JPS61182266A - Thin-film transistor device and manufacture thereof - Google Patents

Thin-film transistor device and manufacture thereof

Info

Publication number
JPS61182266A
JPS61182266A JP60022913A JP2291385A JPS61182266A JP S61182266 A JPS61182266 A JP S61182266A JP 60022913 A JP60022913 A JP 60022913A JP 2291385 A JP2291385 A JP 2291385A JP S61182266 A JPS61182266 A JP S61182266A
Authority
JP
Japan
Prior art keywords
film
thin film
electrode
insulating film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60022913A
Other languages
Japanese (ja)
Other versions
JPH0654782B2 (en
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP60022913A priority Critical patent/JPH0654782B2/en
Publication of JPS61182266A publication Critical patent/JPS61182266A/en
Publication of JPH0654782B2 publication Critical patent/JPH0654782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate

Landscapes

  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To obtain a TFT device having high reliability and a large area by forming an island, in which a surface protective film, a gate insulating film and a semiconductor thin-film are superposed on parts of source-drain electrodes, and shaping a gate electrode and an extending section between the surface protective film and the gate insulating film. CONSTITUTION:ITO12, 13, Cr 22, 23 and n<+> amorphous Si(a-Si) films 32, 33 in thickness of 500Angstrom or less are superposed onto a glass plate 1, thus forming drain-source electrodes 2, 3. An a-Si film 4 and a gate insulating film 5 are superposed, a gate electrode 6 and a wiring section for the gate electrode 6 are shaped, and the surface is coated with a protective insulating film 7. Laminated films 7, 5, 4, 33, 23 on the ITO13 for a picture element as one part of the source electrode 3 are removed to the same shape, and a TFT100 with the gate electrode 6 on the inside of an insular body 10 and a signal charge storage capacitance 110 of a gate electrode 6'-the films 5, 4, 33, 23-the electrode 13 between the electrode 6' in an adjacent line and the picture element electrode 13 are formed. According to the constitution, the resistance of drain wirings is lowered, and an area can be reduced, thus increasing withstanding voltage between the wirings, then also preventing a change with time of characteristics by the protective film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質シリコン(α−54)や多結晶シリコ
ン(P−s<)等の半導体薄膜を用いた絶縁ゲート型薄
膜トランジスタ(T P T)装置で特に半導体薄膜が
極めて薄い構造と、その容易な製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an insulated gate thin film transistor (T In particular, the present invention relates to a structure in which a semiconductor thin film is extremely thin in a PT) device and an easy manufacturing method thereof.

〔発明の概要〕[Summary of the invention]

絶縁基板上にソース、ドレイン電極を設け、半導体薄膜
とゲート絶縁膜と第2導電膜を連続堆積した後ゲート電
極を第2導電膜で形成し、表面保護用絶縁、嗅を堆積後
との絶縁膜とゲート絶縁膜と半導体薄膜の不要部を一括
除去するTFTの製造工程と、そ詐によってできる’I
”FT構造を提示している。マスク工程が8回でも製造
可能で、かつ極めて薄い半導体薄膜を用いるのに適した
構造、製造方法でおる。
Source and drain electrodes are provided on the insulating substrate, and after sequentially depositing a semiconductor thin film, a gate insulating film, and a second conductive film, a gate electrode is formed with the second conductive film, and insulation for surface protection and insulation after deposition are performed. The TFT manufacturing process involves removing unnecessary parts of the film, gate insulating film, and semiconductor thin film all at once, and the 'I' created by this process.
``We are proposing an FT structure.It can be manufactured even with eight mask steps, and the structure and manufacturing method are suitable for using extremely thin semiconductor thin films.

〔従来の技術〕[Conventional technology]

