を固溶し
やすくし、もって時効硬化能を向上せしめるほか、耐食
性を向上させる作用があるが、その含有量が8%未満で
は前記作用に所望の効果が得られず、一方16%を越え
て含有させても前記作用により一層の向上効果が得られ
ないばかりでなく、むしろ切削加工などの加工性が劣化
するようになることから、その含有量を8〜16%と定
めた。
(b) Ni The Ni component is dissolved in the base material to stabilize the austenite phase of the base material, and facilitates the solid solution of solute components during solution treatment, thereby improving age hardening ability and improving corrosion resistance. However, if the content is less than 8%, the desired effect will not be obtained on the said action, while if the content exceeds 16%, not only will the said action not be further improved. However, the content was determined to be 8 to 16% because the processability of cutting and the like deteriorates.

(C)Mn lyln成分には、Niとの共存においてオーステナイ
トの安定化、時効硬化能の向上、並びに耐食性の向上を
はかる作用があるほか、加工歪による加工硬化を促進し
て耐摩耗性を向上せしめる作用があるが、その含有量が
1%未満では前記作用に所望の向上効果が得られず、一
方5%を越えて含有させると、Mn成分は酸化し易い成
分であるため、焼結時に酸化され、合金中の酸素含有量
が増加し、靭性が低下するようになることから、その含
有量を1〜5%と定めた。
(C) The Mn lyln component, in coexistence with Ni, has the effect of stabilizing austenite, improving age hardening ability, and improving corrosion resistance, as well as promoting work hardening due to work strain and improving wear resistance. However, if the content is less than 1%, the desired effect of improving the above effect cannot be obtained, while if the content exceeds 5%, the Mn component is a component that easily oxidizes, so it is Since it is oxidized, the oxygen content in the alloy increases, and the toughness decreases, its content is set at 1 to 5%.

(d) PおよびB これらの成分は、ともにFeと共晶を形成し、かつ共存
した状態でのみ、相開効果によって合金を緻密化し、こ
れを高密度化するほか、時効処理時にCrおよびFeな
どと硬質析出物を形成して、合金を高硬度化し、もって
耐摩耗性を向上せしめる作用をもつが、その含有けが、
それぞれP:0、05%未満およびB:0.02%未満
では前記作用に所望の効果が得られず、一方それぞれ1
.2%を越えて含有させると硬質析出物の量が多くなり
すぎて靭性が低下するようになることから、その含有量
を、P:0.05〜1.2%、3:0.02〜1.2%
とそれぞれ定めた。
(d) P and B These components both form a eutectic with Fe, and only when they coexist do they densify the alloy by the phase opening effect and make it denser. It has the effect of forming hard precipitates and increasing the hardness of the alloy, thereby improving wear resistance.
If P: less than 0,05% and B: less than 0.02%, the desired effect cannot be obtained;
.. If the content exceeds 2%, the amount of hard precipitates becomes too large and the toughness decreases, so the content is adjusted to P: 0.05-1.2%, 3: 0.02- 1.2%
determined respectively.

(e) C C成分には、酸化し易い合金成分であるMnによる酸化
を抑制するほか、炭化物を形成して合金を高硬度化し、
耐摩耗性を向上させる作用があるが、その含有量が0.
05%未満では前記作用に所望の効果が得られず、一方
0.5%を越えて含有させると、特にCr炭化物の形成
量が増し、これとは逆に素地に固溶するCr潰が減少し
て合金の耐食性が低下するようになることから、その含
有量を0.05〜0.5%と定めた。
(e) C The C component not only suppresses oxidation due to Mn, which is an easily oxidized alloy component, but also forms carbides to increase the hardness of the alloy.
It has the effect of improving wear resistance, but its content is 0.
If the content is less than 0.5%, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.5%, the amount of Cr carbide formed increases, and conversely, the amount of Cr dissolved in the matrix decreases. Since this reduces the corrosion resistance of the alloy, its content is set at 0.05 to 0.5%.

なお、この発明の合金は、原料粉末として、各成分の要
素粉末を用いても、あるいは酸化し易いCr 、 Mn
 、およびPなどの成分を、例えばl”eと合金化した
合金粉末を用いても、さらに所定の最終成分組成を有す
る合金粉末を用いてもよく、これらの原料粉末を所定の
配合組成に配合し、通常の条件で混合した後、圧粉体に
プレス成形し、ついで酸化防止のため低露点の還元性雰
囲気中あるいは真空中で焼結し、必要に応じて焼結後、
非酸化性雰囲気中、約1050〜1150℃の温度に加
熱後焼入れの溶体化処理を行ない、さらに引続いて所定
の硬さとするために約550〜750℃の温度で時効処
理を施すことによって製造することができる。
The alloy of the present invention can be produced by using elemental powders of each component as the raw material powder, or by using Cr, Mn, which are easily oxidized.
, and P, for example, may be used, or an alloy powder having a predetermined final component composition may be used, and these raw material powders may be blended into a predetermined composition. After mixing under normal conditions, it is press-formed into a compact, and then sintered in a reducing atmosphere with a low dew point or in a vacuum to prevent oxidation, and if necessary, after sintering,
Manufactured by heating in a non-oxidizing atmosphere to a temperature of about 1050 to 1150°C, followed by solution treatment of quenching, and then aging treatment at a temperature of about 550 to 750°C to obtain the desired hardness. can do.

