JPS61186208A - Decomposition of hydrogen perioxide - Google Patents

Decomposition of hydrogen perioxide

Info

Publication number
JPS61186208A
JPS61186208A JP60023559A JP2355985A JPS61186208A JP S61186208 A JPS61186208 A JP S61186208A JP 60023559 A JP60023559 A JP 60023559A JP 2355985 A JP2355985 A JP 2355985A JP S61186208 A JPS61186208 A JP S61186208A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
hydrogen peroxide
decomposition
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60023559A
Other languages
Japanese (ja)
Other versions
JPH0364444B2 (en
Inventor
Hiroshi Noguchi
宏史 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoko Co Ltd
Show Pla Co Ltd
Original Assignee
Shoko Co Ltd
Shoko Tsusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoko Co Ltd, Shoko Tsusho KK filed Critical Shoko Co Ltd
Priority to JP60023559A priority Critical patent/JPS61186208A/en
Publication of JPS61186208A publication Critical patent/JPS61186208A/en
Publication of JPH0364444B2 publication Critical patent/JPH0364444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:A substance which is capable of decomposing hydrogen peroxide and of binding oxygen with hydrogen is used as a catalyst and hydrogen is fed and brought into contact with hydrogen peroxide in the presence of the substance to effect continuous decomposition of hydrogen peroxide with a high level of catalyst activity constantly maintained. CONSTITUTION:In the process where hydrogen peroxide is decomposed by bringing a hydrogen perioxide aqueous solution into contact with a catalyst, a substance which is capable of decomposing hydrogen peroxide and of binding oxygen with hydrogen is used as a catalyst and hydrogen is fed to the catalyst. Hydrogen may be fed, only when the catalyst lowers its activity, however, the feed may be constantly continued, while the decomposition is effected. The selection appropriately depends on reaction conditions. Hydrogen is brought into contact with the catalyst as such or in a diluted mixture with an inert gas.

Description

【発明の詳細な説明】 (発明の目的) 本発明は過酸化水素の分解方法に関し、とくに触媒を用
い、触媒活性を常に高度に維持して、過酸化水素を連続
的に分解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objects of the Invention) The present invention relates to a method for decomposing hydrogen peroxide, and more particularly to a method for continuously decomposing hydrogen peroxide by using a catalyst and always maintaining a high level of catalytic activity.

(従来の技術) 過酸化水素は分解後、無害な酸素と水を生成するので、
その酸化力が、化学、医薬、製紙、食品等に広く利用さ
れている。
(Prior art) After hydrogen peroxide decomposes, it produces harmless oxygen and water.
Its oxidizing power is widely used in chemistry, medicine, paper manufacturing, food, etc.

この過酸化水素の分解は通常触媒を利用しているが、こ
の触媒としては白金、パラジウム等の金属、マンガン、
コバルト、銅、銀等の酸化物がひろく知られている。
This decomposition of hydrogen peroxide usually uses catalysts, which include metals such as platinum and palladium, manganese,
Oxides of cobalt, copper, silver, etc. are widely known.

これら触媒を用いて過酸化水素の分解を実施した場合、
時間の経過とともに次第に触媒の活性が低下する。した
がって一定の値まで活性が低下した場合、分解反応を停
止し、触媒を新規のものと交換し、活性の低下した触媒
は適宜の手段で賦活し再使用している。このことは実操
業の場合、稼動率の低下をもたらし、更に触媒の賦活作
業等の工程を必要とする。
When hydrogen peroxide is decomposed using these catalysts,
The activity of the catalyst gradually decreases over time. Therefore, when the activity decreases to a certain value, the decomposition reaction is stopped and the catalyst is replaced with a new one, and the catalyst whose activity has decreased is reactivated by appropriate means and reused. In the case of actual operation, this results in a decrease in the operating rate and further requires steps such as activation of the catalyst.

(発明が解決しようとする問題点) 本発明者は触媒の交換を長期にわたり必要とせず、更に
触媒の過酸化水素の分解能を低下せず連続的に過酸化水
素分解反応を続ける方法を開発すべく研究の結果本発明
を完成した。
(Problems to be Solved by the Invention) The present inventor has developed a method that does not require replacing the catalyst over a long period of time, and furthermore, continues the hydrogen peroxide decomposition reaction continuously without reducing the hydrogen peroxide decomposition ability of the catalyst. As a result of extensive research, we have completed the present invention.

