JPS61184301A - Method and device for generating and recovering treatment heat - Google Patents

Method and device for generating and recovering treatment heat

Info

Publication number
JPS61184301A
JPS61184301A JP61019160A JP1916086A JPS61184301A JP S61184301 A JPS61184301 A JP S61184301A JP 61019160 A JP61019160 A JP 61019160A JP 1916086 A JP1916086 A JP 1916086A JP S61184301 A JPS61184301 A JP S61184301A
Authority
JP
Japan
Prior art keywords
heat
gas
sodium
gas stream
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61019160A
Other languages
Japanese (ja)
Inventor
クラウス クニチア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS61184301A publication Critical patent/JPS61184301A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/40Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by indirect contact with preheated fluid other than hot combustion gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Air Supply (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は処理熱を熱交換器によって発生及び回収するた
めの方法及び装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for generating and recovering process heat by means of a heat exchanger.

〔発明の背景〕[Background of the invention]

一連の方法技術的課題、即ち更に水蒸気を加えながら行
なう空気又は酸素に拠る石炭ガス化、例えばメタンを酸
化炭素及び水素の混合物に分解するガス変換、並びに熱
化学的方法又は高温電解質に拠る水の分離に対して、空
気、酸素又は他のガス及び水蒸気等の添加材料を高い温
度に予熱する必要がある。
A series of process-technical tasks, namely coal gasification with air or oxygen with further addition of water vapor, gas conversion, e.g. by decomposing methane into a mixture of carbon oxides and hydrogen, and water conversion by thermochemical methods or high-temperature electrolytes. For separation, it is necessary to preheat additive materials such as air, oxygen or other gases, and water vapor to high temperatures.

例えば酸化による石炭のガス化は化学量的燃焼では吸熱
反応である。この酸化に拠るガス化は水蒸気を添加しな
がら空気又は酸素に拠り行なわれる。このガス化に必要
な高温は、石炭の部分燃焼のみ、又は石炭の部分燃焼及
びガス化に必要な空気又は酸素、及び添加される水蒸気
を予熱する事によって得られる。空気又は酸素及び水蒸
気゛に対する高い予熱温度は反応力学に具合よく作用す
る。
For example, gasification of coal by oxidation is an endothermic reaction in stoichiometric combustion. This oxidative gasification is carried out using air or oxygen while adding water vapor. The high temperatures required for this gasification can be obtained by preheating only the partial combustion of the coal, or the partial combustion of the coal and the air or oxygen necessary for gasification and the added steam. High preheating temperatures for air or oxygen and water vapor favor the reaction dynamics.

空気、酸素、他のガス及び水蒸気の高い予熱基層は、石
炭ガス化の際に発生したガスの一部分を燃焼させて空気
予熱器、酸素予熱器又はガス予熱器及び蒸気過熱器を加
熱する事により得られる。発生したガスは当然他の過程
のために失われるのでガス化設備の容量は単に生産ガス
の量だけではなく更に予熱に必要な燃焼ガスの発生に対
しても定められねばならない。
A high preheating base layer of air, oxygen, other gases and water vapor can be produced by burning a part of the gas generated during coal gasification to heat the air preheater, oxygen preheater or gas preheater and steam superheater. can get. Since the gas produced is naturally lost to other processes, the capacity of the gasification plant must be determined not only for the amount of produced gas, but also for the production of the combustion gases required for preheating.

ガス化設備と予熱設備の間には予熱された空気又は予熱
された酸素及び過熱された水蒸気の−ための導管が必要
である。これ等の導管の中では圧力損失、熱損失及び熱
膨張が生じこれ等は流量及び圧力に従属し高い材料費に
つながる。
Conduits for preheated air or preheated oxygen and superheated steam are required between the gasification plant and the preheating plant. Pressure losses, heat losses and thermal expansion occur in these conduits, which are dependent on flow rate and pressure and lead to high material costs.

更に導管に対する所要スペースの問題が生じる。Additionally, the problem of space requirements for the conduits arises.

例えばメタンの一酸化炭素及び水素へのガス変換の場合
と類似して、水の分離の場合には所要の反応エネルギー
は外部からこなければならない。総ての3つの場合に共
通している事は、高い温度水準にある熱を供給する事が
課題を軽減するか又は全体としてはじめて可能となる。
Analogous to the case of gas conversion of methane to carbon monoxide and hydrogen, for example, in the case of water separation the required reaction energy has to come from outside. What all three cases have in common is that supplying heat at a high temperature level either alleviates the problem or is only possible altogether.