半導体薄膜特にα−Btf用いた’1”FTは低温で大
面積に製作できるため、液晶表示装置やイメージセンサ
等に応用されつつある。a−日(TPTは従来ゲート電
極を最下層に形成する逆スタガー構造が主に用いらnて
きたが、製造工程が多いという問題があった。−万% 
 1984年8月4 th工%ternationaL
 DiapLay Re5eaτch 0onfere
nae (パリ〕で発表さ372ONETのTPTは、
マスク数2枚で製造できるため注目を浴びている。その
構造例の平面図を第2図0)に示す。第2図Cb)は第
2図翰のB、−Bl線に沿った断面図である。ガラス基
板1上に、■To等の透明導電膜12 、13と、十α
−8([32,33でドレイン電極2とソース電極8を
形成する。その上にα−8(膜4、ゲート電極用金属(
At)を連続堆積する。その後ゲート電1極6形成用パ
ターンでその下のゲート絶縁膜5及びα−Sイ膜4さら
にn十α−日i膜32 、33を除去する。その結果 
T11’T100.画素電極131 ドレイン(データ
)配線12から成る液晶表示用基板が完成する。この構
造は、マスク回数2回という非常に簡単な製造工程で実
現できるといった利点を有している。しかし下記の問題
点も有して岬5− いる。ゲート電極6端部とα−8484端部の間の絶縁
距離は、ゲート絶縁膜5の厚みしかなくゲート、ソース
、ゲート、ドレイン間耐圧が低い。
Semiconductor thin films, especially '1'' FTs using α-Btf, can be manufactured in large areas at low temperatures and are being applied to liquid crystal display devices, image sensors, etc. The inverted stagger structure has been mainly used, but it has the problem of requiring many manufacturing steps.-10,000%
August 4, 1984
DiapLay Re5eaτch 0onfere
The 372ONET TPT announced at nae (Paris) is
It is attracting attention because it can be manufactured with just two masks. A plan view of an example of the structure is shown in FIG. 20). FIG. 2Cb) is a sectional view taken along line B and -Bl of FIG. On the glass substrate 1, ■ transparent conductive films 12 and 13 such as To, and
-8 ([32, 33 to form drain electrode 2 and source electrode 8. On top of that, α-8 (film 4, gate electrode metal (
At) is continuously deposited. After that, the gate insulating film 5, the α-Si film 4, and the n+α-Si films 32 and 33 are removed using the pattern for forming the gate electrode 1 electrode 6. the result
T11'T100. A liquid crystal display substrate consisting of pixel electrode 131 and drain (data) wiring 12 is completed. This structure has the advantage that it can be realized by a very simple manufacturing process that requires only two masks. However, it also has the following problems. The insulation distance between the end of the gate electrode 6 and the end of the α-8484 is only the thickness of the gate insulating film 5, and the withstand voltage between the gate and source is low.

ドレイン配線12は工Toから成るため抵抗が大きく、
液晶表示装置の大面積化が困難である。表面保護用絶縁
膜がないためTPT特性が経時変化しやすいなどが挙げ
らjLる。
Since the drain wiring 12 is made of To, its resistance is large.
It is difficult to increase the area of a liquid crystal display device. Because there is no insulating film for surface protection, TPT characteristics tend to change over time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来技術の叙上の問題点ヲ鑑みてなさn1第1
の目的はドレイン配線を低抵抗化して大面積化可能なT
PT構造を、第2の目的は配線間耐圧の高い構造を、第
3の目的は表面保護用絶縁膜を有し信頼性の高いTFT
を提供するものである。また、こrt、’i−実現する
ための最適な簡単な製造方法全提供する。総じて、高歩
留り、高信頼性、低コストで大面積化が容易なTIl’
Tの構造と製造方法を提供するものである。
The present invention has been made in view of the problems described in the prior art.
The purpose of this is to reduce the resistance of the drain wiring to enable a larger area.
The second purpose is to create a structure with high inter-wiring breakdown voltage, and the third purpose is to create a highly reliable TFT with a surface protection insulating film.
It provides: We also provide an optimal and simple manufacturing method for realizing this invention. Overall, TIl' has high yield, high reliability, low cost, and is easy to expand to a large area.
The present invention provides the structure and manufacturing method of T.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるTI!′Tは、絶縁基板上に形成さn次ソ
ース及びドレイン電極と、該両電極に両端を、A− 接した半導体薄膜と、その上のゲート絶縁膜及びゲート
電極と、さらにその上の表面保護用絶縁膜から成り、表
面保護用絶縁膜とゲート絶縁膜と半導体薄膜はほぼ同一
形状の島状領域として設け、ゲート電極は前記島状領域
の側面端部エリ内側で、かつゲート電極延在部もゲート
絶縁膜及び半導体薄膜の上部で表面保護用絶縁膜の下部
に設けらnている。そのため、基本的に8回のマスク工
程で製造可能な構造である。また、ソース及びドレイン
電極及びその配線に透明導電膜、金属、低抵抗半導体薄
膜のいずnかまたはそnらの多層膜が用いらnlこtら
の導電膜は表面保護用絶縁膜、ゲート絶縁膜、半導体薄
膜で被うことができる。
TI according to the invention! 'T is an n-order source and drain electrode formed on an insulating substrate, a semiconductor thin film whose both ends are in A- contact with both electrodes, a gate insulating film and a gate electrode thereon, and a surface protection film thereon. The surface protection insulating film, the gate insulating film, and the semiconductor thin film are provided as island-like regions having almost the same shape, and the gate electrode is located inside the side edge area of the island-like region and within the gate electrode extension part. Also provided above the gate insulating film and the semiconductor thin film and below the surface protection insulating film. Therefore, the structure can basically be manufactured by eight mask steps. In addition, a transparent conductive film, a metal, a low-resistance semiconductor thin film, or a multilayer film thereof is used for the source and drain electrodes and their wiring. It can be covered with an insulating film or a semiconductor thin film.

