JPS61183167A - Crack-resistant cubic boron nitride base sintering material - Google Patents
Crack-resistant cubic boron nitride base sintering materialInfo
- Publication number
- JPS61183167A JPS61183167A JP60019478A JP1947885A JPS61183167A JP S61183167 A JPS61183167 A JP S61183167A JP 60019478 A JP60019478 A JP 60019478A JP 1947885 A JP1947885 A JP 1947885A JP S61183167 A JPS61183167 A JP S61183167A
- Authority
- JP
- Japan
- Prior art keywords
- cbn
- boron nitride
- cutting
- cubic boron
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、特にすぐれた耐欠損性を有し、かつ耐摩耗
性、耐熱性、耐酸化性、および高温での化学的安定性に
すぐれ、鋳鉄やダイス鋼、さらに高速度鋼などの高硬度
鋼の高速切削や、高切込みおよび高送りなどの重切削に
切削工具として使用するのに適した立方晶窒化硼素(以
下CBNで示す)基焼結材料に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention has particularly excellent fracture resistance, as well as excellent wear resistance, heat resistance, oxidation resistance, and chemical stability at high temperatures. A cubic boron nitride (hereinafter referred to as CBN) based cutting tool suitable for high-speed cutting of high-hardness steel such as cast iron, die steel, and high-speed steel, and heavy-duty cutting with high depth of cut and high feed. It concerns sintered materials.
近年、金属の切削加工の分野において、鋳鉄切削の高速
化や、ダイス鋼および高速度鋼などの高硬度鋼の研削加
工から切削加工への切り換えが急速に進み、それに伴っ
て切削工具としてCBN基焼結材料が注目され、多数の
CBN基焼結材料が提案されるようになっている。In recent years, in the field of metal cutting, the speed of cutting cast iron has increased, and the switch from grinding to cutting of high-hardness steels such as die steel and high-speed steel has progressed rapidly. Sintered materials have attracted attention, and a large number of CBN-based sintered materials have been proposed.
これらのCBN基焼結材料のうちで、特(=、周期律表
の4 a* 5 a *および6a族金属の炭化物、窒
化物、炭窒化物、炭酸化物、または炭窒酸化物からなる
高融点化合物:5〜50%、酸化アルミニウム(以下A
Z、O,で示す)=10〜70 ヂ。Among these CBN-based sintered materials, especially high-grade materials consisting of carbides, nitrides, carbonitrides, carbonates, or carbonitrides of metals from groups 4a*, 5a*, and 6a of the periodic table. Melting point compound: 5-50%, aluminum oxide (hereinafter A
(denoted as Z, O,) = 10 to 70 も.
を含有し、残りがCBN(ただし25〜854含有)と
不可避不純物からなる組成(以上容量%、以下チは容量
係を示す)を有するCBN基焼結材料(特公昭59−2
7303号公報参照)は、すぐれた耐摩耗性、耐熱性、
耐酸化性、および高温での化学的安定性をもっことから
、切削工□具として有用なものである。CBN-based sintered material (Japanese Patent Publication No. 59-2
7303) has excellent wear resistance, heat resistance,
It is useful as a cutting tool because of its oxidation resistance and chemical stability at high temperatures.
しかし、上記の従来CBN基焼結材料を、例えば、硬さ
: &C6,0を有する高硬度鋼としてのダイス鋼(S
KD−1i)の切削にスローアウエイチップとして用い
た場合、切削速度を150 m/minとした状態で、
切込みを0.3調以上、あるいは送りを0.3 w以上
とすると、チップ切刃の摩耗進行が初期段階にもかかわ
らず、時折、刃先ノーズ部よりすくい面と平行(二貝殻
状に剥離が生じ、使用寿命に至るものであった。However, the conventional CBN-based sintered material described above is, for example, die steel (S
When used as a throw-away tip for cutting KD-1i), at a cutting speed of 150 m/min,
When the depth of cut is set to 0.3 or more, or the feed is set to 0.3 W or more, even though the wear of the chip cutting edge is in the early stages, peeling occurs parallel to the rake face (in a two-shell shape) from the nose of the cutting edge. This caused the product to reach the end of its service life.