(問題点を解消するための手段および作用)即ち、本発
明は、 過酸化水素水を触媒に接触させて、過酸化水素を分解す
る方法において、 触媒として過酸化水素分解能と、酸素−水素結合能とを
有する物質を用い、該触媒に水素を供給する方法を含ん
でいることを特徴とする過酸化水素の分解方法に関する
。水素を触媒に供給する方法は、例えば水素ガスを又は
その稀釈ガスを適宜の流速で、該触媒に接触させる方法
や、さらには触媒として前記の性質の外に、電気良導体
としての性質を有するものを用い、その触媒を陰極とし
て過酸化水素水を電解し、陰極(触媒)に水素を発生さ
せることにょシ、触媒に水素を供給する方法等がある。
(Means and effects for solving the problems) That is, the present invention provides a method for decomposing hydrogen peroxide by contacting a hydrogen peroxide solution with a catalyst, which has hydrogen peroxide decomposition ability as a catalyst and an oxygen-hydrogen bond. The present invention relates to a method for decomposing hydrogen peroxide, which includes a method for supplying hydrogen to the catalyst using a substance having the above-mentioned ability. Hydrogen can be supplied to the catalyst by, for example, bringing hydrogen gas or its diluted gas into contact with the catalyst at an appropriate flow rate, or using a catalyst that has the properties of a good electrical conductor in addition to the above-mentioned properties. There are methods of electrolyzing hydrogen peroxide using the catalyst as a cathode to generate hydrogen at the cathode (catalyst), and supplying hydrogen to the catalyst.

本発明が適用できる触媒としては、過酸化水素分解能と
酸素−水素結合能を有するものに白金及びバラジュウム
等が、又更に電気良導体としての性質を有するものとし
ては白金やバラジュウムをめっきしたものや、多孔質金
視ペレットや活性炭にこれらの金属を担持した触媒等で
ある。
Catalysts to which the present invention can be applied include catalysts that have hydrogen peroxide decomposition ability and oxygen-hydrogen bonding ability, such as platinum and baradium, and catalysts that have properties as good electrical conductors, such as those plated with platinum and baradium, These include catalysts in which these metals are supported on porous metal pellets and activated carbon.

過酸化水素の分解は H2O2→H20−1−702で
示される反応が進み、酸素が発生する。そして触媒の活
性が低下した場合に、触媒に水素ガスを供給すると、触
媒の活性は復原する。なお酸素−水素結合能が実質的に
々い触媒の場合は、水素ガスを触媒に供給しても触媒活
性は復原し々い。
In the decomposition of hydrogen peroxide, the reaction shown by H2O2→H20-1-702 progresses, and oxygen is generated. When the activity of the catalyst decreases, supplying hydrogen gas to the catalyst restores the activity of the catalyst. In the case of a catalyst having a substantially high oxygen-hydrogen bonding ability, the catalytic activity is barely restored even if hydrogen gas is supplied to the catalyst.

以上の現象よp本発明者は、過酸化水素分解触媒の活性
の低下は、過酸化水素の分解により発生せる酸素が、触
媒の表面に付着し、触媒表面を覆うためであシ、活性の
復原は水素が、触媒のもつ水素−酸素結合能により触媒
表面を覆=5− っている酸素と反応するため、触媒表面より酸素が除去
されたものであることを確認した。
Based on the above phenomenon, the present inventor believes that the decrease in the activity of the hydrogen peroxide decomposition catalyst is due to the fact that oxygen generated by the decomposition of hydrogen peroxide adheres to the surface of the catalyst and covers the catalyst surface. In the restoration, it was confirmed that oxygen was removed from the catalyst surface because hydrogen reacts with the oxygen covering the catalyst surface due to the hydrogen-oxygen bonding ability of the catalyst.