〔作用〕[Effect]

前述の構造から明らかな様に、ドレイン電極(とその配
線)は金属膜を含むことができ、かつ工程的に除去する
必要がないので、配線抵抗は極めて低い。ゲート電極端
部と半導体薄膜端部はゲート絶縁膜の厚みの他に平面的
距離を保てるので絶縁耐圧は充分高い。本TPT構造は
遮光構造を有していないが、半導体薄障を充分薄くする
。例えば500八以下にすることにより光感度を実用上
問題なく少なくできる。各画素やTPT間のクロストー
クは半導体膜膜の高抵抗性、厚さのりすいことの他に平
面的寸法に工って充分防止できる。
As is clear from the above structure, the drain electrode (and its wiring) can include a metal film and does not need to be removed in the process, so the wiring resistance is extremely low. In addition to the thickness of the gate insulating film, a distance in plan can be maintained between the end of the gate electrode and the end of the semiconductor thin film, so that the dielectric strength voltage is sufficiently high. Although this TPT structure does not have a light shielding structure, it makes the semiconductor thin barrier sufficiently thin. For example, by setting it to 5008 or less, the photosensitivity can be reduced without causing any practical problems. Crosstalk between each pixel or TPT can be sufficiently prevented by making the semiconductor film highly resistive, thin, and planarly dimensioned.

〔実施例〕〔Example〕

(ロ)実施例1 単位画素部  (第1図)第1図(ロ
)は本発明によるT?Ti用いた液晶表示用単位画素の
平面図であり、第1図の)は第1図@のA + AI線
に沿った断面図である。ガラス、石英等の絶縁基板1上
に透明導電膜(例えば工To) 12 、13 #0デ
、Mo、W、等の金属やその硅化物から成る金属膜22
 、93.低抵抗半導体薄膜(例えば九十α−日(膜〕
32 、33が多層で第1導電膜として堆積1&ドレイ
ン電極2とソース8を形成する。その上に、半導体薄膜
(例えばα−S(膜)4、ゲート絶R膜6、さらに第2
導電膜から成るゲート電極6が設けらnる。
(b) Example 1 Unit pixel section (Fig. 1) Fig. 1 (b) shows the T? according to the present invention. FIG. 1 is a plan view of a unit pixel for liquid crystal display using Ti, and () in FIG. 1 is a sectional view taken along the line A + AI in FIG. 1. On an insulating substrate 1 made of glass, quartz, etc., a transparent conductive film (for example, #0) is formed. A metal film 22 made of a metal such as Mo, W, etc. or its silicide is formed.
, 93. Low resistance semiconductor thin film (e.g. 90 α-days (film)
32 and 33 are multilayered and form a first conductive film, a deposit 1, a drain electrode 2, and a source 8. On top of that, a semiconductor thin film (for example, α-S (film) 4, a gate isolation R film 6, and a second
A gate electrode 6 made of a conductive film is provided.

ゲート電極6は半導体膜R4’Aびゲート絶MM5上に
設けらnlその延在部(ゲート配線部〕も同様である。
The gate electrode 6 is provided on the semiconductor film R4'A and the gate electrode MM5, and the same applies to its extended portion (gate wiring portion).