その原因としては、高硬度鋼切削::伴う刃先の高温化
によって微小熱クラツクやマイクロチッピングが発生し
、さらに加えて高負荷切削(特に高送り切削)によって
過大な切削抵抗(特に背分力と送り分力)が生じるよう
になるため、すくい面と平行方向に容易にクラックが伝
播するようになり、この結果剥離が生じて欠損に至るも
のと考えられる。The causes of this are the high temperature of the cutting edge that occurs when cutting high-hardness steel, which causes minute thermal cracks and microchips, and in addition, high-load cutting (especially high-feed cutting) that causes excessive cutting resistance (especially back force and This is thought to cause cracks to easily propagate in the direction parallel to the rake face, resulting in peeling and chipping.
さらに、詳細にその原因について検討するに、上記の従
来CBN基焼結材料は、超高圧容器を用い、高温加熱し
た状態で、第1図に概略縦断面図で示されるように、シ
リンダ1の中心部に上下アンビル2.3ではさんだ状態
で固体圧力媒体4を介して挿入された試料Sを、前記上
下アンビル2゜3をそれぞれ上下方向に可動して加圧す
ることによって製造されるものであるため、試料Sに加
わる力は相対的に水平方向よりは垂直方向に過大となる
ことから、製造された焼結材料を、ミクロ的に観察する
と、第2図に概略組織図で示されるように、分散相形成
成分であるCBN粒子が加圧方向に偏平に押しつぶされ
た状態で分布したものになっている。Furthermore, to examine the cause in detail, the above-mentioned conventional CBN-based sintered material is heated to a high temperature using an ultra-high pressure container, and as shown in the schematic longitudinal cross-sectional view in FIG. The sample S is inserted into the center via a solid pressure medium 4 while being sandwiched between the upper and lower anvils 2.3, and is manufactured by pressurizing the sample by moving the upper and lower anvils 2.3 in the vertical direction, respectively. Therefore, the force applied to the sample S is relatively larger in the vertical direction than in the horizontal direction. Therefore, when the manufactured sintered material is observed microscopically, it shows the structure as shown in the schematic diagram in Figure 2. The CBN particles, which are the dispersed phase forming component, are distributed in a flattened state in the direction of pressure.
これは、CBN粒子と結合材との接触状態での固相反応
を考えた場合、加圧方向と直交する面での固相反応の方
がより促進されると共に、CBN粒子が加圧方向に塑性
変形するためC二1図示されるようにCBN粒界が水平
方向に細長い形状を呈するようになるものと考えられ、
この結果焼結材料は、加圧方向に直交する面(水平方向
)にそって流れる1種のフローライン組織をもつように
なり、この状態の焼結材料を切削工具として用いると、
切削時の背分力および送り分力方向に平行なCBN粒子
のフローラインをもつことになり、これ(二高負荷がか
かると、微小熱クラツクやマイクロチッピングを起点と
して、すくい面と平行にクラックが容易に伝播して剥離
に至るものと考えられる。This is because when considering the solid phase reaction in the state of contact between CBN particles and the binder, the solid phase reaction is more accelerated in the plane perpendicular to the pressurizing direction, and the CBN particles move in the pressurizing direction. It is thought that due to plastic deformation, the CBN grain boundaries take on an elongated shape in the horizontal direction, as shown in Figure C21.
As a result, the sintered material has a type of flow line structure that flows along a plane (horizontal direction) perpendicular to the pressing direction, and when the sintered material in this state is used as a cutting tool,
CBN particles have a flow line parallel to the back force and feed force direction during cutting, and when a high load is applied, cracks parallel to the rake face start from small thermal cracks and microchipping. It is thought that this can easily propagate and lead to peeling.