(発明の目的) 本発明の目的は、高い温度水準にある熱を少ない圧力損
失及び熱損失で装置に特別な費用をかける事なく運ぶ事
が出来、かつ効率が出来るだけ高い処理熱の発生及び回
収方法及び装置を提供するにある。
(Objective of the Invention) The object of the present invention is to be able to transport heat at a high temperature level with little pressure loss and heat loss without requiring special equipment costs, and to achieve the highest possible processing heat generation and efficiency. The purpose of the present invention is to provide a recovery method and device.

(発明の概要〕 この目的は上述した方法に於て、低い圧力で高い温度迄
流動性を有する熱担持体、特に高い熱容量及び高い熱伝
導率を有するナトリムを用いる事に拠り達せられる。ナ
トリウムは閉鎖回路の中で高い温度の熱を熱源から取り
、低い圧力で高い熱量を小さな断面の導管の中で運び、
同熱量を熱交換器の中で使用材料に与える。ナトリウム
は約100℃で流動性を有し、常圧では約890℃では
じめて沸騰するので、熱をこ、の温度範囲の中で摩擦損
失を除き変化する事なく循環する事が出来る。更にナト
リウムの飽和温度が圧力の上昇と共に急速に上昇するの
で、より高い温度の熱も比較的低い圧力で流動的に伝達
される(例えば約2.1barで1000℃)。小さな
断面の導管及び低い圧力でナトリウムを用いると、上記
の方法を工業的規模で実施する場合に、輸送距離に於て
生じる熱膨張の問題、絶縁の問題及び材料の問題が解決
される。
SUMMARY OF THE INVENTION This object is achieved in the above-mentioned method by using a heat carrier that is fluid at low pressures and up to high temperatures, in particular sodium, which has a high heat capacity and high thermal conductivity. Heat is taken from a heat source at a high temperature in a closed circuit, and a high amount of heat is transported at a low pressure in a conduit with a small cross-section.
The same amount of heat is imparted to the materials used in the heat exchanger. Sodium has fluidity at about 100°C and boils only at about 890°C under normal pressure, so heat can be circulated within this temperature range without any change except for frictional loss. Furthermore, since the saturation temperature of sodium increases rapidly with increasing pressure, heat at higher temperatures is also transferred fluidly at relatively low pressures (eg 1000° C. at about 2.1 bar). The use of sodium in small cross-section conduits and low pressures solves the problems of thermal expansion, insulation and materials that arise over transport distances when carrying out the above method on an industrial scale.

特に空気予熱器、酸素予熱器又は他のガス予熱器及び蒸
気過熱器は炉設備の煙ガスの流れ又は高温リアクターの
ヘリウムガスの流れの様な熱源に拠って加熱される。炉
設備の煙ガスの流れが熱源として選択された場合には以
下の利点、即ち、石炭ガス化設備、ガス変換設備及び水
分離設備の中にナトリウム循環に拠って上記の煙ガスの
流れから取り入れられた熱−たとえ低品質であっても一
任意の燃料が用いられるという利点が生じる。熱が高温
リアクターのヘリウムガスの流れから取り出される場合
には、原子核の熱がこの方法に取り入れられる。
In particular, air preheaters, oxygen preheaters or other gas preheaters and steam superheaters are heated by heat sources such as the flue gas stream of a furnace installation or the helium gas stream of a high temperature reactor. If the flue gas stream of the furnace plant is chosen as the heat source, the following advantages can be obtained: the coal gasification plant, the gas conversion plant and the water separation plant can be fed from the above smoke gas stream by means of sodium circulation. The advantage is that any fuel can be used, even if it is of low quality. Nuclear heat is incorporated in this method if the heat is extracted from the helium gas stream in the high temperature reactor.

ガス化が空気に拠り行なわれる場合には、生産されたガ
スは空気の高い予熱温度及び水蒸気の適当な過熱に拠っ
てより高い熱価に達する。
If gasification is carried out with air, the produced gas reaches a higher heating value due to the high preheating temperature of the air and appropriate superheating of the water vapor.