最上層には表面保護用絶縁膜7が堆積さnl例えばソー
ス電極8の一部である画素電極用透明導電膜13上の絶
縁膜7、ゲート絶縁膜5、半導体薄膜4、低抵抗半導体
薄膜33、金属膜23がほぼ同一形状に除去さnている
。その結果残さtた絶縁膜7、ゲート絶縁膜5、半導体
薄膜4から成る島状領域10の端部工り内側にゲート電
極6がある。第1図の単位画素の例では、隣りの行のゲ
ート電極6Iと画素電極130間に信号電荷蓄積容量1
10が形成さn、ゲート電極61/ゲート絶縁膜5/半
導体薄膜4/低抵抗半導体薄+1433 /金属膜’1
.37透明導電膜13から成る構造を有している(b)
  実施例2゜単位画素部及びドレイン端子部〔第3図
及び第4図〕 第3図及び第4図には、そnぞn単位画素部及びドレイ
ン端子部に本発明を適用した製造工程に沿った断面図を
示す。第3図に)は、基板1上に第1導電膜20ヲ堆積
し選択エッチにエリ、行電極であるドレイン電極2と各
画素のソース電極8を形成した状態を示す。ドレイン電
極端子部は第4図に)に示した。第1導電膜加は、下か
ら透明導電膜−Q= 12 、13 、 Oγ、Mo、W、T7等の金属M?
2,23、低抵抗半導体膜[32,33から成る多層膜
音用いている。金属膜22 、23は必ずしも必要ない
が、配線抵抗減少に有効である。第3図の)では、半導
体膜膜4、ゲート絶縁膜5、第2導電膜16を連続的に
堆積した断面である。このとき、ドレイン端子部では半
導体薄膜4、ゲート絶縁膜5の堆積時に金属マスク等で
フタをし、第2導電膜16堆積時にマスクを除去する(
第4図の))。半導体薄膜4、ゲート絶縁膜5は例えば
プラズマOVDや光0■D等で連続的にa −Bi<H
またはa −8j(F、 B10wまたは町Nzと堆積
さnる。この堆積前に、逆スパッターや水素処理等で第
1導電[20の表面を清浄にすることが有効である。第
2導電膜16は、外部取り出しに有効なムt、ム1L、
Ni等が少なく共最上層にあることが望ましい。第2導
電膜16を多層膜とするときには、低抵抗半導体膜や高
融点金属を最下層にすることが有効である。第3図(6
)は、列配線としてのゲート電極6を第2導電IJ11
6を用いて形成し、その彼我面保護用絶縁膜7t−堆積
した状態を示す。端子部では、やはり第2導電膜16で
端子電極26ヲゲート電極6と分離して形成する(第4
図(G))、絶縁膜7として、Sイ0のやsiN。
A surface protection insulating film 7 is deposited on the top layer, for example, the insulating film 7 on the pixel electrode transparent conductive film 13 which is part of the source electrode 8, the gate insulating film 5, the semiconductor thin film 4, and the low resistance semiconductor thin film 33. , the metal film 23 is removed in substantially the same shape. As a result, a gate electrode 6 is located inside the end portion of the island region 10 consisting of the insulating film 7, the gate insulating film 5, and the semiconductor thin film 4 that remain. In the example of the unit pixel in FIG. 1, the signal charge storage capacitance 1
10 is formed, gate electrode 61/gate insulating film 5/semiconductor thin film 4/low resistance semiconductor thin film +1433/metal film'1
.. It has a structure consisting of 37 transparent conductive films 13 (b)
Example 2 Unit pixel section and drain terminal section [Figures 3 and 4] Figures 3 and 4 show the manufacturing process in which the present invention is applied to the unit pixel section and the drain terminal section, respectively. A cross-sectional view along the line is shown. FIG. 3) shows a state in which a first conductive film 20 is deposited on a substrate 1 and selectively etched to form a drain electrode 2 serving as a row electrode and a source electrode 8 for each pixel. The drain electrode terminal portion is shown in Fig. 4). The first conductive film is a transparent conductive film from the bottom - Q=12, 13, metal M such as Oγ, Mo, W, T7, etc.
A multilayer film consisting of 2, 23 and a low resistance semiconductor film [32, 33 is used. Although the metal films 22 and 23 are not necessarily necessary, they are effective in reducing wiring resistance. 3) is a cross section in which the semiconductor film 4, the gate insulating film 5, and the second conductive film 16 are successively deposited. At this time, the drain terminal portion is covered with a metal mask or the like when the semiconductor thin film 4 and gate insulating film 5 are deposited, and the mask is removed when the second conductive film 16 is deposited (
)) in Figure 4. The semiconductor thin film 4 and the gate insulating film 5 are continuously formed by, for example, plasma OVD or light 0D.
Or a-8j (F, B10w or Machi Nz) is deposited. Before this deposition, it is effective to clean the surface of the first conductive film by reverse sputtering, hydrogen treatment, etc. The second conductive film 16 are Mt, M1L, and M1L that are effective for external extraction.
It is desirable that Ni and the like be present in a small amount in the uppermost layer. When the second conductive film 16 is a multilayer film, it is effective to use a low resistance semiconductor film or a high melting point metal as the bottom layer. Figure 3 (6
), the gate electrode 6 as a column wiring is connected to the second conductive IJ11.
6, and shows a state in which an insulating film 7t for protecting the outer surface is deposited. In the terminal portion, the terminal electrode 26 is formed separately from the gate electrode 6 by the second conductive film 16 (the fourth
(G)), the insulating film 7 is made of Si0 or SiN.

の他にポリイミド等が用いらnる。第3図(イ)では、
絶縁、嗅7、ゲート絶縁膜5、半導体薄膜4を一括エッ
チして島状領域〕0を設け、場らに露出した低抵抗半導
体薄膜33、金属膜23を除去し、透明導電膜13を残
し画素電極とする。一方、端子部では絶縁膜7を除去し
、端子電極26全露出する(第4図(カ]。勿論端子部
では第4図の)での説明と同様1マスクを用いた絶縁膜
7の堆積も可能である。
In addition, polyimide and the like can be used. In Figure 3 (a),
The insulation film 7, the gate insulating film 5, and the semiconductor thin film 4 are etched all at once to form island-like regions]0, and the exposed low resistance semiconductor thin film 33 and metal film 23 are removed, leaving the transparent conductive film 13. Use as pixel electrode. On the other hand, in the terminal part, the insulating film 7 is removed and the terminal electrode 26 is completely exposed (Fig. 4 (f). Of course, in the terminal part, the insulating film 7 is deposited using one mask as described in Fig. 4). is also possible.