そこで1本発明者等は、上述のような観点から、上記の
従来CBN基焼結材料のもつ問題点を解決すべく研究を
行なった結果。Therefore, the inventors of the present invention conducted research to solve the problems of the conventional CBN-based sintered materials from the above-mentioned viewpoints.
(2) 上記従来CBN基焼結材料における分散相形成
成分としてのCBN粒子の分布を、第3図(二概略組織
図で示されるように、
粒径が5〜18Pnの粗粒のものが30〜70容量%、
粒径が1〜5μm未満の細粒のものが30〜70容量%
、
を占める混粒構造にすると、加圧焼結時に加圧方向に応
じた軸方向応力が加わっても、細粒のCBN粒子が圧力
分布に応じて圧力伝達の不充分な個所へ移動するので、
材料自体に加わる圧力が均一、かつ平均化するようにな
り、この結果各CBN粒子の加圧方向に直交する面での
選択的な固相反応促進が防止されるようになると共に、
CBN粒子が加圧方向(:押しつぶされる頻度が著しく
低減されるよう(二なることから、CBN粒子のフロー
ライン組織の形成が抑制されるようになって、耐欠損性
が飛躍的に向上するようになること。(2) The distribution of CBN particles as a dispersed phase-forming component in the conventional CBN-based sintered material is shown in Figure 3 (2). -70% by volume, 30-70% by volume of fine particles with a particle size of less than 1-5 μm
If a mixed grain structure is created in which , ,
The pressure applied to the material itself becomes uniform and averaged, and as a result, selective promotion of the solid phase reaction on the plane perpendicular to the pressurizing direction of each CBN particle is prevented, and
The CBN particles are compressed in the pressurizing direction (: the frequency of crushing is significantly reduced (second), the formation of a flow line structure of the CBN particles is suppressed, and the fracture resistance is dramatically improved. To become.
(ロ) 第2図に見られるように、相対的に粗粒のCB
N粒子のみであると、CBN粒子同志がブリッジを組む
頻度が高まり、この状態で強制的に加圧焼結を行なうと
、ブリッジを形成しているCBN粒子のエツジが応力集
中(二より破壊され、さらに焼結過程でCBN粒子同志
のブリッジにより圧力伝達の充分でない所にマイクロボ
イドが形成されるよう(:なることから、高強度の焼結
材料を得ることは難しいが、第3図(=見られるよう(
=混粒組織(ニすると、CBN粒子同志のブリッジ形成
およびマイクロボイドの形成が著しく抑制されるように
なることから、高強度の焼結材料を得ることができるこ
と。(b) As seen in Figure 2, relatively coarse CB
If only N particles are present, the CBN particles form bridges with each other more frequently, and if pressure sintering is performed in this state, the edges of the CBN particles forming the bridges will become stressed (secondarily destroyed). In addition, during the sintering process, microvoids are formed in areas where pressure transmission is insufficient due to bridges between CBN particles (:), so it is difficult to obtain a high-strength sintered material, but as shown in Figure 3 (= So that you can see it (
=Mixed grain structure (with this, the formation of bridges between CBN particles and the formation of microvoids are significantly suppressed, making it possible to obtain a high-strength sintered material.
以上(2)および(ハ)に示される知見を得たのである
。The findings shown in (2) and (c) above were obtained.
この発明は、上記知見にもとづいてなされたものであっ
て、
Ti 、 Zr rおよびTaの炭化物、窒化物、およ
び炭窒化物、並びにWの炭化物、Tiの硼化物(以下、
それぞれTie 、 TiN 、 T1CN * Zr
C* ZrN + ZrCN 。This invention was made based on the above findings, and includes carbides, nitrides, and carbonitrides of Ti, Zr, and Ta, as well as carbides of W, borides of Ti (hereinafter referred to as
Tie, TiN, T1CN*Zr respectively
C*ZrN + ZrCN.