次に具体的に本発明方法の実施について説明する。本発
明は水素を単に触媒に供給するだけでよいが、その実施
に肖っては、例えば、触媒を充てんした過酸化水素水を
流通させる容器に、水素を連続的に、又は間欠的に供給
すればよい。
Next, implementation of the method of the present invention will be specifically explained. In the present invention, it is sufficient to simply supply hydrogen to the catalyst, but in its implementation, for example, hydrogen may be continuously or intermittently supplied to a container filled with a catalyst and flowing hydrogen peroxide solution. do it.

具体的には水素ガスのみ、又は不活性ガスで稀釈して、
過酸化水素水の流量100容積に対して、水素ガス1〜
1000容積を触媒に供給することにより目的を達しう
る。そして実用的に好ましいのは10容積以上である。
Specifically, hydrogen gas alone or diluted with inert gas,
Hydrogen gas 1~100 volumes of hydrogen peroxide solution
The objective can be achieved by supplying 1000 volumes to the catalyst. Practically preferred volume is 10 volumes or more.

なお不活性ガスは工業的には窒素ガスが好ましいが、他
の不活性ガスでもよい。
The inert gas is industrially preferably nitrogen gas, but other inert gases may be used.

さらに触媒として過酸化水素分解能、酸素−水素結合能
の外に更に電導性を有するものを用い、過酸化水素水を
電解して水素を発生させて、この水素を触媒に接触させ
る方法もある。
Furthermore, there is also a method of using a catalyst that has conductivity in addition to hydrogen peroxide decomposition ability and oxygen-hydrogen bonding ability, electrolyzing hydrogen peroxide water to generate hydrogen, and bringing this hydrogen into contact with the catalyst.

この場合、触媒自体を陰極とし、触媒光てん容器の外部
に陽極をもうけ、陰極室と陽極の間を電気絶縁性でかつ
液のみが通過し、ガスは通過しない多孔質材料で隔てて
おくことが必要である。前記の多孔質材料は密であると
とが好ましく、具体的にはアルミナ、コージライト等の
セラミックスや各種高分子膜が望ましく、またそれらを
組合せてもよい。陽極材料は過酸化水素水に接触するの
で、貴金属をめっきした金属やニッケル等が望ましい。
In this case, the catalyst itself should be used as a cathode, an anode should be provided outside the catalytic converter container, and the cathode chamber and anode should be separated by a porous material that is electrically insulating and allows only liquid to pass through, but not gas. is necessary. It is preferable that the porous material is dense, and specifically ceramics such as alumina and cordierite, and various polymer membranes are preferable, and they may be combined. Since the anode material comes into contact with the hydrogen peroxide solution, metals plated with noble metals, nickel, etc. are desirable.

触媒に対する水素の供給は触媒活性の低下したときにの
み行なってもよいが、更に過酸化水素の分解中、常時行
ってもよい。この場合触媒活性は常にはソ一定に保持さ
れる。水素の供給を連続的に行なうか、又は触媒活性の
低下した時にのみ行なうかは、反応条件等にょシ適宜決
定すればよい。
Hydrogen may be supplied to the catalyst only when the catalyst activity decreases, but it may also be supplied constantly during the decomposition of hydrogen peroxide. In this case, the catalytic activity is always kept constant. Whether hydrogen is supplied continuously or only when the catalyst activity decreases may be appropriately determined depending on the reaction conditions and the like.

又触媒は単独使用してもよいが、デクソンやマクマホン
等の市販の金楕充てん剤にめっきして使用してもよい。
The catalyst may be used alone, or may be plated on a commercially available gold filler such as Dexon or McMahon.

次に実施例、比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例1 −7= 第1図に示す装置を用い、本発明を実施した。Example 1 −7= The present invention was carried out using the apparatus shown in FIG.

図において/は過酸化水素水タンク、コはポンプ、3は
不活性ガスボンベ、グは水素ガスボンベ、’+ + ’
tは両ガスボンベのガス流量調節器、6はシリコン栓、
7はガラスウール、gは過酸化水素分解用の長さ3[]
001m5内径20龍のガラス管、9はガラス管gに充
てんされた触媒である白金めつきされた5mmのSUS
デクソンパッキングである。
In the figure, / is hydrogen peroxide tank, C is pump, 3 is inert gas cylinder, G is hydrogen gas cylinder, '+ + '
t is a gas flow regulator for both gas cylinders, 6 is a silicon plug,
7 is glass wool, g is length 3 for decomposing hydrogen peroxide
001m5 glass tube with inner diameter of 20mm, 9 is a 5mm SUS plated with platinum which is the catalyst filled in the glass tube g
This is Dexon packing.