(c)実施例8 単位画素部 (第5図〕第5図には、
本発明の単位画素部の平面図を示す。絶縁膜7、ゲート
絶縁膜5、半導体膜1嗅4、第1導電膜加の一部(金属
膜22’、23、低抵抗半導体薄膜32.33)から成
る島状領域10は、・画素電極j3上の一部の蓄積容量
110とT F T IQQ及びゲート電極配線の部分
に形成さnている。即ち、不要な半導体薄膜4を除去し
た例である。
(c) Example 8 Unit pixel section (Fig. 5) In Fig. 5,
FIG. 3 shows a plan view of a unit pixel section of the present invention. The island region 10 consisting of the insulating film 7, the gate insulating film 5, the semiconductor film 1, and a part of the first conductive film (metal films 22', 23, low resistance semiconductor thin film 32, 33) is a pixel electrode. It is formed in a part of the storage capacitor 110, TFT IQQ, and gate electrode wiring on j3. That is, this is an example in which unnecessary semiconductor thin film 4 is removed.

また、島状領域10のバターニングは、表面側から(ソ
ース〕電極2やドレイン端子電極部やゲート端子部等を
通常のボジレジストヲ用いたマスク工程で行ない、再び
裏面から薄い半導体膜4を通して露光することに工って
不要な半導体薄膜4を除去できる。
In addition, the patterning of the island-like region 10 is performed from the front side (source) electrode 2, drain terminal electrode part, gate terminal part, etc. by a mask process using a normal body resist, and then exposed again from the back side through the thin semiconductor film 4. In particular, unnecessary semiconductor thin film 4 can be removed.

(中実施例4. 単位画素部 (第6図)第6図には製
造方法の他の実施例を示す。第6図り)は、ドレイン。
(Middle Embodiment 4. Unit pixel section (Fig. 6) Fig. 6 shows another embodiment of the manufacturing method. Fig. 6) is a drain.

ソース電極2.8’eまず金属膜22 、23と透明導
電膜12 、13で形成した断面である。第6図の)は
、第1導電膜の一部である低抵抗半導体膜30を堆積し
、ポジレジスト8を塗布し裏面からの露光、現像を行な
ったものである。実線8は現像直後、点線18は例えば
150℃以上でベークしレジスト8を流動変形させた状
態を示す。こIf”LK工り低抵抗半導体薄膜30ヲ選
択エッチすると、金属膜22 、23、透明導電M 1
2 、13の端部側面を被った形状に半導体薄膜30を
残せる。第6図<(+)は、半導体薄膜4、ゲート絶R
膜5を堆積し、ゲート電極6(蓄積容量110を形成す
る他桁のゲート電極61)を形成した状態でおる。第6
図G)は、TFT部100と蓄積容量部110全除き、
最下層の透明導電膜13が露出するまで一括エッチして
完成した状態を示す。
Source electrode 2.8'e First is a cross section formed by metal films 22 and 23 and transparent conductive films 12 and 13. In FIG. 6), a low-resistance semiconductor film 30, which is a part of the first conductive film, is deposited, a positive resist 8 is applied, and exposure and development are performed from the back side. A solid line 8 indicates a state immediately after development, and a dotted line 18 indicates a state in which the resist 8 is fluidized and deformed by baking at, for example, 150° C. or higher. If the LK processed low resistance semiconductor thin film 30 is selectively etched, the metal films 22, 23 and the transparent conductive film M1 are etched.
The semiconductor thin film 30 can be left in a shape covering the end side surfaces of 2 and 13. Figure 6 <(+) indicates semiconductor thin film 4, gate disconnection R
A film 5 is deposited, and a gate electrode 6 (a gate electrode 61 of another digit forming a storage capacitor 110) is formed. 6th
In Figure G), the TFT section 100 and storage capacitor section 110 are all excluded.
A completed state is shown in which the transparent conductive film 13 at the bottom layer is etched all at once until it is exposed.

本例では、低抵抗半導体膜M30のバターニングをセル
ファラインで行なえ、かつ同薄膜30で金属jj@22
.23等と半導体薄膜4との亘接接触を避けらnる。こ
のことで、TNTの逆方向リークを減少できる。
In this example, the low-resistance semiconductor film M30 can be patterned by self-line, and the thin film 30 can be patterned with metal jj@22.
.. 23 etc. and the semiconductor thin film 4 can be avoided. This can reduce reverse leakage of TNT.

〔発明の効呆〕[Efficacy of invention]

本発明に、cnば(r)ドレイン配線部の金属、Ill
 22 f:除去する必要がないので低抵抗化が図しる
。(It)。
In the present invention, the metal of the cn(r) drain wiring part, the metal of the drain wiring part, Ill
22f: Since there is no need to remove it, the resistance can be lowered. (It).

ゲート電極6を独立にバターニングするので耐圧できる
。([[+) :表面保護絶縁膜7の存在で信頼性が高
い、(ロ)1以上を8回のマスク工程で製造できる等の
利点がおる。また、半導体膜@4を極めて薄くしても、
この薄膜4をストッパーにしたコンタクトホール形成と
いった工程は不必要なので、遮光不要の超薄膜のTPT
が容易に実現できる利点もある。
Since the gate electrode 6 is patterned independently, it can withstand voltage. ([[+): There are advantages such as high reliability due to the presence of the surface protection insulating film 7, and (b) 1 or more can be manufactured in 8 mask steps. Moreover, even if the semiconductor film @4 is made extremely thin,
Since the process of forming a contact hole using this thin film 4 as a stopper is unnecessary, the ultra-thin TPT film does not require light shielding.
There are also advantages that can be easily achieved.

