JPS6118433A - Catalyst for synthesizing hydrocarbon - Google Patents

Catalyst for synthesizing hydrocarbon

Info

Publication number
JPS6118433A
JPS6118433A JP59138556A JP13855684A JPS6118433A JP S6118433 A JPS6118433 A JP S6118433A JP 59138556 A JP59138556 A JP 59138556A JP 13855684 A JP13855684 A JP 13855684A JP S6118433 A JPS6118433 A JP S6118433A
Authority
JP
Japan
Prior art keywords
catalyst
cobalt
carrier
lanthanum
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59138556A
Other languages
Japanese (ja)
Other versions
JPH0476735B2 (en
Inventor
Yoshiyasu Fujitani
藤谷 義保
Hideaki Muraki
村木 秀昭
Shiro Kondo
近藤 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59138556A priority Critical patent/JPS6118433A/en
Publication of JPS6118433A publication Critical patent/JPS6118433A/en
Publication of JPH0476735B2 publication Critical patent/JPH0476735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the catalytic activity for reducing carbon monoxide with hydrogen by depositing cobalt or cobalt and lanthanum on a carrier consisting of zeolite to mold the catalyst for synthesizing hydrocarbons. CONSTITUTION:A catalyst for synthesizing hydrocarbons is molded by depositing cobalt or cobalt and lanthanum on a carrier consisting of zeolite which is hydrated inosilicate minerals of porous magnesium. As the shape of the carrier, a granular body, a platelike body, a pelletized body and a honeycombed body or the like are used. As the method for depositing cobalt and lanthanum on the zeolite carrier, for example, the zeolite carrier is immersed into an aq. soln. of metallic salts of catalytic components such as cobalt nitrate, lanthanum nitrate, cobalt chloride and lanthanum chloride and the drying plus calcining thereof are performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、−酸化戻素を水素還元してブタンなどの炭化
水素を合成する際に使用する炭化水素合成用触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a catalyst for hydrocarbon synthesis, which is used when synthesizing hydrocarbons such as butane by hydrogen reduction of -oxidation return element.

〔従来の技術〕[Conventional technology]

従来、工業的規模で使用されている上記の炭化水素合成
用触媒としては、フィッシャー・ドロア’7S/二合成
触媒と言われる。ニッケ〃、コバμト、鉄などをシリカ
、アルミナ、珪藻土等の担体に担持させた触媒が用いら
れている。
The above-mentioned hydrocarbon synthesis catalyst conventionally used on an industrial scale is called Fischer-Drohr'7S/bisynthesis catalyst. Catalysts are used in which nickel, cobalt, iron, etc. are supported on carriers such as silica, alumina, and diatomaceous earth.

しかしながら、かかる従来触媒においても、未だ満足す
べき活性を有する触媒とは言えない。また、上記従来触
媒において担体として珪藻土を用いた場合、触媒の調製
法が難かしく、触媒活性の再現性が低い。即ち、担体と
して珪藻土を用いた触媒の調製法として、沈殿法が用い
られておシ。
However, even such conventional catalysts cannot be said to have satisfactory activity. Furthermore, when diatomaceous earth is used as a carrier in the conventional catalyst described above, the method for preparing the catalyst is difficult and the reproducibility of the catalyst activity is low. That is, a precipitation method is used as a method for preparing a catalyst using diatomaceous earth as a carrier.

これは、触媒成分を硝酸塩、硫酸塩等の状態の水溶液と
しておき、この中に珪藻土を投入し、その後仁の水溶液
を塩基性になし、珪藻土の表面に触媒成分を沈澱させる
ものである。しかしながら。
In this method, the catalyst components are prepared as an aqueous solution in the form of nitrates, sulfates, etc., diatomaceous earth is added to the solution, and the aqueous solution of kernels is then made basic to precipitate the catalyst components on the surface of the diatomaceous earth. however.

かかる沈澱法による触媒の調製法は、沈澱時の条件など
その調製法が難かしく、触媒活性の再現性が低い。
The method for preparing a catalyst by such a precipitation method is difficult to prepare, such as the conditions during precipitation, and the reproducibility of the catalyst activity is low.

゛また。かかる従来触媒において担体としてシリカまた
はアルミナを用いた場合、その活性と炭化水素への選択
性を増加させるため、いずれも助触媒として酸化トリウ
ム(’l’hO,”)が用いられている。
゛Again. When silica or alumina is used as a support in such conventional catalysts, thorium oxide ('l'hO,'') is used as a promoter in order to increase the activity and selectivity to hydrocarbons.