即ち空気を予熱し水蒸気を過熱する熱量はガス化設備の
中で行なわれる化学量的燃焼に拠っては放出されず、そ
の結果燃焼空気のこの部分に属する窒素部分はガス化過
程の中には導入されない。煙ガスないしはヘリウムから
ガス発生設備及びガス変換設備のガス及び水蒸気への熱
の伝達は直接には行なわれない。即ち大容量の流れが熱
くかつ圧力のある大きな溝系の中で行なわれ、その熱膨
張、絶縁及び強度の問題が解決されず、かつその設備に
対して充分なスペースは得られないであろう。
That is, the amount of heat that preheats the air and superheats the steam is not released by the stoichiometric combustion that takes place in the gasification plant, so that the nitrogen fraction belonging to this part of the combustion air is not released during the gasification process. Not introduced. The transfer of heat from the smoke gases or helium to the gases and water vapor of the gas generation and gas conversion installations does not take place directly. That is, large volumes of flow are carried out in hot and pressurized large channel systems, the problems of thermal expansion, insulation and strength remain unsolved, and sufficient space may not be available for the equipment. .

石炭ガス化、ガス変換及び水の分離の場合には、生産ガ
スの中に高い温度が生じるので、更にそれ等の中に含ま
れている感知可能な熱は石炭ガス化設備、ガス変換設備
及び水分離設備に接続している生産ガス−ナトリウム−
熱変換器に用いられ、加熱されたナトリウムは、処理空
気予熱器、処理蒸気発生器、処理蒸気過熱器ならびに他
のガス予熱器に用いられる。
In the case of coal gasification, gas conversion and water separation, high temperatures occur in the product gases and, moreover, the appreciable heat contained in them is Production gas connected to water separation equipment - sodium -
The heated sodium used in heat converters is used in process air preheaters, process steam generators, process steam superheaters as well as other gas preheaters.

更に例えば酸素及び水蒸気を用いる石炭ガス化及び水の
分離の様に各過程が相互に結合されている場合には、ナ
トリウム循環を介して処理熱もこれ等の過程の間で変換
される事が考えられる。
Furthermore, when the processes are interconnected, for example coal gasification using oxygen and steam and water separation, the process heat can also be converted between these processes via the sodium cycle. Conceivable.

上記の方法を実施するための装置に於ては、煙ガス−ナ
トリウム−熱交換器が蒸気発生器の火室又は高温リアク
ターのヘリウムガスの流れの中に設けられており、処理
空気予熱器及び(又は)処理蒸気過熱器及び(又は)他
のガス加熱器に加熱されたナトリウムが用いられる。
In the apparatus for carrying out the above method, a smoke gas-sodium heat exchanger is provided in the firebox of the steam generator or in the helium gas stream of the high temperature reactor, a process air preheater and (or) Sodium heated in process steam superheaters and/or other gas heaters are used.

蒸気発生器の火室の中では空気又は酸素が予熱され、か
つ処理蒸気を過熱するための高い温度水準の充分の量の
熱が発生する。即ちここでは温度は1000℃以上であ
る。煙ガス−ナトリウム−熱交換器は蒸気発生器の火室
の中で熱交換器に適する場所に設けられている。一方、
蒸気発生器の火室の高い負荷の掛かる部分は従来通り水
に拠って冷却されているので壁の温度は実質的に低い。
In the steam generator firebox air or oxygen is preheated and a sufficient amount of heat is generated at a high temperature level to superheat the process steam. That is, the temperature here is 1000°C or higher. The smoke gas-sodium heat exchanger is installed in the firebox of the steam generator at a location suitable for a heat exchanger. on the other hand,
Since the highly loaded parts of the steam generator firebox are conventionally cooled by water, the wall temperature is substantially lower.

更に有利な事は、蒸気発生器の炉の中で用いられる燃料
の品質に対して同等特別の要求をする必要がないので、
ナトリウム循環を介して、石炭ガス化に全く又は余り適
していない燃料から発生する熱も石炭ガス化に用いるこ
とが出来る。
A further advantage is that there is no need to make equally special demands on the quality of the fuel used in the steam generator furnace.
Via the sodium cycle, heat generated from fuels that are not at all or poorly suited for coal gasification can also be used for coal gasification.