本発明を主に液晶表示装置を例に述べてきたが、他のT
PT装置例えばTPT集積回路、イメージセンサ−1T
FTg用いた撮像や表示装置等にも適用できる。主に、
半導体薄膜4としてα−町を例に述べたが、p、−s(
、ビーム了二−ルサnた薄膜結晶、他の半導体材料につ
いても同様に本発明は適用できる。
Although the present invention has been mainly described using a liquid crystal display device as an example, other T.
PT device such as TPT integrated circuit, image sensor-1T
It can also be applied to imaging and display devices using FTg. mainly,
Although α-town has been described as an example of the semiconductor thin film 4, p, -s(
The present invention is similarly applicable to thin film crystals, beam crystals, and other semiconductor materials.

本発明にエリ、TIl’T装置の低コスト化、大面化、
高信頼性が得られるので、TPTの応用範囲がさらに拡
げることができる。
The present invention has the advantage of reducing the cost and increasing the size of the TIl'T device.
Since high reliability can be obtained, the range of applications of TPT can be further expanded.

【図面の簡単な説明】 第1図0)は本発明によるTPT単位画素の断面図、第
1図の)は第1図に)のA、−A I線に沿った断面図
である。第2図に)は従来のTPT単位画素の平面図、
第2図の)は第2図@)の]13.Bl線に沿った断面
図、第3図(ω〜a)及び第4図(ハ)〜■はそnぞn
本発明の製造工程に沿つfcT F T単位画素部とド
レイン端子部の断面図、第5図は本発明の他の実施例の
平面図、第6図0)〜■は本発明の他の実施例による製
造工程順の断面図である。 ム14−4 10.基板 20.ドレイン電極 80.ソース電極 
4.。半導体薄膜 51.ゲート絶縁膜6、。ゲート電
極 7゜、底面保護用絶縁膜10 、。島状領域 12
 、13゜、透明導電膜 22 、 ’23、。金属膜
 32,33.、低抵抗半導体薄膜 16゜、第2導電
膜 200.第1導電膜 26゜、ドレイン電極端子。 以上 り・15−・ も     k 0       11′
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (0) is a cross-sectional view of a TPT unit pixel according to the present invention, and (0) in FIG. 1 is a cross-sectional view taken along lines A and -AI in FIG. Figure 2) is a plan view of a conventional TPT unit pixel.
) in Figure 2 is in Figure 2 @)] 13. Cross-sectional views along the Bl line, Figures 3 (ω~a) and Figures 4 (c)~■ are not included.
A cross-sectional view of the fcT F T unit pixel part and the drain terminal part along the manufacturing process of the present invention, FIG. FIG. 3 is a cross-sectional view of the manufacturing process according to the example. M14-4 10. Substrate 20. Drain electrode 80. source electrode
4. . Semiconductor thin film 51. Gate insulating film 6. Gate electrode 7°, bottom protection insulating film 10. Island area 12
, 13°, transparent conductive film 22, '23,. Metal film 32, 33. , low resistance semiconductor thin film 16°, second conductive film 200. First conductive film 26°, drain electrode terminal. Above, 15-, also k 0 11'