しかしながら、かかる助触媒に含まれるトリウムは資源
として希少に存在する程度でおる。さらに。
However, thorium contained in such promoters exists only in rare quantities as a resource. moreover.

このトリウムは、核燃料物質であるため、使用に当って
は、「国際規制物質使用許可」または「核燃料物質使用
許可」が必要でちゃ、その使用量は。
Since this thorium is a nuclear fuel material, an "internationally controlled substance use permit" or a "nuclear fuel material use permit" is required to use it.

極力最少に抑えなければならない。It must be kept to a minimum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明ハ、トリウムを使用することなく、活性に優れ、
かつ調製が容易な炭化水素合成用触媒を提供するもので
ある。
The present invention has excellent activity without using thorium,
The present invention also provides a catalyst for hydrocarbon synthesis that is easy to prepare.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、セピオライトを担体とし、該担体にコバルト
、またはコバルト及びランタンを担持させて成シ、−酸
化炭素を水素還元することによシ炭化水素を合成するた
めの炭化水素合成用触媒である。
The present invention is a catalyst for hydrocarbon synthesis, using sepiolite as a carrier and supporting cobalt or cobalt and lanthanum on the carrier to synthesize hydrocarbons by reducing oxidized carbon with hydrogen. .

セピオライトは、多孔性のマグネシウムの含水イノケイ
酸塩鉱物であシ、天然には二次成鉱物としてジャ絞岩中
に産出し、また、その合成物もマグネシウム塩とケイ酸
化合物とから合成することができる。本発明において、
上記セピオライトは。
Sepiolite is a porous magnesium hydrated inosilicate mineral, naturally occurring as a secondary mineral in limestone, and its composite material can also be synthesized from magnesium salts and silicate compounds. I can do it. In the present invention,
The above sepiolite.

天然物1合成物いずれも使用することができる。Both natural products and synthetic products can be used.

担体の形状としては1粒状体、板状体、ベレット状体、
ハニカム状体等が挙げられ、特に制限はない。その際1
粒状体の担体を製造する方法としては、セピオライトを
100〜160℃の温度で乾燥して付着水分を除去した
後、粉砕し1粒状とするのがよい。なお、その粒径とし
ては、成形性向上のため、1〜i o o pの範囲の
ものが望ましい。
The shape of the carrier is 1 grain, plate, pellet,
Examples include honeycomb-shaped bodies, and there are no particular limitations. At that time 1
As a method for producing a granular carrier, it is preferable to dry sepiolite at a temperature of 100 to 160° C. to remove attached moisture, and then crush the sepiolite into a single granule. In addition, the particle size is preferably in the range of 1 to i o op in order to improve moldability.

また、板状体、ベレット状体等の担体を製造する方法と
しては1粒状体のセピオライトをポリビニルアルコ−μ
水溶液などの糊料と混練してスフリー状にし、該スラリ
ーを板状、ベレット状等に成形した後加熱し上記糊料を
蒸発、焼失させる。更に、上記のセピオライトのスラリ
ーをコージェライト、アルミナ等から成るハニカム状基
材の表面にコートした後、加熱してハニカム状担体を形
成してもよい。また、担体の比表面積は、50〜1oo
om/gの範囲が望ましい。かかる比表面積の範囲を外
れた場合には、優れた活性を発揮することが困難である
In addition, as a method for manufacturing carriers such as plate-shaped bodies and pellet-shaped bodies, one granular sepiolite is mixed with polyvinyl alcohol
The slurry is kneaded with a thickening material such as an aqueous solution to form a soufflee, and the slurry is formed into a plate shape, pellet shape, etc., and then heated to evaporate and burn out the thickening material. Further, the slurry of sepiolite described above may be coated on the surface of a honeycomb-shaped substrate made of cordierite, alumina, etc., and then heated to form a honeycomb-shaped carrier. Further, the specific surface area of the carrier is 50 to 100
A range of om/g is desirable. When the specific surface area is outside this range, it is difficult to exhibit excellent activity.