TaC、TaN 、 TaCN 、 W C、およびT
iB、で示す)。TaC, TaN, TaCN, W C, and T
iB).
さら(=これらの2種以上の固溶体(以下、これらを総
称して高融点化合物という)のうちの1種または2種以
上=10〜40幅。Further (= one or more of these two or more solid solutions (hereinafter collectively referred to as high melting point compounds)) = 10 to 40 range.
A4よOl:3〜30%、
を含有し、残りがCBN(ただし50〜80%含有)と
不可避不純物からなる組成(以上容量幅、以下係はすべ
て容量壬を示す)を有するCBN基焼結材料において、
分散相形成成分としてのCBN粒子の粒度分布を、
粒径が5〜18μmの粗粒:30〜70%、粒径が1〜
5μm未満の細粒:30〜70%、とすることによって
、耐欠損性および強度を向上せしめたCBN基焼結材料
(=特徴を有するものである。CBN-based sintered material containing A4-Ol: 3 to 30%, and the remainder consisting of CBN (containing 50 to 80%) and unavoidable impurities (the above is the capacity range, and the following is the capacity range). In materials,
The particle size distribution of CBN particles as a dispersed phase forming component is as follows: coarse particles with a particle size of 5 to 18 μm: 30 to 70%, and particle size of 1 to 18%.
Fine particles less than 5 μm: 30 to 70% of the CBN-based sintered material has improved fracture resistance and strength.
つぎに、この発明のCBN基焼結材料において。Next, in the CBN-based sintered material of this invention.
成分組成およびCBN粒子の粒度分布を上記のとおりに
限定した理由を説明する。The reason why the component composition and the particle size distribution of CBN particles are limited as described above will be explained.
(2) 高融点化合物の含有量
これらの成分は、それ自体高い高温硬さ、弾性係数、お
よび熱伝導性を有し、かつ熱膨張係数の小さいものであ
り、したがって材料の耐熱性および耐摩耗性を向上させ
、この結果として高硬度鋼の切削に際しては剥離および
欠損の起点となる微小熱クラツクやマイクロチッピング
の発生を極力抑制する作用をもつほか、焼結に際しては
スケルトン組織を形成して材料の靭性を向上せしめる作
用をもつが、その含有量が101未満では前記作用に所
望の効果が得られず、一方40憾を越えて含有させると
、相対的にCBNの含有量が少なくなって材料の耐摩耗
性が低下するよう(=なることから、その含有量を10
〜404と定めた。(2) Content of high melting point compounds These components themselves have high high temperature hardness, elastic modulus, and thermal conductivity, and have a small coefficient of thermal expansion, and therefore improve the heat resistance and wear resistance of the material. As a result, when cutting high-hardness steel, it has the effect of suppressing as much as possible the occurrence of minute thermal cracks and microchips, which are the starting points of peeling and chipping, and when sintering, it forms a skeleton structure and strengthens the material. However, if the content is less than 101, the desired effect cannot be obtained in this effect, while if the content exceeds 40, the content of CBN will be relatively low and the material Since the wear resistance of
~404.
なお、材料の製造に際して、特に原料粉末として、 T
iNと、 Ti−At金属間化合物とを反応させること
により生成させたT1□A/、 Nを用いると、このT
i、AtNは1200℃以上の焼結温度で急激に分有す
るCBNとの反応によってTiB、を生成し、このT
I B *が、CBN、高融点化合物、およびht t
Osの間に存在する空隙へ廻り込むようにして析出する
ようになるため、得られた焼結材料は一段とすぐれた靭
性をもつようになる。In addition, when manufacturing the material, especially as a raw material powder, T
When using T1□A/, N produced by reacting iN and a Ti-At intermetallic compound, this T
i, AtN reacts with CBN which rapidly splits at a sintering temperature of 1200°C or higher to produce TiB, and this T
I B * is CBN, a high melting point compound, and ht t
Since the sintered material precipitates by going around into the voids existing between the Os, the obtained sintered material has even better toughness.