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁基板と、該基板上に互いに離間して形成され
たソース電極及びドレイン電極と、該両電極に両端を接
して形成された半導体薄膜と、該薄膜上に形成されたゲ
ート絶縁膜と、該絶縁膜上に設けられたゲート電極と、
ゲート電極上に設けられた表面保護用絶縁膜とから成る
薄膜トランジスタにおいて、 前記表面保護用絶縁膜とゲート絶縁膜と半導体薄膜とは
前記ソース及びドレイン電極の少なく共一部と平面的に
重畳する島状領域として設けられ、前記ゲート電極は前
記島状領域の側面端部より内側でかつゲート電極延在部
も前記ゲート絶縁膜及び半導体薄膜の上部に及び前記表
面保護用絶縁膜の下部に形成されたことを特徴とする薄
膜トランジスタ装置。
(1) An insulating substrate, a source electrode and a drain electrode formed on the substrate at a distance from each other, a semiconductor thin film formed with both ends in contact with the electrodes, and a gate insulating film formed on the thin film. and a gate electrode provided on the insulating film.
In a thin film transistor comprising a surface protection insulating film provided on a gate electrode, the surface protection insulating film, the gate insulating film, and the semiconductor thin film are islands that overlap in plan with at least common parts of the source and drain electrodes. The gate electrode is provided as a shaped region, and the gate electrode is formed inside the side edge of the island region, and the gate electrode extension portion is also formed on the gate insulating film and the semiconductor thin film and on the bottom of the surface protection insulating film. A thin film transistor device characterized by:
(2)前記ソース及びドレイン電極は、透明導電膜と、
金属膜もしくは低抵抗半導体薄膜の少なく共一方とから
成ることを特徴とする特許請求の範囲第1項記載の薄膜
トランジスタ装置。
(2) The source and drain electrodes include a transparent conductive film;
2. The thin film transistor device according to claim 1, wherein the thin film transistor device comprises at least one of a metal film and a low resistance semiconductor thin film.
(3)前記ソース電極もしくはドレイン電極の前記透明
導電膜以外の端部の少なく共一部は、前記島状領域の端
部の一部とほぼ一致していることを特徴とする特許請求
の範囲第2項記載の薄膜トランジスタ装置。
(3) A claim characterized in that at least a common portion of the end portion of the source electrode or the drain electrode other than the transparent conductive film substantially coincides with a part of the end portion of the island-like region. 2. The thin film transistor device according to item 2.
(4)前記半導体薄膜は500Å以下の厚みを有するこ
とを特徴とする特許請求の範囲第1項から第3項いずれ
か記載の薄膜トランジスタ装置。
(4) The thin film transistor device according to any one of claims 1 to 3, wherein the semiconductor thin film has a thickness of 500 Å or less.
(5)(a)絶縁基板上に互いに離間した第1導電膜か
ら成るソース電極とドレイン電極を選択的に形成する第
1工程 (b)半導体薄膜、ゲート絶縁膜、第2導電膜を順次連
続して堆積する第2工程 (c)前記ソース及びドレイン電極の少なく共一部と平
面的に重畳する様に、前記第2導電膜を選択除去してゲ
ート電極となす第3工程 (d)表面保護用絶縁膜を堆積する第4工程(e)前記
表面保護用絶縁膜とゲート絶縁膜と半導体薄膜の不要部
を少なく共除去しほぼ同一形状の島状領域とする第5工
程 とから成る薄膜トランジスタ装置の製造方法。
(5) (a) First step of selectively forming a source electrode and a drain electrode consisting of a first conductive film spaced apart from each other on an insulating substrate (b) Sequentially forming a semiconductor thin film, a gate insulating film, and a second conductive film (c) a second step of depositing the second conductive film to form a gate electrode; (d) a third step of selectively removing the second conductive film so as to planarly overlap at least a common portion of the source and drain electrodes to form a gate electrode; A thin film transistor comprising a fourth step of depositing a protective insulating film (e) and a fifth step of removing unnecessary portions of the surface protective insulating film, the gate insulating film, and the semiconductor thin film to form island-like regions having approximately the same shape. Method of manufacturing the device.
(6)前記第1工程において、第1導電膜が透明導電膜
と、金属もしくは低抵抗半導体薄膜の少なく共一方とか
ら成る多層膜であり、前記第5工程において島状領域の
形成によつて露出する第1導電膜のうちの金属膜もしく
は低抵抗半導体薄膜もしくは金属膜と低抵抗半導体薄膜
の両方を除去することを特徴とする特許請求の範囲第5
項記載の薄膜トランジスタ装置の製造方法。
(6) In the first step, the first conductive film is a multilayer film consisting of a transparent conductive film and at least one of a metal or a low resistance semiconductor thin film, and in the fifth step, the first conductive film is formed by forming an island-like region. Claim 5, characterized in that the metal film, the low resistance semiconductor thin film, or both the metal film and the low resistance semiconductor thin film of the exposed first conductive film are removed.
A method for manufacturing a thin film transistor device according to section 1.
(7)前記第2工程において、ソース電極もしくはドレ
イン電極の延在部の一部にマスクをして前記半導体薄膜
とゲート絶縁膜を堆積し、前記マスクを除去した後に第
2導電膜を堆積することを特徴とする特許請求の範囲第
5項または第6項記載の薄膜トランジスタ装置の製造方
法。
(7) In the second step, the semiconductor thin film and gate insulating film are deposited using a mask on a part of the extension of the source electrode or drain electrode, and after removing the mask, a second conductive film is deposited. A method for manufacturing a thin film transistor device according to claim 5 or 6, characterized in that:
JP60022913A 1985-02-08 1985-02-08 Method of manufacturing thin film transistor device Expired - Lifetime JPH0654782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022913A JPH0654782B2 (en) 1985-02-08 1985-02-08 Method of manufacturing thin film transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022913A JPH0654782B2 (en) 1985-02-08 1985-02-08 Method of manufacturing thin film transistor device

Publications (2)

Publication Number Publication Date
JPS61182266A true JPS61182266A (en) 1986-08-14
JPH0654782B2 JPH0654782B2 (en) 1994-07-20

Family

ID=12095875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022913A Expired - Lifetime JPH0654782B2 (en) 1985-02-08 1985-02-08 Method of manufacturing thin film transistor device

Country Status (1)