上記セピオライトの担体に触媒成分たるコバμ)(Co
)、ランタン・(La)を担持させるに当つては1通常
の触媒成分の担持の場合と同様に行ない2例えば、硝酸
コバμト、硝酸ランタン、塩化コバルト、塩化ランタン
、硫酸コノ<y)、e[ランタン等の触媒成分の金属塩
の水溶液中に、上記セピオライトケ浸漬し、乾燥、焼成
する。上記焼成により金属塩は、それぞれ和尚する触媒
成分となる。この担持する触媒成分はコノくルト、また
はコバ/1/)トランタンとから成るが、ランpンt4
多くの場合酸化ランタンの状態にある。なお、コバlv
)及びランタンの両者を担持させる場合9例1えば上記
の触媒成分の金属塩の水溶液中に担体を浸漬する方法に
おいて、それぞれ2種類の水溶液を使用してもよいし1
両者の金属塩の混合物を含む水溶液を使用して同時に担
持させても差し支えない。
The above sepiolite carrier is coated with cobalt (Co) which is a catalytic component.
), lanthanum (La) is supported in the same manner as in the case of supporting ordinary catalyst components.2 For example, cobalt nitrate, lanthanum nitrate, cobalt chloride, lanthanum chloride, sulfuric acid <y), e [The above sepiolite is immersed in an aqueous solution of a metal salt of a catalyst component such as lanthanum, dried, and calcined. As a result of the above-mentioned calcination, the metal salts become respective catalytic components. This supported catalyst component is composed of conortane or coba/1/) tranthanum, and lampt4
It is often in the lanthanum oxide state. In addition, Koba lv
) and lanthanum 9 Examples 1 For example, in the method of immersing the carrier in an aqueous solution of the metal salt of the catalyst component described above, two types of aqueous solutions may be used for each.
An aqueous solution containing a mixture of both metal salts may be used to simultaneously support the metal salts.

また、担持に当っては、担体に対する触媒成分の担持点
は、コ具ルトのみを担持する場合、該コバルトが1ない
し20重量%、更にランタンを担持する場合、該ランタ
ンが0.05ないし6重量%とするのが望ましい。担持
量が上記範囲よ)少ない場合、十分な触媒活性が得られ
ス、他方、上記l′i 性孟得られず、しかもコストも高くなる。コノ<ルト及
びランタンの両者を担持する場合には、コノく〃トに対
マ゛るランタンの比高は5ないし′50重量%とするこ
とが望ましい。しかして、上記比率〃工5重量%よりも
少ない場合はランタンを担持することによる触媒活性の
向上が得ら+′Lないおそれ、75ある。また、上記比
率が50重思%よりも大きい場合はC6以上の這択率が
悪く、C3以上の炭化水素を高能率で生成させることが
困囃となる。
In addition, when supporting, the point at which the catalyst component is supported on the carrier is 1 to 20% by weight when only cobalt is supported, and 0.05 to 6% by weight when supporting lanthanum. It is desirable to set it as weight%. If the supported amount is less than the above range, sufficient catalytic activity may not be obtained, but the above-mentioned l'i properties may not be obtained, and the cost will be high. In the case of carrying both a co-metal and a lanthanum, the ratio of lanthanum to the co-metal is preferably 5 to 50% by weight. However, if the above ratio is less than 5% by weight, there is a possibility that the catalyst activity will not be improved by supporting lanthanum. Furthermore, if the ratio is greater than 50%, the selectivity of C6 or higher will be poor, making it difficult to produce C3 or higher hydrocarbons with high efficiency.

本発明にかかる触媒は2粒状体、ベレット状体。The catalyst according to the present invention is in the form of two particles or a pellet.

ハニカム状体等その形状、構造を問わない。また。It does not matter the shape or structure, such as a honeycomb-like body. Also.

該触媒は、前記従来触媒の場合と同様に1反応温度10
0〜300℃1反応圧力1〜20気圧、空間速度200
〜2000 hr−において使用することが望ましい。
The catalyst has a reaction temperature of 10% as in the case of the conventional catalyst.
0-300℃ 1 reaction pressure 1-20 atm, space velocity 200
It is desirable to use it for ~2000 hr-.

〔発明の効果〕〔Effect of the invention〕

本発明にかかる触媒は、−酸化炭素金高11L率で水素
還元することができ、メタン、フ゛タン等01以上の炭
化水素を収率良く生成させることができ。
The catalyst according to the present invention can perform hydrogen reduction at a rate of 11 L of -carbon oxide, and can produce hydrocarbons of 01 or higher, such as methane and phethane, with good yield.