〔実施例〕〔Example〕

つぎに、この発明のFe基焼結合金を実施例により具体
的に説明する。
Next, the Fe-based sintered alloy of the present invention will be specifically explained using Examples.

原料粉末として、−100メツシユの還元Fe粉末、=
100メツシュのl:e−18%Or −10%N1−
3%1yjn−0,1%Cからなる組成をもったFe合
金アトマイズ粉末、−200メツシユのカーボニルNi
粉末、−100メツシユのFe−27%0r−0,3%
Cからなる組成をもったFe合金アトマイズ粉末、−1
00メツシユのFe−Mn合金(Mn ニア5%含有)
アトマイズ粉末、−100メツシユのFe−P合金(P
:23%含有)アトマイズ粉末、−1ooメツシユのF
e−8合金(B:20%含有)アトマイズ粉末、−10
0メツシユの粉砕Cr粉末、および−200メツシユの
黒鉛粉末を用意し、これら原料粉末を所定の配合組成に
配合し、これに潤滑剤としてステアリン酸亜鉛を配合粉
末に対して1%の割合で添加して混合し、この混合粉末
より5.5jan/cdの圧力で圧粉体にプレス成形し
、ついでこの圧粉体を、1気圧の分解アンモニアガス雰
囲気中で温度:550℃に加熱して前記潤滑剤を除去し
た後、0.05〜0.15tOrrの真空中、温度=1
140〜1250℃の範囲内の所定温度に、1〜2時間
の範囲内の所定時間保持して焼結し、引続いて焼結後の
冷却時に温度:1130℃に30分保持してから冷却の
溶体化処理を施し、さらに1気圧の窒素雰囲気中、57
0〜710℃の範囲内の所定温度に 1,5〜5時間の
範囲内の所定時間保持の条件で時効処理を施すことによ
って、それぞれ第1表に示される成分組成をもった本発
明Fe基焼結合金1〜10と従来焼結ステンレス鋼1.
2をそれぞれ製造した。
-100 mesh reduced Fe powder as raw material powder, =
100 mesh l: e-18%Or -10%N1-
Fe alloy atomized powder with a composition consisting of 3%1yjn-0,1%C, -200 mesh carbonyl Ni
Powder, -100 mesh Fe-27%0r-0,3%
Fe alloy atomized powder with a composition consisting of C, -1
00 mesh Fe-Mn alloy (containing 5% Mn near)
Atomized powder, -100 mesh Fe-P alloy (P
:23% content) atomized powder, -1oo mesh F
e-8 alloy (B: 20% content) atomized powder, -10
Prepare 0 mesh pulverized Cr powder and -200 mesh graphite powder, blend these raw powders into a predetermined composition, and add zinc stearate as a lubricant at a ratio of 1% to the blended powder. This mixed powder was press-molded into a green compact at a pressure of 5.5 jan/cd, and then this green compact was heated to a temperature of 550°C in a decomposed ammonia gas atmosphere of 1 atm. After removing the lubricant, in a vacuum of 0.05-0.15 tOrr, temperature = 1
Sintering is performed by holding at a predetermined temperature within the range of 140 to 1250°C for a predetermined time within the range of 1 to 2 hours, and then during cooling after sintering, the temperature is maintained at 1130°C for 30 minutes and then cooled. solution treatment, and then in a nitrogen atmosphere of 1 atm.
By performing aging treatment at a predetermined temperature in the range of 0 to 710°C for a predetermined time in the range of 5 to 5 hours, the Fe base of the present invention having the component composition shown in Table 1 is obtained. Sintered alloys 1 to 10 and conventional sintered stainless steel 1.
2 were produced respectively.

ついで、この結果得られた本発明FO基焼結合金1〜1
0および従来焼結ステンレス鋼1,2について、相対密
度、ビッカース硬さく荷重:5Kg>。
Next, the resulting FO-based sintered alloys 1-1 of the present invention
0 and conventional sintered stainless steels 1 and 2, relative density, Vickers hardness load: 5Kg>.