過酸化水素水は過酸化水素水タンク/内に収容されてお
り、ボンプユによシ管1.を経てガラス管内に送りこ甘
れる。一方水素ボンベクよシ、調節器左2で流量を調整
しつ\水素を管1.の過酸化水素水に供給混合する。水
素は過酸化水素水と共にガラス管g内に送シこ着れ、触
媒9と接触する。過酸化水素水は触媒tを通過して含ま
れる過酸化水素は分解し、分解液はガラス管上部よシ管
t2をへて排出される。
The hydrogen peroxide solution is stored in a hydrogen peroxide solution tank/inside the hydrogen peroxide solution tank. After that, it is sent into a glass tube. On the other hand, remove the hydrogen cylinder, adjust the flow rate with regulator 2 on the left, and pump hydrogen into pipe 1. of hydrogen peroxide and mix. Hydrogen is sent into the glass tube g together with the hydrogen peroxide solution and comes into contact with the catalyst 9. The hydrogen peroxide solution passes through the catalyst t, the hydrogen peroxide contained therein is decomposed, and the decomposed liquid is discharged from the top of the glass tube through the pipe t2.

本実施例では、壕ず過酸化水素濃度6.oppの過酸化
水素水を106 ml1分でガラス管中を通過させて触
媒の過酸化水素分解能を劣化させた。この場合の過酸化
水素水のガラス管内滞留時間は約50秒である。次に水
素ガスボンベダの流量調節器を操作して、304分で水
素ガスを前記過酸化水素水中に流入させ、並流でガラス
管中に流入、さらに管よυ流出せしめた。流入開始1時
間后に過酸化水素分解率 を求めた。更に水素流量は10M/分、200 吟例、
300 m//9と変化させ、同様に各流量における過
酸化水素分解率を求めた。水素流量と分解率との関係を
第2図の線コ/によシ示す。図において横軸は水素量、
縦軸は過酸化水素の分解率を示す。
In this example, the hydrogen peroxide concentration in the trench was 6. 106 ml of opp hydrogen peroxide solution was passed through the glass tube for 1 minute to degrade the hydrogen peroxide decomposition ability of the catalyst. In this case, the residence time of the hydrogen peroxide solution in the glass tube is about 50 seconds. Next, by operating the flow rate regulator of the hydrogen gas cylinder, hydrogen gas was caused to flow into the hydrogen peroxide solution in 304 minutes, flowed into the glass tube in parallel flow, and then flowed out of the tube. One hour after the start of the inflow, the hydrogen peroxide decomposition rate was determined. Furthermore, the hydrogen flow rate is 10M/min, 200 min.
300 m//9, and the hydrogen peroxide decomposition rate at each flow rate was similarly determined. The relationship between the hydrogen flow rate and the decomposition rate is shown by the line C/C in FIG. In the figure, the horizontal axis is the amount of hydrogen,
The vertical axis shows the decomposition rate of hydrogen peroxide.