更にナトリウムの熱容量が高く、かつ流動状態に於るナ
トリウムの流動抵抗が低いので、上記発生器と石炭ガス
化設備との間の距離の様に大きな距離に亙り高い温度水
準にある熱を伝達するために、ナトリウムは特に適する
。大きなガスの流れに拠りこの様な熱の伝達を行なう事
は、熱膨張及び絶縁より生じる困難、ガスの流れの中の
圧力損失及び溝ないしは導管に対する高い材料費のため
に不可能である。
Moreover, the high heat capacity of sodium and the low flow resistance of sodium in the fluidized state allow heat to be transferred at high temperature levels over large distances, such as the distance between the generator and the coal gasification equipment. Sodium is particularly suitable for this purpose. Such heat transfer with large gas flows is not possible due to difficulties caused by thermal expansion and insulation, pressure losses in the gas flow and high material costs for the grooves or conduits.

これに対してナトリウムは熱伝導率が高いため、ナトリ
ウムを用いると熱伝導回路が低い圧力で稼動されるので
、加熱される空気、蒸気又はガスの流れの中の圧力の損
失が少ない熱交換器を構成する事が可能である。
In contrast, sodium has a high thermal conductivity, which allows the heat transfer circuit to operate at a lower pressure, resulting in a heat exchanger with less pressure loss in the stream of air, steam, or gas being heated. It is possible to configure

ガス変換設備及び(又は)水分離設備の中で石炭をガス
化する際に高い温度が生じるので、生産ガスの中に含ま
れている感知可能な熱が本発明に拠り、石炭ガス化設備
及び(又は)ガス変換設備及び(又は)水分離設備に接
続している生産ガス−ナトリウム−熱交換器、並びに加
熱されたナトリウムが用いられる処理蒸気発生器及び(
又は)処理空気予熱器によって使用される。
Since high temperatures occur during the gasification of coal in the gas conversion plant and/or water separation plant, the appreciable heat contained in the product gas is, according to the invention, removed from the coal gasification plant and/or the water separation plant. (or) a production gas-sodium heat exchanger connected to a gas conversion facility and/or a water separation facility, and a process steam generator in which heated sodium is used;
or) used by process air preheaters.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を添付図面の模式ブロック図に拠り
詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the schematic block diagrams of the accompanying drawings.

この実施例は蒸気発電装置と組合せられた石炭ガス化設
備である。粉砕設備1の中で粉炭が作られ、同粉炭はガ
ス化リアクター2の中に導かれる。ガス化リアクター2
から生産ガスが生産ガス導管3を介して導出される。ガ
ス化に必要な空気は圧縮器4に拠って処理空気導管5の
中に圧入され、ガス化リアクター2の中に流入する。処
理導管5の中に処理空気予熱器6が設けられており、同
予熱器にはナトリウム循環ポンプ8が設けられているナ
トリウム循環回路7から熱が与えられる。ガス化に必要
な水蒸気は処理蒸気発生器22の中で作られ、同発生器
にはポンプ23及び導管24を介して供給水が供給され
る。処理蒸気発生器22に蒸気が供給されると同発生器
は処理蒸気加熱器として働く。
This example is a coal gasification facility combined with a steam power generator. Pulverized coal is produced in a crushing facility 1 and is led into a gasification reactor 2. Gasification reactor 2
The production gas is led off from the production gas line 3 via the production gas line 3. The air required for gasification is forced into the process air conduit 5 by means of the compressor 4 and flows into the gasification reactor 2 . A process air preheater 6 is provided in the process conduit 5 and is supplied with heat from a sodium circulation circuit 7 in which a sodium circulation pump 8 is provided. The water vapor required for gasification is produced in a process steam generator 22, which is supplied with feed water via a pump 23 and a conduit 24. When steam is supplied to the process steam generator 22, the generator acts as a process steam heater.

ナトリウムはナトリウム加熱器9の熱を蒸気発生器11
の炉10の煙ガスから取る。
For sodium, the heat from the sodium heater 9 is transferred to the steam generator 11.
taken from the smoke gas of the furnace 10.

蒸気発生器の蒸発器13の中で作られる蒸気は先ず過熱
器14を通って導かれ、次に高圧部と低圧部とを有する
蒸気タービン16の中に流入する。蒸気タービン16は
発電器12を駆動する。蒸気タービン16の高圧部と低
圧部との間に中間過熱器15が設けられている。蒸気タ
ービン16には分校部があり、同分校部は供給水子熱器
19の中で供給水を予熱する働きをする。蒸気タービン
16から出る蒸気は凝結器17の中で凝結し、凝結水ポ
ンプ18に拠って供給水子熱器19の中に圧入され、凝
結水ポンプ20に拠って蒸気発生器11の中に導かれる
The steam produced in the evaporator 13 of the steam generator is first conducted through a superheater 14 and then into a steam turbine 16 having a high pressure section and a low pressure section. Steam turbine 16 drives generator 12 . An intermediate superheater 15 is provided between a high pressure section and a low pressure section of the steam turbine 16. The steam turbine 16 has a branch that serves to preheat the feed water in the feed water heater 19 . Steam exiting the steam turbine 16 is condensed in a condenser 17 , forced into a feed water heater 19 by a condensate pump 18 , and introduced into the steam generator 11 by a condensate pump 20 . It will be destroyed.

ナトリウム回路7は、生産ガスの中に含まれている熱を
熱交換器21の中に取り入れて、同熱をナトリウム加熱
器9から出る熱と一緒に空気予熱器6並びに処理蒸気発
生器22に再び与える。ブロック図に於て蒸気発生器1
1の中のナトリウム加熱器9と、生産ガスの流れの中に
ありナトリウムが入る熱交換器21とは、空気予熱器6
及び処理蒸気発生器22と同様に並列に接続されている
The sodium circuit 7 takes the heat contained in the production gas into a heat exchanger 21 and sends the same heat together with the heat coming out of the sodium heater 9 to the air preheater 6 and the process steam generator 22. Give again. Steam generator 1 in block diagram
The sodium heater 9 in the air preheater 6 and the heat exchanger 21 in the production gas stream and into which sodium enters the air preheater 6
and the processing steam generator 22 are connected in parallel.

発生する熱量及び温度に拠っては、直列接続がこれ等の
熱交換器に於て実施される。
Depending on the amount of heat generated and the temperature, a series connection is implemented in these heat exchangers.

熱を核反応に拠って発生させ、ヘリウム循環回路を介し
てナトリウム循環回路7に伝達する。高温リアクターが
、炉12の中で石炭を燃焼させる事に拠り供給される熱
源の代りに設けられる。
Heat is generated by a nuclear reaction and transferred to the sodium circulation circuit 7 via the helium circulation circuit. A high temperature reactor is provided in place of the heat source provided by burning coal in the furnace 12.

石炭ガス化設備2には、空気の代りに酸素でガス化する
場合には、コンプレッサー4及び導管5を介して、予7
熱器6の中で加熱された酸素が供給される。
In the case of gasifying with oxygen instead of air, the coal gasification equipment 2 is provided with a preliminary 7 via a compressor 4 and a conduit 5.
Oxygen heated in the heater 6 is supplied.

石炭ガス化設備2の代りにガス変換設備又は水分離設備
も設けられる。この様にすると粉砕設備1からの石炭の
供給が省略される。その代りにガス分離設備に於てはメ
タンが、水分離設備に於ては蒸気又は他の化学成分が、
ナトリウム循環回路によって高い温度に迄予熱される。
Instead of the coal gasification facility 2, a gas conversion facility or a water separation facility is also provided. In this way, the supply of coal from the crushing equipment 1 is omitted. Instead, methane is produced in gas separation facilities, and steam or other chemical components are produced in water separation facilities.
It is preheated to a high temperature by a sodium circulation circuit.

〔発明の効果〕〔Effect of the invention〕

本発明に拠る方法及び装置によると、通常の炉の中で燃
焼する石炭又は高温リアクターの中で行なわれる核分裂
から生じる非常に高い温度水準にある熱を、装置の大き
さに拠って定まる距離にわたって運ぶ事が出来る。これ
に石炭のガス化、ガスの変換及び水の分離が属する。本
発明に拠るナトリウム循環回路により、これ等の方法は
技術的に大きな規模で実施される。
The method and device according to the invention allow heat at very high temperature levels resulting from coal burning in a conventional furnace or nuclear fission carried out in a high temperature reactor to be transmitted over a distance determined by the size of the device. It can be carried. This includes coal gasification, gas conversion and water separation. With the sodium circulation circuit according to the invention, these methods can be carried out on a technically large scale.

【図面の簡単な説明】[Brief explanation of the drawing]

違− 1%図は本発明の実施例の模式ブロック図である。 2・・・石炭ガス化リアクター 6・・・処理空気予熱器 9・・・煙ガス−ナトリウム−熱交換器(ナトリウム加
熱器) 21・・・生産ガス−ナトリウム−熱交換器22・・・
処理蒸気発生器
The 1% figure is a schematic block diagram of an embodiment of the present invention. 2...Coal gasification reactor 6...Processed air preheater 9...Fume gas-sodium-heat exchanger (sodium heater) 21...Produced gas-sodium-heat exchanger 22...
processing steam generator

Claims (1)

【特許請求の範囲】 1 処理熱を熱交換器に拠って発生及び回収するための
方法に於て、低い圧力で高い温度迄流動性を有する熱担
持体を熱交換器に用いることを特徴とする方法。 2 熱担持体としてナトリウムを用いる特許請求の範囲
第1項に記載の方法。 3 処理熱が炉設備の煙ガスの流れから取り出される特
許請求の範囲第1項又は第2項に記載の方法。 4 処理熱が高温リアクターのヘリウムガスの流れから
取り出される特許請求の範囲第1項又は第2項に記載の
方法。 5 処理熱が石炭ガス化設備の生産ガスの流れから回収
される特許請求の範囲第1項又は第2項に記載の方法。 6 生産熱がガス変換設備の生産ガスの流れから回収さ
れる特許請求の範囲第1項又は第2項に記載の方法。 7 処理熱が水分離設備の生産ガスの流れから回収され
る特許請求の範囲第1項又は第2項に記載の方法。 8 蒸気発生器の火室の中又は高温リアクターのヘリウ
ムガスの流れの中にある煙ガス−ナトリウム−熱交換器
、及び加熱されたナトリウムが関与する処理空気予熱器
及び(又は)処理蒸気過熱器、及び(又は)他のガス加
熱器からなることを特徴とする処理熱の発生及び回収装
置。 9 石炭ガス化装置及び(又は)ガス変換設備、及び(
又は)水分離設備に接続された生産ガス−ナトリウム−
熱交換器及び加熱されたナトリウムが関与する処理蒸気
発生器、及び(又は)処理空気予熱器、及び(又は)他
のガス加熱器からなることを特徴とする処理熱の発生及
び回収装置。
[Claims] 1. A method for generating and recovering process heat using a heat exchanger, characterized in that a heat carrier having fluidity up to a high temperature at a low pressure is used in the heat exchanger. how to. 2. The method according to claim 1, wherein sodium is used as a heat carrier. 3. A method according to claim 1 or 2, wherein the process heat is extracted from the flue gas stream of the furnace installation. 4. A method according to claim 1 or 2, wherein the process heat is extracted from the helium gas stream of the high temperature reactor. 5. A method according to claim 1 or 2, wherein the process heat is recovered from the production gas stream of a coal gasification facility. 6. A method according to claim 1 or 2, wherein the heat of production is recovered from the production gas stream of the gas conversion facility. 7. A method according to claim 1 or 2, wherein the process heat is recovered from the product gas stream of the water separation facility. 8. Smoke gas-sodium heat exchangers in the firebox of the steam generator or in the helium gas stream of the high-temperature reactor, and process air preheaters and/or process steam superheaters involving heated sodium. , and/or other gas heaters. 9 Coal gasification equipment and/or gas conversion equipment, and (
or) production gas - sodium - connected to water separation equipment.
Process heat generation and recovery device, characterized in that it consists of a process steam generator involving a heat exchanger and heated sodium, and/or a process air preheater, and/or other gas heaters.
JP61019160A 1985-02-02 1986-01-30 Method and device for generating and recovering treatment heat Pending JPS61184301A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3503610.9 1985-02-02
DE19853503610 DE3503610A1 (en) 1985-02-02 1985-02-02 METHOD AND DEVICE FOR GENERATING AND RECOVERING PROCESS HEAT

Publications (1)

Publication Number Publication Date
JPS61184301A true JPS61184301A (en) 1986-08-18

Family

ID=6261532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019160A Pending JPS61184301A (en) 1985-02-02 1986-01-30 Method and device for generating and recovering treatment heat

Country Status (7)

Country Link
JP (1) JPS61184301A (en)
AU (1) AU4928185A (en)
DE (1) DE3503610A1 (en)
FR (1) FR2577034A1 (en)
GB (1) GB2170898A (en)
NL (1) NL8502863A (en)
ZA (1) ZA859762B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525774U (en) * 1991-09-12 1993-04-02 日本ケミコン株式会社 Printed circuit board equipment
JPH0525773U (en) * 1991-09-12 1993-04-02 日本ケミコン株式会社 Printed circuit board equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3637872A1 (en) * 1986-11-06 1988-05-19 Kernforschungsz Karlsruhe Device for tapping heat, e.g. in the gas turbine/steam turbine combined cycle
DE4443107A1 (en) * 1994-12-03 1996-06-05 Bernhard Lucke System for recovering and using waste heat or residual energy, esp. generated by thermal energy generators
US6118038A (en) * 1998-09-08 2000-09-12 Uop Llc Arrangement and process for indirect heat exchange with high heat capacity fluid and simultaneous reaction
US6143943A (en) * 1998-09-08 2000-11-07 Uop Llc Process using plate exchanger with high thermal density heat transfer fluid and simultaneous reaction
US6086652A (en) * 1998-12-29 2000-07-11 Uop Llc Method and apparatus for initial purification of liquid metal heat exchange fluid
US6425998B1 (en) 2000-02-23 2002-07-30 Uop Llc Process for detecting impurities in liquid metal heat exchange fluid in high hydrogen permeation environment
DE102008043606A1 (en) * 2008-11-10 2010-05-12 Evonik Degussa Gmbh Energy-efficient plant for the production of carbon black, preferably as an energetic composite with plants for the production of silicon dioxide and / or silicon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB299436A (en) * 1927-10-26 1929-07-04 Emile Prat Improvements in or relating to apparatus for heating air
BE500266A (en) * 1949-10-29
GB724176A (en) * 1951-11-30 1955-02-16 Parsons & Co Ltd C A Improvements in and relating to combustion turbine plants
GB807288A (en) * 1955-11-21 1959-01-14 Foster Wheeler Ltd Improvements in fluid heating systems
DE1910378A1 (en) * 1968-03-04 1969-11-27 Polska Akademia Nauk Inst Masz High temperature recuperator
US4137965A (en) * 1975-07-21 1979-02-06 John J. Fallon, Jr. Waste heat recovery system
US4030877A (en) * 1975-11-26 1977-06-21 Robinson Philip W Furnace waste gas heat recovery device and method of using same
US4083398A (en) * 1975-12-18 1978-04-11 John F. Fallon, Jr. Waste heat recovery system
GB1562642A (en) * 1977-02-04 1980-03-12 Atomic Energy Authority Uk Apparatus for use in a liquid alkali metal environment
DE2805840C2 (en) * 1977-02-14 1986-01-02 American Hydrotherm Corp., New York, N.Y. Process for waste heat recovery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525774U (en) * 1991-09-12 1993-04-02 日本ケミコン株式会社 Printed circuit board equipment
JPH0525773U (en) * 1991-09-12 1993-04-02 日本ケミコン株式会社 Printed circuit board equipment

Also Published As

Publication number Publication date
GB8526053D0 (en) 1985-11-27
FR2577034A1 (en) 1986-08-08
DE3503610A1 (en) 1986-08-07
NL8502863A (en) 1986-09-01
AU4928185A (en) 1986-08-07
ZA859762B (en) 1986-09-24
GB2170898A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
CN113301988B (en) Raw material fluid treatment apparatus and raw material fluid treatment method
JPH0713234B2 (en) Power generation method and apparatus utilizing gasification of carbon-containing fuel
CN102041101B (en) Gasification method with gas waste heat utilization
JPS59229005A (en) Coal gasification composite power generating plant
JPS61178505A (en) Method and device for operating power plant
JPS61184301A (en) Method and device for generating and recovering treatment heat
US4799356A (en) Synthesis gas generation complex and process
US4345173A (en) Method of generating electricity using an endothermic coal gasifier and MHD generator
JPH08506873A (en) New power method
US4328009A (en) Coal gasification
KR102369727B1 (en) Power generation cycle system and method
RU2082929C1 (en) Device for cooling and recovery of heat furnace waste gases
JP2003518220A (en) Operation method of steam turbine equipment and steam turbine equipment operated by this method
US4337067A (en) Coal gasification
JP6259552B1 (en) Gasification system with power generation equipment
JPS629639B2 (en)
CN101696361B (en) High-pressure powdered coal gasifier with back-heating system
JPH0415364B2 (en)
JP3337276B2 (en) Fossil fuel gasification plant
JPS63285230A (en) Coal gasifying type composite power plant
JPH04321704A (en) Fuel cell compound generating plant
CN205505045U (en) Coal gasifier exhaust -heat boiler
JPS62190307A (en) Method of recovering heat of reaction
TW202415889A (en) Method for generating steam in combination with a power generation process as well as plant to this end
JPS6092392A (en) Synthetic gas producing apparatus and process from carbon-containing material by use of nuclear heat energy