(ハ) At、O,の含有量
AA、O,成分は、材料;:すぐれた耐酸化性および高
温での化学的安定性を付与し、特に切刃と被剛材の境界
面となり、かつ急激な熱勾配にさらされる前切刃部およ
び横切刃部の境界摩耗、並びに高熱の切粉によりすきと
られるすくい面のクレータ−摩耗を抑制して、欠損の起
点となる切刃損傷を阻止する作用をもつが、その含有量
が3%未満では前記作用に所望の効果が得られないばか
りでなく、焼結時に靭性に富んだスケルトン組織を十分
に形成することができず、一方3096を越えて含有さ
せると、相対的にCBHの含有量が少なくなりすぎて所
望のすぐれた耐摩耗性を確保することができなくなるこ
とから、その含有量を3〜30係と定めた。(c) Content of At, O, AA, O, component gives the material excellent oxidation resistance and chemical stability at high temperatures, especially serves as an interface between the cutting edge and the rigid material, and Suppresses boundary wear on the front cutting edge and side cutting edge, which are exposed to sharp thermal gradients, and crater wear on the rake face, which is scraped by high-temperature chips, thereby preventing damage to the cutting edge, which is the starting point for chipping. However, if its content is less than 3%, not only will the desired effect not be obtained, but also a skeleton structure rich in toughness cannot be sufficiently formed during sintering. If the content exceeds the CBH content, the CBH content becomes relatively too small and it becomes impossible to secure the desired excellent wear resistance, so the content was set at 3 to 30 parts.
(c)CBNの含有量
CBN成分には、それ自体のもつ性質によって、材料に
高硬度、すぐれた化学的安定性、および高熱伝導性を付
与する作用があるが、その含有量が50優未満では満足
する前記特性を確保することができず、−万80鴫を越
え文含有させると、焼結性が著しく劣化してCBN粒子
が脱落し易くなり、結果的に耐摩耗性の著しい劣化をま
ねくようになることから、その含有量を50〜80%と
定めた。(c) Content of CBN The CBN component has the effect of imparting high hardness, excellent chemical stability, and high thermal conductivity to the material due to its own properties, but its content is less than 50%. However, if the content exceeds -80,000 yen, the sinterability deteriorates significantly and the CBN particles tend to fall off, resulting in a significant deterioration of the wear resistance. The content was set at 50% to 80% since it would lead to a large amount of carbon.
tD CBN粒子の粒度分布
CBNの粗粒および細粒の粒径および分布割合は、いず
れも多数の実験結果にもとづき経験的に定めたもので、
粒径が5〜18μmの粗粒:30〜70チ。tD Particle size distribution of CBN particles The particle size and distribution ratio of coarse and fine CBN particles were determined empirically based on the results of numerous experiments. Coarse particles with a particle size of 5 to 18 μm: 30 to 70 blood.
粒径が1〜5μm未満の細粒:30〜70%、の割合で
分布する場合に、すぐれた耐欠損性と高強度とを具備す
るよう;:なるものであり、しだがつて、上記粒径の粗
粒と細粒とが上記の割合で存在しない場合には、クラッ
ク伝播抵抗の減少、CBN粒子自体の破壊靭性値の低下
、CBN粒子同志のブリッジ頻度の増加、およびCBH
のフローライン組織の形成のうちの少なくとも1つが原
因ですぐれた耐欠損性と高強度とを具備せしめることが
できなくなるのである。When distributed in the ratio of 30 to 70% fine particles with a particle size of less than 1 to 5 μm, the above particles have excellent fracture resistance and high strength. When coarse grains and fine grains do not exist in the above ratio, crack propagation resistance decreases, the fracture toughness value of the CBN particles themselves decreases, the frequency of bridges between CBN particles increases, and CBH
Due to at least one of the formation of a flow line structure, it becomes impossible to provide excellent fracture resistance and high strength.