Country Link
JP (1) JPH0654782B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172469A (en) * 1987-01-12 1988-07-16 Fujitsu Ltd Thin film transistor
EP0304657A2 (en) * 1987-07-31 1989-03-01 Nippon Telegraph And Telephone Corporation Active matrix cell and method of manufacturing the same
JPH01173646A (en) * 1987-12-28 1989-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film transistor
US4907040A (en) * 1986-09-17 1990-03-06 Konishiroku Photo Industry Co., Ltd. Thin film Schottky barrier device
US5879973A (en) * 1992-08-07 1999-03-09 Fujitsu Limited Method for fabricating thin-film transistor
US5898187A (en) * 1995-09-12 1999-04-27 Lg Electronics Inc. Thin film transistor
JP2006058676A (en) * 2004-08-20 2006-03-02 Semiconductor Energy Lab Co Ltd Display device, its manufacturing method, and television apparatus
WO2011152233A1 (en) * 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2012015502A (en) * 2010-06-04 2012-01-19 Semiconductor Energy Lab Co Ltd Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154289A (en) * 1978-05-26 1979-12-05 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor array
JPS5715469A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Thin film transistor for transmission type display panel and manufacture thereof
JPS5828870A (en) * 1981-08-12 1983-02-19 Toshiba Corp Thin film semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154289A (en) * 1978-05-26 1979-12-05 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor array
JPS5715469A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Thin film transistor for transmission type display panel and manufacture thereof
JPS5828870A (en) * 1981-08-12 1983-02-19 Toshiba Corp Thin film semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907040A (en) * 1986-09-17 1990-03-06 Konishiroku Photo Industry Co., Ltd. Thin film Schottky barrier device
JPS63172469A (en) * 1987-01-12 1988-07-16 Fujitsu Ltd Thin film transistor
EP0304657A2 (en) * 1987-07-31 1989-03-01 Nippon Telegraph And Telephone Corporation Active matrix cell and method of manufacturing the same
JPH01173646A (en) * 1987-12-28 1989-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film transistor
US6338990B1 (en) 1992-08-07 2002-01-15 Fujitsu Limited Method for fabricating thin-film transistor
US5879973A (en) * 1992-08-07 1999-03-09 Fujitsu Limited Method for fabricating thin-film transistor
US5898187A (en) * 1995-09-12 1999-04-27 Lg Electronics Inc. Thin film transistor
JP2006058676A (en) * 2004-08-20 2006-03-02 Semiconductor Energy Lab Co Ltd Display device, its manufacturing method, and television apparatus
WO2011152233A1 (en) * 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2012015502A (en) * 2010-06-04 2012-01-19 Semiconductor Energy Lab Co Ltd Semiconductor device
US8884283B2 (en) 2010-06-04 2014-11-11 Semiconductor Energy Laboratory Co., Ltd Memory semiconductor device having aligned side surfaces
US9064884B2 (en) 2010-06-04 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having aligned side surfaces
US9461067B2 (en) 2010-06-04 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10074663B2 (en) 2010-06-04 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JPH0654782B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US6338989B1 (en) Array substrate for use in liquid crystal display device and method of manufacturing the same
KR100212288B1 (en) Thin film transistor and manufacture thereof
US4601097A (en) Method of producing thin-film transistor array
JPH0242761A (en) Manufacture of active matrix substrate
KR0169385B1 (en) Thin film transistor substrate for liquid crystal and its manufacturing method
TWI393970B (en) Thin film transistor array panel and manufacturing method thereof
TW511294B (en) Active matrix substrate, display device and method for manufacturing active matrix substrate
JPS62285464A (en) Thin-film transistor array substrate and manufacture thereof
US5998230A (en) Method for making liquid crystal display device with reduced mask steps
JP2001319876A (en) Method and apparatus for photo etching and method of manufacturing thin film transistor substrate for liquid crystal displays, utilizing the same
JP2001230321A (en) Contact structure of wiring, method of forming the same, and thin-film transistor substrate containing the same and method of manufacturing it
JP2001358343A (en) Contact structure for wirings and its forming method, thin-film transistor substrate including the same and manufacturing method thereof
JP4996789B2 (en) Method for forming wiring contact structure and method for manufacturing thin film transistor substrate
JPH11133455A (en) Production of liquid crystal display device
JPS61182266A (en) Thin-film transistor device and manufacture thereof
TW573162B (en) Active matrix liquid crystal device and method of making the same
JP2678044B2 (en) Active matrix substrate manufacturing method
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JPS61183622A (en) Thin film transistor device and its manufacture
JPS6273669A (en) Manufacture of thin-film transistor device
JPS6273670A (en) Manufacture of thin-film transistor device
JPH03249735A (en) Manufacture of thin film transistor
JPS61191072A (en) Thin film transistor and manufacture thereof
JPH02170135A (en) Thin-film field effect type transistor element array
KR100750913B1 (en) Method manufacturing a wires, and thin film transistor substrate for liquid crystal display including the wires and manufacturing method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term