特に06以上の液状の灰化水素をよシ収率良く生成させ
ることができる。また、かかる効果は、トリウムを用い
た触媒の場合よりも優れている。また、トリウムを使用
しないため前記法規制も受けず、安価な触媒が提供でき
ろう また9本発明にかかる触媒は、担体としてセピオライト
を用いているので、−ヒ記セピオフィトに触啄成分を含
浸させるのみで触媒を調製することができ、触媒の調製
法が安易でちると共に、触媒活性(転化率1選択率)の
再現性にも優れている。
In particular, liquid hydrogen ash of 06 or higher can be produced with good yield. Moreover, this effect is superior to that of a catalyst using thorium. In addition, since thorium is not used, it is not subject to the above-mentioned legal regulations, and an inexpensive catalyst can be provided. Also, since the catalyst according to the present invention uses sepiolite as a carrier, The method for preparing the catalyst is simple and simple, and the reproducibility of the catalyst activity (conversion rate 1 selectivity) is also excellent.

まだ、触媒成分としてコバ1vF及びランタンを担持さ
せた触媒は、コバルトのみを担持させた触媒よシも更に
Coの転化率106以上の選択率に優れた活性を有して
いる(実施例参照)。
However, the catalyst that supports cobalt 1vF and lanthanum as catalyst components has superior activity in terms of selectivity, with a Co conversion rate of 106 or higher, compared to the catalyst that supports only cobalt (see Examples). .

〔実施例〕〔Example〕

以下2本発明の詳細な説明する。 Two aspects of the present invention will be described in detail below.

実施例1゜ 不発明にかかるセピオライトを担体とし。Example 1゜ Sepiolite according to the invention is used as a carrier.

COを担持させてなるCo触媒を調製した。即ち。A Co catalyst supporting CO was prepared. That is.

硝酸コバ/7ト42%(重量比以下同じ)、水58%か
らなる水溶液に、上記ベレット状のセピオライト担体を
15分間浸漬し、母液を十分に除き。
The pellet-shaped sepiolite carrier was immersed for 15 minutes in an aqueous solution consisting of 42% Coba nitrate/7% (the same weight ratio below) and 58% water, and the mother liquor was thoroughly removed.

110℃で10時間乾燥し、その後400℃で6時間焼
成した。これによF)、Go4%を担持してなる本発明
にかかる直径2〜3鱈φのベレット状の触媒(第1表に
示す触媒座1)を調製した。
It was dried at 110°C for 10 hours, and then fired at 400°C for 6 hours. Thereby, a pellet-shaped catalyst (catalyst seat 1 shown in Table 1) having a diameter of 2 to 3 φ according to the present invention and supporting 4% of Go was prepared.

なお、上記セピオライト担体は、細孔容積0.487c
7f(/ 、比表面積100扉/(1,平均細孔半径0
.01μであった(水銀圧入法による測定)。
Note that the sepiolite carrier has a pore volume of 0.487c.
7f(/, specific surface area 100 doors/(1, average pore radius 0
.. 01μ (measured by mercury porosimetry).

また、比較のため、珪藻土を担体とする触[(触媒隘8
1)を次の様にして、調製した。即ち。
In addition, for comparison, a catalyst using diatomaceous earth as a carrier [(catalyst volume 8
1) was prepared as follows. That is.

まず、水500 COに、硝酸コバルト200gを加え
溶解煮沸させた。また、担体としての粉末状の珪藻±6
0gを水200 ccに加え、煮沸し。
First, 200 g of cobalt nitrate was dissolved and boiled in 500 CO of water. In addition, powdered diatoms as a carrier ±6
Add 0g to 200cc of water and boil.

次いでこれに上記の硝酸コバルトを含む煮沸液を加えた
。次に、水500 ccに炭酸カリウム150fを溶か
した液を、激しくかくはんした上記の硝酸コバルト、珪
藻土等を含む液に除々に加えた。
Next, the above-mentioned boiling liquid containing cobalt nitrate was added to this. Next, a solution prepared by dissolving 150 f of potassium carbonate in 500 cc of water was gradually added to the vigorously stirred solution containing cobalt nitrate, diatomaceous earth, etc.

約10分間かくはんしながら煮沸した後、この溶液をろ
過し、ミル残をイオン交換水によシ、カリウムイオンが
なくなるまで洗浄した。次に、この5戸残2110℃で
20時間乾燥し、直径2〜3flφのベレット状体に成
形しCoo 67%を珪藻土に担持させた触媒を調製し
た。
After boiling with stirring for about 10 minutes, the solution was filtered, and the mill residue was washed with ion-exchanged water until potassium ions disappeared. Next, the remainder of the five units was dried at 2110° C. for 20 hours and formed into a pellet-like body with a diameter of 2 to 3 flφ to prepare a catalyst in which 67% of Coo was supported on diatomaceous earth.

次いで、上記2種類の触媒について、その触媒活性の評
価を行なった。触媒活性の評価は、内径18flφのス
テンレス製反応管に上記の触媒20m1を充填し、35
0℃で1時間水素還元し、その後9反応温度220℃9
反応圧力5kg/d<ゲ−ジ)、接触時間68.1 h
 r−1/C4モIVで水素(■2)/−酸化炭素(C
O)モμ比乙の混合ガスを上記反応管に送入し、−酸化
炭素の転化率と反応生成物中の炭化水素量とを測定する
ことによって行なった。ここに−酸化炭素の転化率とは
一酸化炭素が他の物質に転化した割合(%)を示す。
Next, the catalytic activity of the above two types of catalysts was evaluated. To evaluate the catalytic activity, a stainless steel reaction tube with an inner diameter of 18 flφ was filled with 20 ml of the above catalyst.
Hydrogen reduction at 0°C for 1 hour, then 9 reaction temperature 220°C9
Reaction pressure 5 kg/d < gauge), contact time 68.1 h
hydrogen (■2)/-carbon oxide (C
O) Mo μ ratio B A mixed gas of B was introduced into the reaction tube, and the conversion rate of -carbon oxide and the amount of hydrocarbons in the reaction product were measured. Here, the term "carbon oxide conversion rate" refers to the rate (%) of carbon monoxide converted into other substances.

また、この転化した反応生成物中の灰化水素は。Also, the hydrogen ash in this converted reaction product.

炭化水素1分子中の次素量で示されるC、、、C2゜C
3,C,、C5等について、ガスクロマトグラムによ#
)、Co、Cotの量と共に測定した。上記C7はメタ
ン102はエタン、エチレン、CGはプロパン、プロピ
レン+04はブタン、ブチレンl 05はペンタン等を
意味する。なお、C6以上の炭化水素は、一括して測定
した。
C2°C expressed as the elementary amount in one molecule of hydrocarbon
3. Regarding C,, C5, etc., # is shown in the gas chromatogram.
), Co, and Cot. The above C7 means methane, 102 means ethane, ethylene, CG means propane, propylene+04 means butane, butylene 105 means pentane, etc. Note that hydrocarbons of C6 or higher were measured all at once.

これらの測定結果を第1表に示す。同表には。The results of these measurements are shown in Table 1. In the same table.

上記C1〜C4及びC5以上の灰化水素についての生成
割合(選択率%)を示した。
The generation ratio (selectivity %) of the above C1 to C4 and C5 or higher hydrogen ashing is shown.

第1表より知られるごとく9本発明にかかる触媒のCO
の転化率は、比較触媒の場合よりもその値が大きいこと
が分る。また9本発明にかかる触媒は、比較触媒に比し
て、06以上の選択率が高く、優れた活性を有している
ことが分る。
As is known from Table 1, 9 CO of the catalyst according to the present invention
It can be seen that the conversion rate of is higher than that of the comparative catalyst. Furthermore, it can be seen that the catalyst according to the present invention has a higher selectivity of 06 or more and has excellent activity compared to the comparative catalyst.

第1表 実施例2゜ 担体として七ビオライトを用いて9本発明にかかるCo
−La 触媒を調製し、触媒活性を測定した。
Table 1 Example 2゜9 Co according to the present invention using heptabiolite as a carrier
-La catalyst was prepared and the catalytic activity was measured.

即ち、硝酸コバ/L’)水溶液、硝酸ランタン水溶液を
用いて(3a 4%及びLa1%を担持した以外は、実
施例1と同様なセピオライト担体9条件で。
That is, sepiolite carrier 9 was prepared under the same conditions as in Example 1, except that 4% of 3a and 1% of La were supported using an aqueous solution of Coba/L' nitrate and an aqueous solution of lanthanum nitrate.

本発明にかかるベレット状の触媒(第2表の触媒翫2)
を調製した。
A pellet-shaped catalyst according to the present invention (catalyst rod 2 in Table 2)
was prepared.

また、比較のため、珪藻土を担体とし、硝酸コバμトと
硝酸ランタンの混合溶液を用いて、実施例1の比較触媒
と同様にして0067%及び][、a12%を担持させ
た比較触a(触媒&82)を調製した。
For comparison, a comparative catalyst was prepared in the same manner as the comparative catalyst of Example 1, using diatomaceous earth as a carrier and using a mixed solution of cobatium nitrate and lanthanum nitrate to support 0067% and ][, a12%. (Catalyst &82) was prepared.

次いで、上記した触媒について、実施例1と同様な方法
で触媒の活性を評価した。測定の結果を第2表に示す。
Next, the activity of the catalyst described above was evaluated in the same manner as in Example 1. The measurement results are shown in Table 2.

第2表よシ知らiするごとく9本発明にかかる触媒は、
比較触媒よりもCO転化率において、優れていることが
分る。また1選択率についても本発明の触媒は、比較触
媒よりも、C6以上の9選択率が高いという優れた活性
を有、していることが分る。
As shown in Table 2, the catalyst according to the present invention is:
It can be seen that the CO conversion rate is superior to that of the comparative catalyst. In addition, regarding the 1 selectivity, it can be seen that the catalyst of the present invention has an excellent activity in that the 9 selectivity for C6 or more is higher than that of the comparative catalyst.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] セピオライトを担体とし、該担体にコバルト、またはコ
バルト及びランタンを担持させて成り、一酸化炭素を水
素還元することにより炭化水素を合成するための炭化水
素合成用触媒。
A hydrocarbon synthesis catalyst for synthesizing hydrocarbons by reducing carbon monoxide with hydrogen, which comprises sepiolite as a carrier and cobalt or cobalt and lanthanum supported on the carrier.
JP59138556A 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon Granted JPS6118433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138556A JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138556A JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6118433A true JPS6118433A (en) 1986-01-27
JPH0476735B2 JPH0476735B2 (en) 1992-12-04

Family

ID=15224901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138556A Granted JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6118433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787576B2 (en) 2002-12-27 2004-09-07 Exxonmobil Research And Engineering Company Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
WO2019020677A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh Impact modified styrene copolymer composition comprising polysiloxane additive having improved abrasion characteristics
WO2019020680A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh Impact modified styrene copolymer composition comprising polysiloxane additive having improved abrasion characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787576B2 (en) 2002-12-27 2004-09-07 Exxonmobil Research And Engineering Company Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
WO2019020677A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh Impact modified styrene copolymer composition comprising polysiloxane additive having improved abrasion characteristics
WO2019020680A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh Impact modified styrene copolymer composition comprising polysiloxane additive having improved abrasion characteristics

Also Published As

Publication number Publication date
JPH0476735B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
KR100922998B1 (en) Process for preparing monohydric alcohols from monocarboxylic acids or derivatives thereof
EP2237882B1 (en) Iron-based water gas shift catalyst
US5506273A (en) Catalyst for hydrogenation and method for hydrogenation therewith
US3933883A (en) Methanation catalyst and process of use
JPH0510133B2 (en)
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
CN109574798A (en) A kind of method that synthesis gas directly produces ethyl alcohol
GB2085314A (en) Hydrocarbon cracking process and catalyst
JPH0691958B2 (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
WO2019095985A1 (en) Catalyst for synthesis of aromatic hydrocarbons and preparation method therefor
CN109289831A (en) The catalyst of preparing propylene by dehydrogenating propane and preparation method thereof with high anti-carbon
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JPS6118433A (en) Catalyst for synthesizing hydrocarbon
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
CN112705218A (en) Catalyst for preparing low-carbon olefin from synthesis gas, preparation method and application thereof
CN104549399B (en) Shell catalyst for 1, 4-butanediol vapor-phase dehydrogenation and application of shell catalyst
CN114433218B (en) Benzene and synthesis gas alkylation catalyst and preparation method and application thereof
WO2001023085A1 (en) Catalyst for hydrocarbon dehydrogenation and method therefor
RU2091294C1 (en) Method for production of para-hydrogen, catalyst for its realization and method for production of catalyst
CN114433217B (en) Benzene and synthesis gas alkylation catalyst and preparation method and application thereof
JPH0371174B2 (en)
CN112642435B (en) Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and application thereof
JPS6044972B2 (en) Catalyst for methane synthesis
CN117599786A (en) Copper-based reverse phase catalyst for preparing hydrogen from methanol and preparation method and application thereof