実施例2 第1図に示す装置に触媒を充てんして本実施例を行なっ
た。まず過酸化水素濃度6.5pInの過酸化水素水を
106m//分でカラス管を通過させ、ついで窒素ガス
のガス流量調整器を操作して窒=9− 素ガスを207.5d/分の割合で過酸化水素水中に混
入させた。触媒の劣化層水素ガスのガス流量調節器を操
作して水素ガスを7.24分の割合で過酸化水素流に流
入させ、窒素ガスとの混合ガスとし、過酸化水素ガスと
並流でガラス管に流入、流出せしめた。流入開始よシ1
1時間后、過酸化水素分解率を求めた。ついで窒素流は
そのま\とし、水素流量を26.3m/7分、55.1
+++//9と変化させ、同様に各流量での過酸化水素
分解率を求めた。混合ガス中の水素ガスの容積チと分解
率との関係を第6図の線3/に示す。
Example 2 This example was carried out by filling the apparatus shown in FIG. 1 with a catalyst. First, a hydrogen peroxide solution with a hydrogen peroxide concentration of 6.5 pIn is passed through the glass tube at a rate of 106 m/min, and then the nitrogen gas is passed through the glass tube at a rate of 207.5 d/min by operating the nitrogen gas flow regulator. It was mixed into hydrogen peroxide solution at the same ratio. Degraded layer of the catalyst Operate the gas flow regulator for hydrogen gas to flow hydrogen gas into the hydrogen peroxide stream at a rate of 7.24 minutes, form a mixed gas with nitrogen gas, and mix it with the hydrogen peroxide gas in parallel flow with the glass. It was allowed to flow into and out of the pipe. Let's start the influx shi1
After 1 hour, the hydrogen peroxide decomposition rate was determined. Next, the nitrogen flow was left unchanged, and the hydrogen flow rate was increased to 26.3 m/7 min, 55.1
+++//9, and the hydrogen peroxide decomposition rate was similarly determined at each flow rate. The relationship between the volume of hydrogen gas in the mixed gas and the decomposition rate is shown by line 3/ in FIG.

実施例3 窒素ガス流量を517.2m/、%とし、且つ水素流量
をはじめ16.3 ml7分、次いで31.8m7し7
分、133−7分と変化させた以外すべて実施例2と同
様に処理し、各水素流量での過酸化水素分解率を求めた
。実施例2と同様に混合ガス中の水素ガスの容積チと分
解率との関係を第5図の線32に示す。
Example 3 The nitrogen gas flow rate was 517.2 m/%, and the hydrogen flow rate was 16.3 ml for 7 minutes, then 31.8 m/7 minutes.
The process was carried out in the same manner as in Example 2 except that the hydrogen peroxide decomposition rate was determined at each hydrogen flow rate. Similarly to Example 2, the relationship between the volume of hydrogen gas in the mixed gas and the decomposition rate is shown by line 32 in FIG.

実施例4 第4図に本実施例を行った装置を示す。図において、/
、λ、6,6′、7、g は第2図と同様にそれぞれ、
過酸化水素水を収容するタンク、過酸化水素水を触媒層
に送給するポンプ、シリコン栓、ガラスウール、および
ガラス管を示し、さらにり/は直流電源、ダコは可変抵
抗器、グ3は電流計、畔は電圧計、り5は多孔質アルミ
ナパイプ、ダ6は陽極ニッケル板、ダ7は陰極であシ触
媒でもあるptめっきをしたデクソンパッキング、lI
gは過酸化水素水である。
Embodiment 4 FIG. 4 shows an apparatus in which this embodiment was carried out. In the figure, /
, λ, 6, 6', 7, g are respectively as in Fig. 2,
A tank containing hydrogen peroxide, a pump for feeding hydrogen peroxide to the catalyst layer, a silicone stopper, glass wool, and a glass tube are shown. In addition, R/ is a DC power supply, Dako is a variable resistor, and G3 is a variable resistor. Ammeter, voltmeter on the rim, porous alumina pipe 5, nickel plate as the anode, 7 as the cathode and PT-plated Dexon packing, which is also the catalyst.
g is hydrogen peroxide solution.

第2図と同様タンク/中の過酸化水素水はポンブコによ
シ管t1を経てアルミナ管lI7に送シこまれ、弘7の
パラジウムめっきのデクソンパッキング触媒を通過する
。過酸化水素は分解し、分解液は上部よシ管t、を経て
排出される。
As in FIG. 2, the hydrogen peroxide solution in the tank is pumped into the alumina tube II7 through the Ponbuco inlet tube t1, and passes through the palladium-plated Dexon packing catalyst in Hiro7. The hydrogen peroxide is decomposed and the decomposed liquid is discharged through the upper drain pipe.