つぎに、この発明のCBN基焼結材料を実施例により具
体的に説明する。Next, the CBN-based sintered material of the present invention will be specifically explained using examples.
原料粉末として、それぞれ平均粒径:0.5μm。As raw material powder, average particle size: 0.5 μm.
3胛me 7胛m、15胛、および30μmを有する5
種類のCBN粉末、同0.2 、amの超微粒At5O
s粉末、同0.1〜5μmの範囲内の平均粒径な肩する
TIC粉末、ZrC粉末、TaC粉末、TEN粉末、Z
rN粉末、TaN粉末、T1CN粉末、 ZrCN粉末
、TaCN粉末、に粉末、T i*kl N粉末、 (
Ti、Ta)C粉末、(Ti、Zr)N粉末、 (Ti
、W) CN、および(Ti 、Ta、W ) CN
粉末を用意し、これら原料粉末を所定の配合組成に配合
し、ボールミルにて5時間の混合を行なった後。3 laces me 7 laces m, 15 laces, and 5 with 30 μm
Types of CBN powder, 0.2 am ultrafine At5O
S powder, TIC powder with an average particle size within the range of 0.1 to 5 μm, ZrC powder, TaC powder, TEN powder, Z
rN powder, TaN powder, T1CN powder, ZrCN powder, TaCN powder, Ni powder, Ti*kl N powder, (
Ti, Ta) C powder, (Ti, Zr) N powder, (Ti
, W) CN, and (Ti, Ta, W) CN
After preparing powders, blending these raw material powders into a predetermined composition, and mixing in a ball mill for 5 hours.
1、5 tonz−の圧力で圧粉体にプレス成形し、つ
いでこの圧粉体を、超高圧装置を用い、圧カニ6万気圧
、温度:1500℃、保持時間:60分の条件で超高圧
焼結することによって、それぞれ第1表に示される成分
組成をもった本発明焼結材料1〜18および従来焼結材
料1〜3をそれぞれ製造した。It is press-molded into a green compact at a pressure of 1,5 tonz-, and then this green compact is subjected to ultra-high pressure using an ultra-high pressure device under the conditions of a pressure crab of 60,000 atm, temperature: 1500°C, and holding time: 60 minutes. By sintering, sintered materials 1 to 18 of the present invention and conventional sintered materials 1 to 3, each having the composition shown in Table 1, were produced.
ついで、この結果得られた本発明焼結材料1〜18およ
び従来焼結材料1〜3について、CBN粒子の粒度分布
を測定し、さらにこれより、チップの切断切出し、WC
C超超硬合金製ホルダのろう付は加工、研削、および研
磨仕上げの一連の工程にて、5NP432の形状をMす
る切削工具を作製し、この切削工具を用いて。Next, the particle size distribution of CBN particles was measured for the resulting sintered materials 1 to 18 of the present invention and conventional sintered materials 1 to 3.
To braze the C cemented carbide holder, a cutting tool with the shape of 5NP432 M was created through a series of processing, grinding, and polishing steps, and this cutting tool was used.
被削材:高速度鋼(SKD−11,硬さ:HRC60)
、
切削速度: 170 m/min。Work material: High speed steel (SKD-11, hardness: HRC60)
, Cutting speed: 170 m/min.
切込み:0.5m。Depth of cut: 0.5m.
送り:0.3調/rev、、
の条件にて高硬度鋼の連続高速・重切削試験な行ない、
切刃のすくい面摩耗深さが100μmに至るまでの切削
時間を測定した。これらの測定結果を第゛1表に示した
。Continuous high-speed/heavy cutting tests were conducted on high-hardness steel under the conditions of feed: 0.3 tone/rev.
The cutting time until the rake face wear depth of the cutting edge reached 100 μm was measured. The results of these measurements are shown in Table 1.