引張り強さ、および伸びを測定し、さらに塩水噴霧試験
を行ない、24時間後の発錆状況を観察した。これらの
結果を第1表に示した。
Tensile strength and elongation were measured, and a salt spray test was also conducted to observe the rusting state after 24 hours. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から明らかなように、本発明Fe
基焼結合金1〜10は、いずれもすぐれた耐食性を有し
、かつ高密度、高硬度、および高強度を有するので、耐
摩耗性のすぐれたものであるのに対して、従来焼結ステ
ンレス鋼1は耐食性にすぐれているものの耐摩耗性に劣
るものであり、また耐摩耗性を高めるためにC含有量を
増やした従来焼結ステンレス鋼2は、良好な耐摩耗性を
もつものの耐食性の低いものであった。
As is clear from the results shown in Table 1, the present invention Fe
All of the base sintered alloys 1 to 10 have excellent corrosion resistance, high density, high hardness, and high strength, so they have excellent wear resistance, whereas conventional sintered stainless steel Steel 1 has excellent corrosion resistance but poor wear resistance, and conventional sintered stainless steel 2, which has increased C content to improve wear resistance, has good wear resistance but poor corrosion resistance. It was low.

上述のように、この発明のFe基焼結合金は、すぐれた
耐食性と耐摩耗性を具備しているので、これらの特性が
要求される分野での使用は勿論のこと、非磁性でもある
ので、磁性がないことが要求される分野での使用におい
てもすぐれた性能を長期に亘って安定的に発揮するので
ある。
As mentioned above, the Fe-based sintered alloy of the present invention has excellent corrosion resistance and wear resistance, so it can be used in fields that require these properties, and it is also non-magnetic. Even when used in fields where non-magnetism is required, it stably exhibits excellent performance over a long period of time.

Claims (1)

【特許請求の範囲】 Cr:16〜26%、 Ni:8〜16%、 Mn:1〜5%、 P:0.05〜1.2%、 B:0.02〜1.2%、 C:0.05〜0.5%、 を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)を有することを特徴とする耐食性および耐摩
耗性のすぐれたFe基焼結合金。
[Claims] Cr: 16-26%, Ni: 8-16%, Mn: 1-5%, P: 0.05-1.2%, B: 0.02-1.2%, C An Fe-based sintered alloy having excellent corrosion resistance and wear resistance, characterized by having a composition (weight %) of: 0.05 to 0.5%, and the remainder consisting of Fe and unavoidable impurities.
JP2793885A 1985-02-15 1985-02-15 Fe-base sintered alloy having superior corrosion and wear resistances Granted JPS61186454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2793885A JPS61186454A (en) 1985-02-15 1985-02-15 Fe-base sintered alloy having superior corrosion and wear resistances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2793885A JPS61186454A (en) 1985-02-15 1985-02-15 Fe-base sintered alloy having superior corrosion and wear resistances

Publications (2)

Publication Number Publication Date
JPS61186454A true JPS61186454A (en) 1986-08-20
JPH0354174B2 JPH0354174B2 (en) 1991-08-19

Family

ID=12234838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2793885A Granted JPS61186454A (en) 1985-02-15 1985-02-15 Fe-base sintered alloy having superior corrosion and wear resistances

Country Status (1)

Country Link
JP (1) JPS61186454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095661A3 (en) * 2004-04-02 2006-08-24 Atomising Systems Ltd Making sintered, iron-based alloy parts by using boron-containing master alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095661A3 (en) * 2004-04-02 2006-08-24 Atomising Systems Ltd Making sintered, iron-based alloy parts by using boron-containing master alloys

Also Published As

Publication number Publication date
JPH0354174B2 (en) 1991-08-19

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP2002501122A (en) Steel powder for preparation of sintered products
JPH03120336A (en) Manufacture of synchronizer hub
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
CN111560564B (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
US5605559A (en) Alloy steel powders, sintered bodies and method
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP2002356704A (en) Alloy powder for forming wear-resistant hard phase and method for producing wear-resistant sintered alloy using the same
US20050129563A1 (en) Stainless steel powder for high temperature applications
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
EP0136169B1 (en) An alloy steel powder for high strength sintered parts
EP0274542B1 (en) Alloy steel powder for powder metallurgy
JP3765633B2 (en) High density sintered alloy material and manufacturing method thereof
JPH0517839A (en) Bearing alloy for high temperature use and its production
JPS61186454A (en) Fe-base sintered alloy having superior corrosion and wear resistances
JP2000064001A (en) Powder mixture for high strength sintered parts
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
US4840665A (en) Wear-resistant sintered iron-based alloy and process for producing the same
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH0459362B2 (en)
JPH0114985B2 (en)
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JPH07103442B2 (en) Manufacturing method of high strength sintered alloy steel