本実施例では過酸化水素24.apHnを含んだ過酸化
水素水を160 dloで流出させ、排出管の出口液を
分析し、分解率の低下したら陰極・陽極に通電しく分解
電圧5〜4゜4v)、分解率の向上を確認した。45分
間通電后、通電を中止、分解率低下后、又通電した。こ
の操作を反覆した。その結果を第5図に示す。図におい
て横軸は時間、縦軸は過酸化水素分解率を示す。
In this example, hydrogen peroxide 24. Flow out the hydrogen peroxide solution containing apHn at 160 dlo, analyze the outlet liquid from the discharge pipe, and when the decomposition rate decreases, energize the cathode and anode (decomposition voltage 5 to 4° 4V), and confirm that the decomposition rate has improved. did. After applying electricity for 45 minutes, electricity was stopped, and after the decomposition rate had decreased, electricity was applied again. This operation was repeated. The results are shown in FIG. In the figure, the horizontal axis shows time and the vertical axis shows hydrogen peroxide decomposition rate.

図において過酸化水素水の流通開始時の分解率80チは
時間の経過とともに線S/で示されるように低下した。
In the figure, the decomposition rate of 80% at the start of the flow of hydrogen peroxide solution decreased over time as shown by the line S/.

分解率が60%以下になったとき通′醒したところ分解
率は線タコで示されるように急上昇し、以后線S3のよ
うに安定した。45分后通電を中止したところ3/’の
如く分解率が低下したので、従前と同様に通電を行ない
、以后同様に通電と通電の中止を繰返した。以上の操作
によυ分解率は常に一定値以上に保持された。即ち長期
間同一触媒を、とくに交換又はとりだして賦活する必要
はなく過酸化水素の分解を継続することができた。
When the decomposition rate became 60% or less, the decomposition rate rose rapidly as shown by the line octopus, and then stabilized as shown by line S3. When energization was stopped after 45 minutes, the decomposition rate decreased to 3/', so energization was continued as before, and thereafter, energization and discontinuation were repeated in the same manner. Through the above operations, the υ decomposition rate was always maintained above a certain value. That is, it was not necessary to particularly replace or take out the same catalyst to activate it for a long period of time, and decomposition of hydrogen peroxide could be continued.

実施例5 実施例4と同装置を用い、連続的に通電した以外すべて
実施例4と同様に処理した。過酸化水素水の分解率の変
化を第6図の線6/に示す。
Example 5 The same equipment as in Example 4 was used, and all the treatments were carried out in the same manner as in Example 4, except that electricity was applied continuously. The change in the decomposition rate of hydrogen peroxide water is shown by line 6/ in FIG.

図に示すように本実施例では分解率は全く変化特開昭6
l−186208(4) せず連続的に高分解率を保持することができた。
As shown in the figure, in this example, the decomposition rate changed completely.
l-186208 (4) It was possible to continuously maintain a high decomposition rate without any decomposition.

比較例 8罰φ のガラス管に白金めつきしたデクソンパッキン
グおよび二酸化マンガンペレット(粒経2〜4朋)を充
填し、ポンプで過酸化水素17.0ppm含む水を一方
向から205 ml/rumの割合で流し、過酸化水素
を分解させ、出口側にてサンプリングし、分析して、過
酸化水素分解率を調べた。
Comparative Example 8 A φ glass tube was filled with platinum-plated Dexon packing and manganese dioxide pellets (particle size 2 to 4 mm), and water containing 17.0 ppm of hydrogen peroxide was pumped from one direction at 205 ml/rum. The hydrogen peroxide was decomposed by flowing at a rate of 100 ml, and the hydrogen peroxide decomposition rate was examined by sampling and analyzing at the outlet side.

その結果を第7図に示す。図において線7/は白金めつ
きしたデクソンパッキングを、7.2は二酸化マンガン
ベレットを充てんした場合の過酸化水素の分解率の変化
を示す。
The results are shown in FIG. In the figure, line 7/ shows the change in the decomposition rate of hydrogen peroxide when filled with platinum-plated Dexon packing, and line 7.2 shows the change in the decomposition rate of hydrogen peroxide when filled with manganese dioxide pellets.

白金めつきデクソンパッキング触媒、二酸化マンガン触
媒、いずれの場合も過酸化水素分解率は、時間とともに
減少しており、これは触媒活性が低下したためである。
In both the platinized Dexon packing catalyst and the manganese dioxide catalyst, the hydrogen peroxide decomposition rate decreased with time, and this was due to a decrease in catalyst activity.

(発明の効果) 実施例、比較例は、従来は過酸化水素の分解に際して、
使用する触媒の活性は時間とともに低下し、一定期間毎
に触媒を更新する必要があったが本発明によシ触媒の活
性は常に一定値以上に保持することが可能となり、長時
間触媒の更新を全く行なうことなく過酸化水素の分解を
行なうことが可能となったことをあきらかに示しており
、本発明は実用的に極めて有益である。
(Effect of the invention) In the examples and comparative examples, conventionally, when decomposing hydrogen peroxide,
The activity of the catalyst used decreased over time, and it was necessary to renew the catalyst at regular intervals. However, with the present invention, the activity of the catalyst can always be maintained above a certain value, making it possible to renew the catalyst for a long time. This clearly shows that hydrogen peroxide can be decomposed without any decomposition, and the present invention is extremely useful in practical terms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1.2.3を実施せる装置の概略図、第
2図は実施例1における水素流量と過酸化水素の分解率
との関係を示す図、第3図は実施例2.6における水素
ガスの容積チと分解率との関係を示す図、第4図は実施
例4を実施せる装置の概略図、第5図は実施例4による
過酸化水素の分解率の経時変化を示す図、第6図は実施
例5による過酸化水素分解率の経時変化を示す図、第7
図は比較例における過酸化水素の分解率を示す図。 /・・・過酸化水素水タンク、コ・・・ポンプ、6・・
・シリコン栓、7・・・ガラスウール、g・・・ガラス
管、9.17・・・触媒、ttS・・・多孔質アルミナ
パイプ、グ6・・・陽極ニッケル。
Figure 1 is a schematic diagram of an apparatus that can carry out Example 1.2.3, Figure 2 is a diagram showing the relationship between hydrogen flow rate and hydrogen peroxide decomposition rate in Example 1, and Figure 3 is Example 2. .6 is a diagram showing the relationship between hydrogen gas volume and decomposition rate, Figure 4 is a schematic diagram of the apparatus that can carry out Example 4, and Figure 5 is the change over time in the decomposition rate of hydrogen peroxide according to Example 4. Figure 6 is a diagram showing the change in hydrogen peroxide decomposition rate over time according to Example 5, Figure 7 is a diagram showing changes over time in hydrogen peroxide decomposition rate according to Example 5.
The figure shows the decomposition rate of hydrogen peroxide in a comparative example. /...Hydrogen peroxide tank, co...pump, 6...
- Silicon plug, 7...Glass wool, g...Glass tube, 9.17...Catalyst, ttS...Porous alumina pipe, G6...Anode nickel.

Claims (3)

【特許請求の範囲】[Claims] (1)過酸化水素水を触媒に接触させて過酸化水素を分
解する方法において、 触媒として過酸化水素分解能と、酸素−水素結合能とを
有する物質を用い、該触媒に水素を供給することを特徴
とする過酸化水素の分解方法。
(1) In a method of decomposing hydrogen peroxide by contacting a hydrogen peroxide solution with a catalyst, a substance having hydrogen peroxide decomposition ability and oxygen-hydrogen bonding ability is used as a catalyst, and hydrogen is supplied to the catalyst. A method for decomposing hydrogen peroxide, characterized by:
(2)触媒に水素を供給する方法は、水素のみ又は不活
性ガスで稀釈した水素を触媒表面に接触させる方法であ
る特許請求の範囲第1項の過酸化水素の分解方法。
(2) The method for decomposing hydrogen peroxide according to claim 1, wherein the method for supplying hydrogen to the catalyst is to bring hydrogen alone or hydrogen diluted with an inert gas into contact with the catalyst surface.
(3)触媒に水素を供給する方法は、触媒としてさらに
電気良導体としての性質を有するものを用い、その触媒
を陰極として過酸化水素水を電解する方法である特許請
求の範囲第1項の過酸化水素の分解方法。
(3) The method of supplying hydrogen to the catalyst is a method of electrolyzing hydrogen peroxide using a catalyst that further has properties as a good electrical conductor and using the catalyst as a cathode. How to decompose hydrogen oxide.
JP60023559A 1985-02-12 1985-02-12 Decomposition of hydrogen perioxide Granted JPS61186208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023559A JPS61186208A (en) 1985-02-12 1985-02-12 Decomposition of hydrogen perioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023559A JPS61186208A (en) 1985-02-12 1985-02-12 Decomposition of hydrogen perioxide

Publications (2)

Publication Number Publication Date
JPS61186208A true JPS61186208A (en) 1986-08-19
JPH0364444B2 JPH0364444B2 (en) 1991-10-07

Family

ID=12113868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023559A Granted JPS61186208A (en) 1985-02-12 1985-02-12 Decomposition of hydrogen perioxide

Country Status (1)

Country Link
JP (1) JPS61186208A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816428A (en) * 1985-02-14 1989-03-28 Agency Of Industrial Science And Technology Process for producing high strength βsialon-silicon carbide composite
US5348724A (en) * 1992-06-11 1994-09-20 Toshin Chemical Industry Co., Ltd. Method of decomposing hydrogen peroxide
US5549833A (en) * 1992-06-11 1996-08-27 Toshin Chemical Industry Co., Ltd. Method of decomposing hydrogen peroxide
JP2010105864A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Method for continuously decomposing hydrogen peroxide
KR20170081246A (en) 2014-12-11 2017-07-11 다나카 기킨조쿠 고교 가부시키가이샤 Waste water treatment device and waste water treatment method
JP2017530252A (en) * 2014-07-31 2017-10-12 プロドーズ Method for managing fluid required for operation of vehicle, and apparatus enabling implementation of the method
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023554A1 (en) 2010-08-20 2012-02-23 積水メディカル株式会社 Plug

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816428A (en) * 1985-02-14 1989-03-28 Agency Of Industrial Science And Technology Process for producing high strength βsialon-silicon carbide composite
US5348724A (en) * 1992-06-11 1994-09-20 Toshin Chemical Industry Co., Ltd. Method of decomposing hydrogen peroxide
US5549833A (en) * 1992-06-11 1996-08-27 Toshin Chemical Industry Co., Ltd. Method of decomposing hydrogen peroxide
JP2010105864A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Method for continuously decomposing hydrogen peroxide
JP2017530252A (en) * 2014-07-31 2017-10-12 プロドーズ Method for managing fluid required for operation of vehicle, and apparatus enabling implementation of the method
KR20170081246A (en) 2014-12-11 2017-07-11 다나카 기킨조쿠 고교 가부시키가이샤 Waste water treatment device and waste water treatment method
US10407326B2 (en) 2014-12-11 2019-09-10 Tanaka Kikinzoku Kogyo K.K. Waste liquid treatment device and waste liquid treatment method
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
JPH0364444B2 (en) 1991-10-07

Similar Documents

Publication Publication Date Title
US4908114A (en) Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
EP0164035A2 (en) Mobile hydrogen atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
RU2088538C1 (en) Method of cleaning stream
JPS61186208A (en) Decomposition of hydrogen perioxide
JPH0290995A (en) Water treatment process and device using electrolytic ozone
US5180502A (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
JPH03154691A (en) Method and apparatus for making high concentration ozone water
JPH1028833A (en) Electrolytic bath for removing electrochemically convertible impurity from gas and method
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
EP0342169B1 (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
Tarasevich et al. The influence of hem-containing proteins and their active sites on the electro-reduction of molecular O2
JPH0691991B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP2006045652A (en) Hydrogen production apparatus, ammonia production apparatus, hydrogen production method and ammonia production method
JPH11128958A (en) Water denitrification treatment apparatus
Bathia et al. Hydroxylamine production by electroreduction of nitric oxide in a trickle bed cell
JPH10337576A (en) Method for treatment of peroxide-containing aqueous solution
JP4038940B2 (en) Ozone-dissolved water production equipment
JPS6270203A (en) Removal of hydrogen gas
JPS61178402A (en) Method of decomposition treatment of ozone
Kusakabe et al. Direct formation of hydrogen peroxide over a palladium catalyst based on water electrolysis
Chithra et al. Electroreduction of oxygen on mercury in the presence of titanium silicalite, TS-1
JPH081167A (en) Water treatment apparatus
JP2003251357A (en) Method for treating oxidizable material-containing water
JPS59115745A (en) Catalyst for wet oxydation treatment
JP2678836B2 (en) Method of regenerating ferric chloride solution