第1表に示される結果から明らかなように、本発明焼結
材料1〜18は、いずれもすぐれた耐摩耗性および耐欠
損性を示し、使用寿命に至るまですぐれた切削性能を発
揮するのに対して、従来焼結材料1〜3は、いずれもC
BN粒子の主体が扁平に押しつぶされた粗粒で構成され
ているので、切削開始後、いずれも8分以内で切刃に欠
損が発生し、便用寿命に至るものであった。As is clear from the results shown in Table 1, all of the sintered materials 1 to 18 of the present invention exhibit excellent wear resistance and chipping resistance, and exhibit excellent cutting performance throughout their service life. On the other hand, conventional sintered materials 1 to 3 all have C
Since the BN particles were mainly composed of coarse particles crushed into flat shapes, the cutting edge was damaged within 8 minutes after the start of cutting, and the service life was reached.
上述のように、この発明のCBN基焼結材料は、特にす
ぐれた耐欠損性および高強度を有し、さらに耐摩耗性、
耐熱性、耐酸化性、および高温での化学的安定性にもす
ぐれているので、鋳鉄やダイ、ス鋼、さらに高速度鋼な
どの高硬度鋼の廊速切削や、高切込みおよび高送りなど
の重切削に切削工具として用いた場合(:、すぐれた切
削性能をきわめて長期に亘って発揮するなど工業上有用
な特性を有するのである。As mentioned above, the CBN-based sintered material of the present invention has particularly excellent fracture resistance and high strength, and also has excellent wear resistance and
It has excellent heat resistance, oxidation resistance, and chemical stability at high temperatures, so it is suitable for high-speed cutting of high-hardness steel such as cast iron, die steel, steel, and high-speed steel, as well as high depth of cut and high feed. When used as a cutting tool for heavy cutting, it exhibits excellent cutting performance over an extremely long period of time, making it industrially useful.
第1図はCBN基焼結材料の製造装置の主要部を示す概
略縦断面図、第2図は従来CBN基焼結材料の概略組織
図、第3図は本発明CBN基焼結材料の概略組織図であ
る。図面において、1・・・シリンダ、 2・
・・上アンビル。
3・・・下アンビル、 4−・・固体圧力媒体、S
・・・試料。FIG. 1 is a schematic vertical cross-sectional view showing the main parts of a manufacturing apparatus for CBN-based sintered material, FIG. 2 is a schematic organization diagram of a conventional CBN-based sintered material, and FIG. 3 is a schematic diagram of a CBN-based sintered material of the present invention. This is an organizational chart. In the drawings, 1... cylinder, 2...
...Upper anvil. 3... Lower anvil, 4-... Solid pressure medium, S
···sample.
Claims (1)
化物、並びにWの炭化物、Tiの硼化物、さらにこれら
の2種以上の固溶体のうちの1種または2種以上:10
〜40%、 酸化アルミニウム:3〜30%、 を含有し、残りが立方晶窒化硼素(ただし50〜80%
含有)と不可避不純物からなる組成(以上容量%)を有
する立方晶窒化硼素基焼結材料において、 分散相形成成分としての上記立方晶窒化硼素のうち、 粒径が5〜18μmの粗粒のものが30〜70容量%、 粒径が1〜5μm未満の細粒のものが30〜70容量%
、 を占める粒度分布とすることによつて耐欠損性を向上せ
しめたことを特徴とする耐欠損性にすぐれた立方晶窒化
硼素基焼結材料。[Claims] One or more of carbides, nitrides, and carbonitrides of Ti, Zr, and Ta, carbides of W, borides of Ti, and solid solutions of two or more of these. :10
~40%, aluminum oxide: 3~30%, and the rest is cubic boron nitride (50~80%).
