JPH0476735B2 - - Google Patents

Info

Publication number
JPH0476735B2
JPH0476735B2 JP59138556A JP13855684A JPH0476735B2 JP H0476735 B2 JPH0476735 B2 JP H0476735B2 JP 59138556 A JP59138556 A JP 59138556A JP 13855684 A JP13855684 A JP 13855684A JP H0476735 B2 JPH0476735 B2 JP H0476735B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
cobalt
sepiolite
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138556A
Other languages
Japanese (ja)
Other versions
JPS6118433A (en
Inventor
Yoshasu Fujitani
Hideaki Muraki
Shiro Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59138556A priority Critical patent/JPS6118433A/en
Publication of JPS6118433A publication Critical patent/JPS6118433A/en
Publication of JPH0476735B2 publication Critical patent/JPH0476735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、一酸化炭素を水素還元してブタンな
どの炭化水素を合成する際に使用する炭化水素合
成用触媒に関する。 〔従来の技術〕 従来、工業的規模で使用されている上記の炭化
水素合成用触媒としては、フイツシヤー・トロプ
ツシユ合成触媒と言われる、ニツケル、コバル
ト、鉄などをシリカ、アルミナ、珪藻土等の担体
に担持させた触媒が用いられている。 しかしながら、かかる従来触媒においても、未
だ満足すべき活性を有する触媒とは言えない。ま
た、上記従来触媒において担体として珪藻土を用
いた場合、触媒の調製法が難かしく、触媒活性の
再現在が低い。即ち、担体として珪藻土を用いた
触媒の調製法として、沈澱法が用いられており、
これは、触媒成分を硝酸塩、硫酸塩等の状態の水
溶液としておき、この中に珪藻土を投入し、その
後この水溶液を塩基性になし、珪藻土の表面に触
媒成分を沈澱させるものである。しかしながら、
かかる沈澱法による触媒の調製法は、沈澱時の条
件などその調製法が難かしく、触媒活性の再現性
が低い。 また、かかる従来触媒において担体としてシリ
カまたはアルミナを用いた場合、その活性と炭化
水素への選択性を増加させるため、いばれも助触
媒として酸化ナトリウム(ThO2)が用いられて
いる。しかしながら、かかる助触媒に含まれるナ
トリウムは資源として希少に存在する程度であ
る。さらに、このトリウムは、核燃料物質である
ため、使用に当つては、「国際規制物質使用許可」
または「核燃料物質使用許可」が必要であり、そ
の使用量は、極力最小に抑えなければならない。 〔発明が解決しようとする問題点〕 本発明は、トリウムを使用することなく、活性
に優れ、かつ調製が容易な炭化水素合成触媒を提
供するものである。 〔問題点を解決するための手段〕 本発明は、セピオライトを担体とし、該担体に
コバルト、またはコバルト及びランタンを担持さ
せて成り、一酸化炭素を水素還元することにより
炭化水素を合成するための炭化水素合成用触媒で
ある。 セピオライトは、多孔性のマグネシウムの含水
イノケイ酸塩鉱物であり、天然には二次成鉱物と
してジヤ絞岩中に産出し、また、その合成物もマ
グネシウム塩とケイ酸化合物とから合成すること
ができる。本発明において、上記セピオライト
は、天然物、合成物いずれも使用することができ
る。担体の形状としては、粒状体、板状体、ペレ
ツト状体、ハニカム状体等が挙げられ、特に制限
はない。その際、粒状体の担体を製造する方法と
しては、セピオライトを100〜130℃の温度で乾燥
して付着水分を除去した後、粉砕し、粒状とする
のがよい。なお、その粒径としては、成形性向上
のため、1〜100μの範囲のものが望ましい。ま
た、板状体、ペレツト状体等の担体を製造する方
法としては、粒状体のセピオライトをポリビニル
アルコール水溶液などの糊料と混練してスラリー
状にし、該スラリーを板状、ペレツト状等に成形
した後加熱し上記糊料を蒸発、焼失させる。更
に、上記のセピオライトのスラリーをコージエラ
イト、アルミナ等から成るハニカム状基材の表面
にコートした後、加熱してハニカム状担体を形成
してもよい。また、担体の比表面積は、50〜1000
m2/gの範囲が望ましい。かかる比表面積の範囲
を外れた場合には、優れた活性を発揮することが
困難である。 上記セピオライトの担体に触媒成分たるコバル
ト(Co)、ランタン(La)を担持させるに当つて
は、通常の触媒成分の担持の場合と同様に行な
い、例えば、硝酸コバルト、硝酸ランタン、塩化
コバルト、塩化ランタン、硫酸コバルト、硫酸ラ
ンタン等の触媒成分の金属塩の水溶液中に、上記
セピオライトを浸漬し、乾燥、焼成する。上記焼
成により金属塩は、それぞれ相当する触媒成分と
なる。この担持する触媒成分はコバルト、または
コバルトとランタンとから成るが、ランタンは多
くの場合酸化ランタンの状態にある。なお、コバ
ルト及びランタンの両者を担持させる場合、例え
ば上記の触媒成分の金属塩の水溶液中に担体を浸
漬する方法において、それぞれ2種類の水溶液を
使用してもよいし、両者の金属塩の混合物を含む
水溶液を使用して同時に担持させても差し支えな
い。 また、担持に当つては、担体に対する触媒成分
の担持量は、コバルトのみを担持する場合、該コ
バルトが1ないし20重量%、更にランタンを担持
する場合、該ランタンが0.05ないし6重量%とす
るのが望ましい。担持量が上記範囲より少ない場
合、十分な触媒活性が得られず、他方、上記範囲
より多い場合、担持量に見合うだけの触媒活性は
得られず、しかもコストも高くなる。コバルト及
びランタンの両者を担持すちる場合には、コバル
トに対するランタンの比率は5ないし30重量%と
することが望ましい。しかして、上記比率が5重
量%よりも少ない場合はランタンを担持すること
による触媒活性の向上が得られないおそれがあ
る。また、上記比率が30重量%よりも大きい場合
はC5以上の選択率が悪く、C5以上の炭化水素を
高能率で生成させることが困難となる。 本発明にかかる触媒は、粒状体、ペレツト状
体、ハニカム状体等その形状、構造を問わない。
また、該触媒は、前記従来触媒の場合と同様に、
反応温度100〜300℃、反応圧力1〜20気圧、空間
速度200〜2000hr-1において使用することが望ま
しい。 〔発明の効果〕 本発明にかかる触媒は、一酸化炭素を高能率で
水素還元することができ、メタン、ブタン等C1
以上の炭化水素を収率良く生成させることがで
き、特にC5以上の液状の炭化水素をより収率良
く生成させることができる。また、かかる効果
は、トリウムを用いた触媒の場合よりも優れてい
る。また、トリウムを使用しないため前記法規制
も受けず、安価な触媒が提供できる。 また、本発明にかかる触媒は、担体としてセピ
オライトを用いているので、上記セピオライトに
触媒成分を含浸させるのみで触媒を調製すること
ができ、触媒の調製法が安易であると共に、触媒
活性(転化率、選択率)の再現性にも優れてい
る。 また、触媒成分としてコバルト及びランタンを
担持させた触媒は、コバルトのみを担持させた触
媒よりも更にCoの転化率、C5以上の選択率に優
れた活性を有している(実施例参照)。 〔実施例〕 以下、本発明の実施例を説明する。 実施例 1 本発明にかかるセピオライトを担体とし、Co
を担持させてなるCo触媒を調製した。即ち、硝
酸コバルト42%(重量比以下同じ)、水58%から
なる水溶液に、上記ペレツト状のセピオライト担
体を15分間浸漬し、母液を十分に除き、110℃で
10時間乾燥し、その後400℃で3時間焼成した。
これにより、Co4%を担持してなる本発明にかか
る直径2〜3mmφのペレツト状の触媒(第1表に
示す触媒No.1)を調製した。 なお、上記セピオライト担体は、細孔容積
0.487c/g、比表面積100m2/g、平均細孔半径
0.01μであつた(水銀圧入法による測定)。 また、比較のため、珪藻土を担体とする触媒
(触媒No.S1)を次の様にして、調製した。即ち、
まず、水500ccに、硝酸コバルト200gを加え溶解
煮沸させた。また、担体としての粉末状の珪藻土
60gを水200ccに加え、煮沸し、次いでこれに上
記の硝酸コバルトを含む煮沸液を加えた。次に、
水500ccに炭酸カリウム150gを溶かした液を、激
しくかくはんした上記の硝酸コバルト、珪藻土等
を含む液に徐々に加えた。約10分間かくはんしな
がら煮沸した後、この溶液をろ過し、残をイオ
ン交換水により、カリウムイオンがなくなるまで
洗浄した。次に、この残を110℃で20時間乾燥
し、直径2〜3mmφのペレツト状体に成形し
Co67%を珪藻土に担持させた触媒を調製した。 次いで、上記2種類の触媒について、その触媒
活性の評価を行なつた。触媒活性の評価は、内径
18mmφのステンレス製反応管に上記の触媒20mlを
充填し、350℃で1時間水素還元し、その後、反
応温度220℃、反応圧力5Kg/cm2(ゲージ)、接触
時間68.1hr・g/Coモルで水素(H2)/一酸化
炭素(CO)モル比3の混合ガスを上記反応管に
送入し、一酸化炭素の転化率と反応生成物中の炭
化水素量とを測定することによつて行なつた。こ
こに一酸化炭素の転化率とは一酸化炭素が他の物
質に転化した割合(%)を示す。また、この転化
した反応生成物中の炭化水素は、炭化水素1分子
中の炭素量で示されるC1,C2,C3,C4,C5等に
ついて、ガスクロマトグラムにより、CO,CO2
の量と共に測定した。上記C1はメタン,C2はエ
タン、エチレン、C3はプロパン、プロピレン、
C4はブタン、ブチレン、C5はペンタン等を意味
する。なお、C5以上の炭化水素は、一括して測
定した。 これらの測定結果を第1表に示す。同表には、
上記C1〜C4及びC5以上の炭化水素についての生
成割合(選択率%)を示した。 第1表より知られるごとく、本発明にかかる触
媒のCOの転化率は、比較触媒の場合よりもその
値が大きいことが分る。また、本発明にかかる触
媒は、比較触媒に比して、C5以上の選択率が高
く、優れた活性を有していることが分かる。
[Industrial Application Field] The present invention relates to a catalyst for hydrocarbon synthesis, which is used when synthesizing hydrocarbons such as butane by reducing carbon monoxide with hydrogen. [Prior Art] Conventionally, the above-mentioned hydrocarbon synthesis catalysts used on an industrial scale are called Fischer-Tropschschau synthesis catalysts, which are made by using nickel, cobalt, iron, etc. on a carrier such as silica, alumina, or diatomaceous earth. Supported catalysts are used. However, even such conventional catalysts cannot be said to have satisfactory activity. Furthermore, when diatomaceous earth is used as a carrier in the conventional catalyst described above, the preparation method of the catalyst is difficult and the regeneration of the catalyst activity is low. That is, a precipitation method is used as a method for preparing a catalyst using diatomaceous earth as a carrier.
In this method, the catalyst components are prepared as an aqueous solution in the form of nitrates, sulfates, etc., diatomaceous earth is introduced into the solution, and the aqueous solution is then made basic to precipitate the catalyst components on the surface of the diatomaceous earth. however,
The method for preparing a catalyst by such a precipitation method is difficult to prepare, such as the conditions during precipitation, and the reproducibility of the catalyst activity is low. Furthermore, when silica or alumina is used as a support in such conventional catalysts, sodium oxide (ThO 2 ) is often used as a promoter in order to increase the activity and selectivity to hydrocarbons. However, the sodium contained in such co-catalysts exists only in rare quantities as a resource. Furthermore, since thorium is a nuclear fuel material, it must be used under the International Controlled Substances Permit.
Alternatively, a "permission to use nuclear fuel materials" is required, and the amount used must be kept to the minimum possible. [Problems to be Solved by the Invention] The present invention provides a hydrocarbon synthesis catalyst that has excellent activity and is easy to prepare without using thorium. [Means for Solving the Problems] The present invention uses sepiolite as a carrier and supports cobalt or cobalt and lanthanum on the carrier, and is a method for synthesizing hydrocarbons by reducing carbon monoxide with hydrogen. It is a catalyst for hydrocarbon synthesis. Sepiolite is a porous magnesium inosilicate mineral that is naturally occurring as a secondary mineral in diaphragm rock. Sepiolite can also be synthesized from magnesium salts and silicate compounds. can. In the present invention, the above-mentioned sepiolite can be either a natural product or a synthetic product. The shape of the carrier includes granules, plates, pellets, honeycombs, etc., and is not particularly limited. In this case, as a method for producing a granular carrier, it is preferable to dry sepiolite at a temperature of 100 to 130°C to remove attached moisture, and then crush it to form granules. Note that the particle size is preferably in the range of 1 to 100 μm in order to improve moldability. In addition, as a method for manufacturing carriers such as plates and pellets, granular sepiolite is kneaded with a glue such as an aqueous polyvinyl alcohol solution to form a slurry, and the slurry is formed into plates, pellets, etc. After that, the paste is heated to evaporate and burn off the paste. Furthermore, the slurry of sepiolite described above may be coated on the surface of a honeycomb-shaped substrate made of cordierite, alumina, etc., and then heated to form a honeycomb-shaped carrier. In addition, the specific surface area of the carrier is 50 to 1000
A range of m 2 /g is desirable. When the specific surface area is outside this range, it is difficult to exhibit excellent activity. The catalyst components cobalt (Co) and lanthanum (La) are supported on the sepiolite carrier in the same manner as in the case of supporting normal catalyst components, such as cobalt nitrate, lanthanum nitrate, cobalt chloride, The sepiolite is immersed in an aqueous solution of a metal salt of a catalyst component such as lanthanum, cobalt sulfate, or lanthanum sulfate, dried, and fired. By the above-mentioned calcination, the metal salts become respective corresponding catalyst components. This supported catalyst component consists of cobalt or cobalt and lanthanum, with lanthanum often in the form of lanthanum oxide. In addition, when supporting both cobalt and lanthanum, for example, in the method of immersing the carrier in an aqueous solution of the metal salt of the catalyst component, two types of aqueous solutions of each may be used, or a mixture of both metal salts may be used. There is no problem even if an aqueous solution containing . Regarding the loading, the amount of the catalyst component supported on the carrier is 1 to 20% by weight when only cobalt is supported, and 0.05 to 6% by weight when lanthanum is further supported. is desirable. If the supported amount is less than the above range, sufficient catalytic activity will not be obtained; on the other hand, if it is greater than the above range, the catalytic activity commensurate with the supported amount will not be obtained and the cost will increase. When supporting both cobalt and lanthanum, the ratio of lanthanum to cobalt is preferably 5 to 30% by weight. However, if the above ratio is less than 5% by weight, the catalyst activity may not be improved by supporting lanthanum. Furthermore, if the above ratio is greater than 30% by weight, the selectivity for C 5 or higher is poor, making it difficult to produce C 5 or higher hydrocarbons with high efficiency. The catalyst according to the present invention may have any shape or structure, such as granules, pellets, or honeycombs.
In addition, the catalyst, as in the case of the conventional catalyst,
It is preferable to use the reaction at a reaction temperature of 100 to 300°C, a reaction pressure of 1 to 20 atm, and a space velocity of 200 to 2000 hr -1 . [Effects of the Invention] The catalyst according to the present invention can reduce carbon monoxide with hydrogen with high efficiency, and can reduce carbon monoxide with hydrogen such as methane, butane, etc.
The above hydrocarbons can be produced with good yield, and in particular, liquid hydrocarbons with C5 or more can be produced with better yield. Moreover, this effect is superior to that of a catalyst using thorium. Furthermore, since thorium is not used, the method is not subject to the above-mentioned legal regulations, and an inexpensive catalyst can be provided. In addition, since the catalyst according to the present invention uses sepiolite as a carrier, the catalyst can be prepared by simply impregnating the sepiolite with catalyst components, and the preparation method of the catalyst is simple. It also has excellent reproducibility of rate and selectivity. In addition, a catalyst that supports cobalt and lanthanum as catalyst components has an activity that is even more excellent in Co conversion rate and C 5 or higher selectivity than a catalyst that supports only cobalt (see examples). . [Examples] Examples of the present invention will be described below. Example 1 Using sepiolite according to the present invention as a carrier, Co
A Co catalyst was prepared by supporting . That is, the above pellet-shaped sepiolite carrier was immersed in an aqueous solution consisting of 42% cobalt nitrate (the same weight ratio below) and 58% water for 15 minutes, the mother liquor was thoroughly removed, and the mixture was heated at 110°C.
It was dried for 10 hours and then baked at 400°C for 3 hours.
As a result, a pellet-shaped catalyst (catalyst No. 1 shown in Table 1) having a diameter of 2 to 3 mm according to the present invention and carrying 4% Co was prepared. In addition, the above sepiolite carrier has a pore volume of
0.487c/g, specific surface area 100m 2 /g, average pore radius
It was 0.01μ (measured by mercury porosimetry). For comparison, a catalyst using diatomaceous earth as a carrier (catalyst No. S1) was prepared as follows. That is,
First, 200g of cobalt nitrate was added to 500cc of water, dissolved and boiled. Also, powdered diatomaceous earth as a carrier
60g was added to 200cc of water and boiled, and then the above-mentioned boiling liquid containing cobalt nitrate was added thereto. next,
A solution of 150 g of potassium carbonate dissolved in 500 cc of water was gradually added to the vigorously stirred solution containing cobalt nitrate, diatomaceous earth, etc. After boiling with stirring for about 10 minutes, the solution was filtered, and the residue was washed with ion-exchanged water until potassium ions disappeared. Next, this residue was dried at 110℃ for 20 hours and formed into pellets with a diameter of 2 to 3 mmφ.
A catalyst with 67% Co supported on diatomaceous earth was prepared. Next, the catalytic activity of the above two types of catalysts was evaluated. Evaluation of catalytic activity is based on the inner diameter
A 18 mmφ stainless steel reaction tube was filled with 20 ml of the above catalyst and subjected to hydrogen reduction at 350°C for 1 hour, followed by a reaction temperature of 220°C, a reaction pressure of 5 Kg/cm 2 (gauge), and a contact time of 68.1 hr・g/Co mole. A mixed gas with a hydrogen (H 2 )/carbon monoxide (CO) molar ratio of 3 was introduced into the reaction tube, and the conversion rate of carbon monoxide and the amount of hydrocarbons in the reaction product were measured. I went there. Here, the conversion rate of carbon monoxide refers to the rate (%) of carbon monoxide converted into other substances. In addition, the hydrocarbons in this converted reaction product are C 1 , C 2 , C 3 , C 4 , C 5 , etc., which are indicated by the amount of carbon in one molecule of hydrocarbon, and gas chromatograms show that they are CO, CO 2 , etc.
It was measured along with the amount of The above C1 is methane, C2 is ethane, ethylene, C3 is propane, propylene,
C 4 means butane, butylene, C 5 means pentane, etc. Note that hydrocarbons of C5 or higher were measured all at once. The results of these measurements are shown in Table 1. In the same table,
The production ratios (selectivity %) of the above C 1 to C 4 and C 5 or higher hydrocarbons are shown. As can be seen from Table 1, the CO conversion rate of the catalyst according to the present invention is higher than that of the comparative catalyst. Furthermore, it can be seen that the catalyst according to the present invention has a higher selectivity for C 5 or more and has excellent activity compared to the comparative catalyst.

【表】 実施例 2 担体としてセピオライトを用いて、本発明にか
かるCo−La触媒を調製し、触媒活性を測定した。 即ち、硝酸コバルト水溶液、硝酸ランタン水溶
液を用いてCo4%及びLa1%を担持した以外は、
実施例1と同様なセピオライト担体、条件で、本
発明にかかるペレツト状の触媒(第2表の触媒No.
2)を調製した。 また、比較のため、珪藻土を担体とし、硝酸コ
バルトと硝酸ランタンの混合溶液を用いて、実施
例1の比較触媒と同様にしてCo67%及びLa12%
を担持させた比較触媒(触媒No.S2)を調製した。 次いで、上記した触媒について、実施例1と同
様な方法で触媒の活性を評価した。測定の結果を
第2表に示す。 第2表より知られるごとく、本発明にかかる触
媒は、比較触媒よりもCO転化率において、優れ
ていることが分る。また、選択率についても本発
明の触媒は、比較触媒よりも、C5以上の選択率
が高いという優れた活性を有していることが分
る。
[Table] Example 2 A Co-La catalyst according to the present invention was prepared using sepiolite as a carrier, and the catalytic activity was measured. That is, except that Co4% and La1% were supported using a cobalt nitrate aqueous solution and a lanthanum nitrate aqueous solution.
Using the same sepiolite carrier and conditions as in Example 1, a pellet-like catalyst according to the present invention (Catalyst No. in Table 2) was prepared.
2) was prepared. For comparison, using diatomaceous earth as a carrier and using a mixed solution of cobalt nitrate and lanthanum nitrate, Co67% and La12% were prepared in the same manner as the comparative catalyst of Example 1.
A comparative catalyst (catalyst No. S2) was prepared. Next, the activity of the catalyst described above was evaluated in the same manner as in Example 1. The measurement results are shown in Table 2. As can be seen from Table 2, the catalyst according to the present invention is superior to the comparative catalyst in terms of CO conversion rate. Furthermore, in terms of selectivity, it can be seen that the catalyst of the present invention has superior activity, with a higher selectivity for C5 or higher than the comparative catalyst.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 セピオライトを担体とし、該担体にコバル
ト、またはコバルト及びランタンを担持させて成
り、一酸化炭素を水素還元することにより炭化水
素を合成するための炭化水素合成用触媒。
1. A hydrocarbon synthesis catalyst for synthesizing hydrocarbons by reducing carbon monoxide with hydrogen, which comprises sepiolite as a carrier and cobalt or cobalt and lanthanum supported on the carrier.
JP59138556A 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon Granted JPS6118433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138556A JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138556A JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6118433A JPS6118433A (en) 1986-01-27
JPH0476735B2 true JPH0476735B2 (en) 1992-12-04

Family

ID=15224901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138556A Granted JPS6118433A (en) 1984-07-04 1984-07-04 Catalyst for synthesizing hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6118433A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787576B2 (en) 2002-12-27 2004-09-07 Exxonmobil Research And Engineering Company Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
WO2019020677A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh Impact modified styrene copolymer composition comprising polysiloxane additive having improved abrasion characteristics
KR102511935B1 (en) 2017-07-26 2023-03-17 이네오스 스티롤루션 그룹 게엠베하 Impact modified styrene copolymer composition comprising polysiloxane additives with improved wear properties

Also Published As

Publication number Publication date
JPS6118433A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
JPH0510133B2 (en)
US3933883A (en) Methanation catalyst and process of use
US4089941A (en) Steam reformer process for the production of hydrogen
US5506273A (en) Catalyst for hydrogenation and method for hydrogenation therewith
CN104056652A (en) Core-shell ZSM-5 molecular sieve microsphere catalyst
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
JPH075485B2 (en) Process for the production of methane with thioresistant catalysts and catalyst for the implementation of this process
US4207211A (en) Catalyst for steam reforming of hydrocarbons and process of preparing the catalyst
US2277512A (en) Catalyst
RU2266884C2 (en) Method for preparing hydrocarbon and catalyst for its realization
GB2085314A (en) Hydrocarbon cracking process and catalyst
JPH0691958B2 (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
KR101480801B1 (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
US4577047A (en) Catalysts and process for the selective hydrogenation of acetylenes
JPH0476735B2 (en)
KR100893547B1 (en) Metallic structured catalyst and its manufacturing method
JP2914206B2 (en) Nickel-supported catalyst for hydrocarbon reforming and method for producing the same
US4560672A (en) Ruthenium-copper-containing, activated-carbon-supported catalyst and process for making alcohol using same
CA1071616A (en) Carbon and erosion resistant catalyst
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
US4455389A (en) Magnesium hydride modified aluminum/siliceous compositions
JPH10216521A (en) Catalyst for reforming hydrocarbon with steam
US4450099A (en) Barium hydride modified aluminum/siliceous compositions
JPH0361494B2 (en)
GB2142012A (en) Catalytic process for acetic acid, acetaldehyde and ethanol