In a cubic boron nitride-based sintered material having a composition (volume %) consisting of unavoidable impurities, of the cubic boron nitride as a dispersed phase forming component, coarse grains with a particle size of 5 to 18 μm are used. 30 to 70% by volume, and 30 to 70% by volume of fine particles with a particle size of less than 1 to 5 μm.
A cubic boron nitride-based sintered material with excellent fracture resistance, characterized by improved fracture resistance by having a particle size distribution that occupies .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60019478A JPS61183167A (en) | 1985-02-04 | 1985-02-04 | Crack-resistant cubic boron nitride base sintering material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60019478A JPS61183167A (en) | 1985-02-04 | 1985-02-04 | Crack-resistant cubic boron nitride base sintering material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61183167A true JPS61183167A (en) | 1986-08-15 |
JPH0238543B2 JPH0238543B2 (en) | 1990-08-30 |
Family
ID=12000444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60019478A Granted JPS61183167A (en) | 1985-02-04 | 1985-02-04 | Crack-resistant cubic boron nitride base sintering material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61183167A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046128A1 (en) * | 2004-10-29 | 2006-05-04 | Element Six (Production) (Pty) Ltd | Cubic boron nitride compact |
CN107649594A (en) * | 2017-09-19 | 2018-02-02 | 湖州科创机械有限公司 | A kind of clutch plate perforating die die process |
-
1985
- 1985-02-04 JP JP60019478A patent/JPS61183167A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046128A1 (en) * | 2004-10-29 | 2006-05-04 | Element Six (Production) (Pty) Ltd | Cubic boron nitride compact |
JP2008517869A (en) * | 2004-10-29 | 2008-05-29 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | Cubic boron nitride compact |
US8318082B2 (en) | 2004-10-29 | 2012-11-27 | Element Six Abrasives S.A. | Cubic boron nitride compact |
CN107649594A (en) * | 2017-09-19 | 2018-02-02 | 湖州科创机械有限公司 | A kind of clutch plate perforating die die process |
Also Published As
Publication number | Publication date |
---|---|
JPH0238543B2 (en) | 1990-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130040769A (en) | Sintered cubic boron nitride tool | |
KR101456395B1 (en) | Cubic boron nitride sintered body tool | |
JP2000054007A (en) | Diamond-sintered body and its production | |
EP0181258A2 (en) | Improved cubic boron nitride compact and method of making | |
JP5409199B2 (en) | Cutting tools | |
JP2523452B2 (en) | High strength cubic boron nitride sintered body | |
EP0816304B1 (en) | Ceramic bonded cubic boron nitride compact | |
JPS61183167A (en) | Crack-resistant cubic boron nitride base sintering material | |
JPH11188510A (en) | Hard sintered body cutting tool | |
JPH10193206A (en) | Cutting tool whose cutting edge piece has excellent brazing joining strength | |
JPS644989B2 (en) | ||
JPS6154858B2 (en) | ||
JPS6056783B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPH08336705A (en) | Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance | |
JPS61197469A (en) | Manufacture of cubic boron nitride base sintering material for cutting tool | |
JPS6389471A (en) | Ceramic material for cutting tool | |
JP3412529B2 (en) | Manufacturing method of indexable cutting insert with excellent chipping resistance | |
JPH09108911A (en) | Composite cutting tip whose cutting edge piece has excellent joining strength | |
JP3412528B2 (en) | Manufacturing method of indexable cutting insert with excellent chipping resistance | |
JPH0377151B2 (en) | ||
JP3358477B2 (en) | Cutting tool with excellent brazing joint strength with cutting edge piece | |
JPS6369749A (en) | High strength alumina base ceramic sintered body | |
JPH09108912A (en) | Composite cutting tip whose cutting edge piece has excellent joining strength | |
JPH02167606A (en) | Cutting tip made of cubic system boron nitride group super high pressure sintered material capable of cutting workpiece difficult to cut | |
JP3412527B2 (en) | Manufacturing method of indexable cutting insert with excellent chipping resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |