JPH01173646A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPH01173646A
JPH01173646A JP62329956A JP32995687A JPH01173646A JP H01173646 A JPH01173646 A JP H01173646A JP 62329956 A JP62329956 A JP 62329956A JP 32995687 A JP32995687 A JP 32995687A JP H01173646 A JPH01173646 A JP H01173646A
Authority
JP
Japan
Prior art keywords
insulating film
photosensitive resin
wiring
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62329956A
Other languages
Japanese (ja)
Inventor
Kinya Kato
加藤 謹矢
Nobuhiko Tsunoda
信彦 角田
Tsutomu Wada
力 和田
Noboru Naito
昇 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62329956A priority Critical patent/JPH01173646A/en
Priority to US07/222,844 priority patent/US4918504A/en
Priority to EP88112172A priority patent/EP0304657B1/en
Priority to DE88112172T priority patent/DE3884891T2/en
Publication of JPH01173646A publication Critical patent/JPH01173646A/en
Priority to US07/728,851 priority patent/US5198377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To flatten the surface by a method wherein an insulating film with a high transmission factor is deposited on a wiring part formed on a substrate which is transparent with reference to a photosensitive wavelength of a negative-type photosensitive resin and the negative-type photosensitive resin applied to this insulating film is exposed to light from the back of the substrate so that an interval between wiring parts can be filled with the insulating film. CONSTITUTION:A multilayer film containing a metal film whose transmission factor with reference to a photosensitive wavelength of a negative-type photosensitive resin is low or a similar metal film is deposited on a substrate 10 whose transmission factor with reference to this wavelength is high; after that, wiring parts 11 of a prescribed pattern are formed. Then, an insulating film 12 whose transmission factor with reference to the photosensitive wavelength of the photosensitive resin is high is deposited on the wiring parts 11; the negative- type photosensitive resin 13 whose exposed part is not dissolved by a developing solution is applied to the substrate 10 including the insulating film 12; after that, the resin is exposed, from the back of the substrate, to a beam 14 having the photosensitive wavelength of the photosensitive resin 13. When a developing operation is executed, the wiring parts 11 are transformed into exposure-blocking films; patterns 13a of the negative-type photosensitive resin are left in regions excluding the wiring parts; the insulating film 12 is etched by making use of the patterns 13 as a mask; only the insulating film on the wiring parts 11 is removed; lastly, the patterns 13a are removed. By this setup, an interval between the wiring parts is filled; it is possible to eliminate a stepped part formed by the wiring parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス等の感光性樹脂の感光波長に対し透過
率の高い基板上に形成される薄膜トランジスタの製作法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film transistor formed on a substrate having a high transmittance to a photosensitive wavelength of a photosensitive resin such as glass.

〔従来の技術〕[Conventional technology]

液晶を表示媒体として用いた平面デイスプレィ(Liq
uid Cr7stal Disp1m7:LCD)等
では、表示品質の向上を狙いとして、薄膜トランジスタ
(TPT)等のアクティブ素子で画素を駆動するアクテ
ィブマトリクス方式が用いられ始めている。
A flat display using liquid crystal as a display medium (Liq
With the aim of improving display quality, an active matrix method in which pixels are driven by active elements such as thin film transistors (TPT) has begun to be used in devices such as LCDs.

アクティブマトリクス方式は、基板上にX、Yの交差配
線を形成し、配線交点にアクティブ素子を設けた構造で
ある。このアクティブマトリクス方式では、X、Yの交
差配線を順次操作して画素に表示情報を書き込んでいく
ため、表示画面の拡大にともない、配線長が増大し、配
線抵抗が大きくなり所定の書込み時間内に表示情報を書
き込むことが困難になるという問題が生じる。このため
、配線膜厚を増加して配線抵抗を低減することが必須で
ある。
The active matrix method has a structure in which X and Y intersecting wirings are formed on a substrate and active elements are provided at the intersections of the wirings. In this active matrix method, display information is written to pixels by sequentially operating X and Y cross wiring, so as the display screen expands, the wiring length increases and wiring resistance increases, making it difficult to write within the specified writing time. A problem arises in that it becomes difficult to write display information to. Therefore, it is essential to increase the wiring film thickness and reduce the wiring resistance.

ところで、アクティブ素子の活性層としてアモルファス
シリコン(a−3i)膜を用いたTPTとしては、ソー
スおよびドレイン配線とゲート電極配線とがa−8t膜
を挾んだ対向位置にあるスタガード構造が用いられ、ゲ
ート電極配線が基板側にある場合をボトムゲートTFT
、ソースおよびドレイン配線が基板側にある場合をトッ
プゲートTPTと呼んでいる。このため、X、Yの交差
配線となるソースおよびドレイン配線かゲート電極配線
のいずれかがa−8t膜の下に置かれる仁とになる。通
常a −S i膜堆積に用いられるプラズマ気相成長(
PCVD)法では、段差部分の膜質が脆弱となり平坦部
と特性が大きく異なるため、段差を越えて堆積したa−
8t膜を用いたTPT は特性が著しく劣化することが
知られている。これは段差の高さが高いほど頒著になる
。一方、従来は、a−3i膜下にくる配線をa−8t膜
堆積温度に耐えるクロム(Cr)、ニクロム(NtCr
)l酸化インジウム錫(ITO)等の比抵抗の比較的高
い高耐熱金属材料とし、極力薄くして用いてきた。した
がって、抵抗低減のため単純に配線金属の変更や配線膜
厚を増大することは困難である。
By the way, as a TPT using an amorphous silicon (A-3I) film as the active layer of an active element, a staggered structure is used in which the source and drain wiring and the gate electrode wiring are located in opposing positions with an A-8T film in between. , the case where the gate electrode wiring is on the substrate side is called bottom gate TFT.
, the case where the source and drain wirings are on the substrate side is called a top gate TPT. Therefore, either the source/drain wiring or the gate electrode wiring, which is the cross wiring of X and Y, becomes a layer placed under the a-8t film. Plasma vapor phase epitaxy (usually used for a-Si film deposition)
In the PCVD (PCVD) method, the film quality at the step part becomes weak and the characteristics are significantly different from those on the flat part, so the a-
It is known that the characteristics of TPT using an 8t film deteriorate significantly. This becomes more prevalent as the height of the step increases. On the other hand, conventionally, the wiring under the A-3I film was made of chromium (Cr), nichrome (NtCr), which can withstand the A-8T film deposition temperature.
) A highly heat-resistant metal material with relatively high resistivity, such as indium tin oxide (ITO), has been used, and has been made as thin as possible. Therefore, it is difficult to simply change the wiring metal or increase the wiring film thickness in order to reduce the resistance.

この間電を解決する方法として、例えば特開昭61−2
01468号に見られるように、配線と配線の間隙を絶
縁膜で埋め込み配線の作る段差を除去し平坦化する方法
が知られている。ここでは、配線形成後、配線形成に用
いた感光性樹脂を残したまま、ポリイミド、二酸化シリ
コン、窒化シリコン等の絶縁膜を塗布または堆積し、感
光性樹脂とともに配線上の絶縁膜をリフトオフする技術
が用いられている。
As a method to solve this problem, for example, JP-A-61-2
As seen in Japanese Patent No. 01468, a method is known in which gaps between wirings are filled with an insulating film to remove steps formed by the wirings and flatten the wiring. Here, after wiring is formed, an insulating film such as polyimide, silicon dioxide, silicon nitride, etc. is coated or deposited while the photosensitive resin used for forming the wiring remains, and the insulating film on the wiring is lifted off together with the photosensitive resin. is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、リフトオフにより配線を埋め込む従来の方法で
は、感光性樹脂の側面に堆積した絶縁膜により、リフト
オフが困難になったり、感光性樹脂の側面に堆積した絶
縁膜が突起状に残ったシして、歩留まり低下を生じたり
、突起による段差が残ったりする欠点があった。また、
リフトオフの歩留まりを向上させるため、感光性樹脂の
側面に堆積した絶縁膜の膜厚が薄くかつ平坦部分に堆積
した膜より脆弱でエツチング速度が大きいことを利用し
て、短時間のエツチングを施したのちリフトオフする方
法があるが、この場合には配線側面に堆積した絶縁膜の
膜質が脆弱なため、配線と埋め込んだ絶縁膜との間に溝
ができやすく、完全に配線を埋め込むことが難しい欠点
があった。
However, with the conventional method of embedding wiring by lift-off, the insulating film deposited on the side of the photosensitive resin makes lift-off difficult, and the insulating film deposited on the side of the photosensitive resin may remain in protrusions. However, there were drawbacks such as a decrease in yield and residual steps due to the protrusions. Also,
In order to improve the lift-off yield, we performed short-time etching by taking advantage of the fact that the insulating film deposited on the sides of the photosensitive resin is thinner and more fragile than the film deposited on flat areas, and the etching rate is faster. There is a method of lifting off later, but in this case, the quality of the insulating film deposited on the side of the wiring is fragile, so grooves tend to form between the wiring and the buried insulating film, making it difficult to completely bury the wiring. was there.

さらに、配線を画素電極に使用できる透明導電膜と低抵
抗化のための金属膜との多層膜とすることや、TFT 
のソース−ドレイン接合を形成するためのn形アモルフ
ァスシリコン(n”a−8i)を含む多層膜とすること
が必要となる場合が多いが、これらの膜は異なるエツチ
ング法またはエツチング液で独立に加工せざるを得す、
サイドエツチングにより下層膜が上層膜より小さくなる
ことが避けられない。この場合、厚い感光性樹脂を残し
たまま絶縁膜を堆積するとシャドウ効果により、堆積し
た絶縁膜にサイドエツチング部分を核としてクラックが
入り、リフトオフ後溝が残る欠点があった。
Furthermore, wiring can be made of a multilayer film consisting of a transparent conductive film that can be used as a pixel electrode and a metal film to reduce resistance, and
Multilayer films containing n-type amorphous silicon (n”a-8i) to form source-drain junctions are often required, but these films can be etched independently using different etching methods or etchants. I have no choice but to process it.
Due to side etching, it is inevitable that the lower layer film becomes smaller than the upper layer film. In this case, if the insulating film is deposited with the thick photosensitive resin remaining, cracks will occur in the deposited insulating film with the side-etched portion as a nucleus due to the shadow effect, leaving grooves after lift-off.

本発明は、以上の点に鑑み、このような問題を解決すべ
くなされたもので、配線上に活性層を形成して製作され
る薄膜トランジスタにおいて、その配線間隔を絶縁膜で
埋め込み表面を平坦化する方法を提供するものである。
In view of the above points, the present invention has been made to solve such problems.In a thin film transistor manufactured by forming an active layer on the wiring, the wiring interval is filled with an insulating film and the surface is flattened. This provides a method to do so.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、ガラス等の基板が可視光に加え感光性樹脂の
感光波長、通常紫外光、に対しても透過度が高く、背面
から感光性樹脂を露光することが可能なことに基づいて
なされたもので、配線が感光性樹脂の感光波長に対して
透過率が低く、配線上に堆積した絶縁膜が透過率が高け
れば、絶縁膜上に形成した感光性樹脂を基板背面から配
線を露光阻止領域として露光できることを利用するもの
であり、その概要を第1図を参照して説明する。
The present invention is based on the fact that substrates such as glass have high transmittance not only to visible light but also to wavelengths at which photosensitive resins are sensitive, usually ultraviolet light, and it is possible to expose photosensitive resins from the back side. If the wiring has low transmittance for the photosensitive wavelength of the photosensitive resin and the insulating film deposited on the wiring has high transmittance, the wiring can be exposed from the back of the board using the photosensitive resin formed on the insulating film. This method utilizes the fact that it can be exposed as a blocking area, and its outline will be explained with reference to FIG. 1.

第1図は本発明の基本概念である配線間隔を絶縁膜で埋
め込む方法を説明する工程断面図である。
FIG. 1 is a process sectional view illustrating a method of burying the wiring gap with an insulating film, which is the basic concept of the present invention.

まず、第1図(a)において、ネガ形感光性樹脂の感光
波長に対し透過率の高い基板10上に、ネガ形感光性樹
脂の感光波長に対し透過率の低い配線用金属膜またはネ
ガ形感光性樹脂の感光波長に対し透過上の低い配線用金
属膜を含む多層膜を堆積後、通常のフォトエツチング工
程を用いて所定パタンの配線11を形成する。次に、第
1図(b)に示すように、配線11上に感光性樹脂の感
光波長に対し透過率の高い絶縁膜12を堆積する。次い
で、第1図(c)に示すように、絶縁膜12を含む基板
10上に、露光された部分が現像液に溶解しなくなるネ
ガ形感光性側能13を塗布した後、その基板背面からネ
ガ形感光性樹脂13の感光波長の光14で露光する。し
かる後、現像処理を行なうと、第1図(d)に示すよう
に、上記配線11は感光波長の透過率が低いので露光阻
止膜と々す、配線領域を除く領域にネガ形感光性樹脂の
パタン13mが残る。この後、第1図(a)に示すよう
に、ネガ形感光性樹脂のパタン13a をエツチングマ
スクとして絶縁膜12をエツチングすれば、配線11上
の絶縁膜のみが除去される。最後に、感光性樹脂のパタ
ン13a  を除去すれば、第1図(f)に示すように
、所定パタンの配線11が絶縁膜12a で埋め込まれ
た構造が形成できるのである。
First, in FIG. 1(a), on a substrate 10 having a high transmittance to the photosensitive wavelength of the negative photosensitive resin, a wiring metal film having a low transmittance to the photosensitive wavelength of the negative photosensitive resin or a negative type After depositing a multilayer film including a wiring metal film having low transmission relative to the photosensitive wavelength of the photosensitive resin, a predetermined pattern of wiring 11 is formed using a normal photoetching process. Next, as shown in FIG. 1(b), an insulating film 12 having a high transmittance for the wavelength at which the photosensitive resin is sensitive is deposited on the wiring 11. Next, as shown in FIG. 1(c), after coating the substrate 10 including the insulating film 12 with a negative photosensitive adhesive 13 that prevents the exposed portion from dissolving in a developer, a film is applied from the back side of the substrate. Exposure is performed with light 14 having a wavelength to which the negative photosensitive resin 13 is sensitive. After that, when a development process is performed, as shown in FIG. 1(d), since the wiring 11 has a low transmittance to the photosensitive wavelength, an exposure blocking film is formed, and a negative photosensitive resin is applied to the area other than the wiring area. A 13m pattern remains. Thereafter, as shown in FIG. 1(a), by etching the insulating film 12 using the negative photosensitive resin pattern 13a as an etching mask, only the insulating film on the wiring 11 is removed. Finally, by removing the photosensitive resin pattern 13a, a structure in which the wiring 11 in a predetermined pattern is embedded in the insulating film 12a can be formed, as shown in FIG. 1(f).

〔作用〕[Effect]

このように、本発明によれば、ガラス等のネガ形感光性
樹脂の感光波長に対して透明な基板上に形成された配線
上に透過率の高い絶縁膜を堆積し、この絶縁膜上に塗布
したネガ形感光性樹脂を基板の背面から露光することに
より、配線上以外の領域に感光性樹脂のパタンを自己整
合的に形成し、この感光性樹脂のパタンをエツチングマ
スクとして前記絶縁膜をエツチングすることができる。
As described above, according to the present invention, an insulating film with high transmittance is deposited on wiring formed on a substrate that is transparent to the photosensitive wavelength of a negative photosensitive resin such as glass, and By exposing the coated negative photosensitive resin from the back side of the substrate, a photosensitive resin pattern is formed in areas other than the wiring in a self-aligned manner, and this photosensitive resin pattern is used as an etching mask to etch the insulating film. Can be etched.

これにより、配線の間隔が埋め込まれ配線の作る段差を
々くすことができるので、配線抵抗要求値に応じて容易
に配線膜厚を選択することができる。
This makes it possible to fill in the gaps between the interconnects and reduce the level differences created by the interconnects, making it possible to easily select the interconnect film thickness in accordance with the required interconnect resistance value.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

実施例1; 第2図は本発明による薄膜トランジスタの製作法の一実
施例を示す工程断面図であシ、ここではポトムゲー)T
FTK適用した場合を示す。第2図において、透明な基
板20としてバリウム硼珪酸ガラス(コーニング705
9 )基板に用い、この基板20上に膜厚1000Aの
M、膜を堆積し、ゲート電極配線21を形成した(第2
図(a))。そして、この上に感光波長に対し透過率の
高い絶縁膜22として配線膜厚と等しい膜厚1000A
のSiNx膜を堆積しく第2図(b))、次いで、CB
R−M2O3(日本合成ゴム社製)からなるネガ形感光
性樹脂23を約1.5μmの膜厚に塗布したのち、その
基板20の背面から感光波長の光として紫外光24で露
光した(第2図(C)〕。この時、露光量の異なる水準
を設けた。しかる後、現像処理を行なうと、ゲート電極
配線21のMO膜が紫外光24に対する露光阻止膜とし
て働き、ゲート電極配線21上以外の領域に感光された
感光性樹脂のバタン23m が残った(第2図(d))
。この段階で基板表面を光学顕微鏡で観察すると、感光
性樹脂のバタン23&は露光量に応じて露光阻止領域の
ゲート電極配線11上へのオーバラップ盆が異なって形
成されていた。
Example 1; FIG. 2 is a process cross-sectional view showing an example of the method for manufacturing a thin film transistor according to the present invention.
The case where FTK is applied is shown. In FIG. 2, the transparent substrate 20 is barium borosilicate glass (Corning 705
9) A M film with a thickness of 1000 A was deposited on this substrate 20 to form a gate electrode wiring 21 (second
Figure (a)). Then, on top of this, an insulating film 22 having a high transmittance for the photosensitive wavelength is formed with a film thickness of 1000 Å equal to the wiring film thickness.
2(b)), and then CB
After applying a negative photosensitive resin 23 made of R-M2O3 (manufactured by Nippon Gosei Rubber Co., Ltd.) to a thickness of approximately 1.5 μm, the back surface of the substrate 20 was exposed to ultraviolet light 24 as light at a photosensitive wavelength. 2 (C)] At this time, different levels of exposure amount were set. After that, when a development process was performed, the MO film of the gate electrode wiring 21 acted as an exposure blocking film against the ultraviolet light 24, and the gate electrode wiring 21 23 m of exposed photosensitive resin was left in areas other than the top (Figure 2 (d))
. When the surface of the substrate was observed under an optical microscope at this stage, it was found that the overlap trays of the photosensitive resin tabs 23 & on the gate electrode wiring 11 in the exposure blocking region were formed differently depending on the exposure amount.

次に、この感光性樹脂のバタン23a をエツチングマ
スクとしてSiNx膜22をCF4ガスを用いた反応性
イオンエツチング法で加工し、た(第2図(e))。な
おこの加工後のSiNxgを符号22mで示す。この断
面を走査顕微鏡R察すると、5iNx11122ali
感光性樹脂のバタン23&のオーバラップ量に応じて、
Mo膜のゲート電極配線21上へのオーバラップ量が異
なって形成されていた。
Next, the SiNx film 22 was processed by a reactive ion etching method using CF4 gas using the photosensitive resin button 23a as an etching mask (FIG. 2(e)). Note that the SiNxg after this processing is indicated by the symbol 22m. When this cross section was observed with a scanning microscope R, it was found that 5iNx11122ali
Depending on the overlap amount of the photosensitive resin button 23&,
The amount of overlap of the Mo film on the gate electrode wiring 21 was different.

また、感光性樹脂のバタン23mのオーバラップ量が少
ないと、MOのゲート電極配線21上にはSiNx膜は
なく、いわゆる負のオーバラップとなっていた。これは
、5iNxl122のエツチング時に感光性樹脂もエツ
チングされ、光の回折で生じたMOのゲート電極配線2
1上にオーバラップしていた感光性樹脂が除去されたた
めである。この後、ゲート絶JIM25として膜厚20
00AのSiNx膜と活性層になる膜JJ100OAの
a−8t膜26を連続して堆積した(第2図(f))。
Furthermore, when the amount of overlap of the photosensitive resin tabs 23m was small, there was no SiNx film on the gate electrode wiring 21 of the MO, resulting in a so-called negative overlap. This is because the photosensitive resin was also etched during etching of 5iNxl122, and the MO gate electrode wiring 2 was generated due to light diffraction.
This is because the photosensitive resin overlapping 1 was removed. After this, a film thickness of 20
A SiNx film of 00A and an a-8t film 26 of JJ100OA, which will become the active layer, were successively deposited (FIG. 2(f)).

次いで、TPT部分だけが残るようにa−8i膜26を
加工し7、最後にソースおよびドレイン配線27を形成
してボトムゲート形a−8i TFTを製作した(第2
図(g))。
Next, the A-8i film 26 was processed so that only the TPT portion remained 7, and finally the source and drain wiring 27 was formed to fabricate a bottom gate type A-8i TFT (second
Figure (g)).

このようKして裏作したa−8iTFTの特性を測定し
たところ、SiNx膜22&がゲート電極配a21上に
オーバラップしている水準では、ゲート電極配線21を
絶縁膜で埋め込まない場合やS iNx膜がゲート電極
配線上にオーバラップしてない場合に比べ、素子特性の
ばらつきが少ないことが分かった。これは、活性層であ
るa −S i膜26が急峻な段差を越えることなく、
おおむね平坦な表面上に形成されているためである。
When we measured the characteristics of the a-8i TFT fabricated in this way, we found that when the SiNx film 22 overlaps the gate electrode wiring a21, when the gate electrode wiring 21 is not buried with an insulating film, and when the SiNx film 22 overlaps the gate electrode wiring a21, It was found that the variation in device characteristics was smaller than when the gate electrode wiring did not overlap with the gate electrode wiring. This is because the a-Si film 26, which is the active layer, does not cross over a steep step.
This is because it is formed on a generally flat surface.

実施例2; 第3図は本発明の別の実施例を示す工程断面図であシ、
ここではトップゲー) TPTに適用した場合を示す。
Embodiment 2; FIG. 3 is a process sectional view showing another embodiment of the present invention;
Here, we show the case where it is applied to TPT (Top Game).

第3図において、透明な基板30としてバリウム硼珪酸
ガラス(コーニング7059 )基板を用い、この基板
30上に膜厚1000AのM。
In FIG. 3, a barium borosilicate glass (Corning 7059) substrate is used as a transparent substrate 30, and an M film with a thickness of 1000 Å is formed on this substrate 30.

膜311 と TFTのソース・ドレイン接合を形成す
るための膜厚500Aのn形アモルファスシリコン(n
”a−8t)膜312の2層族を連続して堆慎した後、
フォトエツチング工程により通常の感光性樹脂で所定の
ソースおよびドレイン配線バタンを形成し、MO膜31
1 と n” a−8i l1Ji 312を順次エツ
チングして配線バタン、つまりソースおよびドレイン配
線31を形成した(第3図(轟))。
The film 311 is made of n-type amorphous silicon (n
"a-8t) After successively depositing the two layer groups of membrane 312,
A predetermined source and drain wiring pattern is formed using a normal photosensitive resin through a photo-etching process, and the MO film 31 is
1 and n'' a-8i 11Ji 312 were sequentially etched to form wiring patterns, that is, source and drain wirings 31 (FIG. 3 (Todoroki)).

次に、前記感光性樹脂を除去したのち、感光波長に対し
透過率の高い絶縁膜32として前記配線金属便と等しい
膜厚1500AのSiNx膜を堆積した(第3図(b)
)。次いで、フォトニー x UR−3600(東し社
製)からなるネガ形感光性樹脂33を約1.5μmの膜
厚で塗布し、基板30の背面から感光波長の光として紫
外光34で露光した(第3図(C))。この時、露光量
の異なる水準を設けた。しかる後、現像処理を行なうと
、ソースおよびドレイン配線31のMO腹膜11が紫外
光34に対する露光阻止膜として働き、現像後、ソース
およびドレイン配線31以外の領域上に感光された感光
性樹脂のパタン33&が残った(第3図(d))。この
段階で基板表面を光学顕微鏡で観察すると、感光性樹脂
のパタン33aは露光量に応じて露光阻止領域のソース
およびドレイン配線31上へのオーバラップ量が異なっ
て形成されていた。
Next, after removing the photosensitive resin, a SiNx film having a thickness of 1500 Å, which is the same as the wiring metal layer, was deposited as an insulating film 32 having high transmittance for the photosensitive wavelength (see FIG. 3(b)).
). Next, a negative photosensitive resin 33 made of Photony Figure 3 (C)). At this time, different levels of exposure were set. After that, when a development process is performed, the MO peritoneum 11 of the source and drain wiring 31 acts as an exposure blocking film against the ultraviolet light 34, and after development, the pattern of the photosensitive resin exposed on the area other than the source and drain wiring 31 is removed. 33 & remained (Fig. 3(d)). When the substrate surface was observed under an optical microscope at this stage, it was found that the photosensitive resin pattern 33a was formed with different amounts of overlap of the exposure blocking region on the source and drain wirings 31 depending on the exposure amount.

次に、この感光性樹脂のパタン33a をエツチングマ
スクとして5iNxF1832をCF4ガスを用いた反
応性イオンエツチング法で加工した(第3図(e))。
Next, using this photosensitive resin pattern 33a as an etching mask, 5iNxF1832 was processed by reactive ion etching using CF4 gas (FIG. 3(e)).

ただし、この加工後のSiN4膜を符号32mで示す。However, the SiN4 film after this processing is indicated by the symbol 32m.

この断面を走査顕微鏡観察すると、SSiNx1il1
32は感光性樹脂のパタン33aのオーバラップ量に応
じて、ソースおよびドレイン配線31上へのオーバラッ
プ量が異なって形成されていた。また、感光性樹脂のパ
タン33&のオーバラップ量が少ないと、ソースおよび
ドレイン配線31上には5iNxp!:はなく、いわゆ
る負のオーバラップとなっていた。これは、SiNx膜
32のエツチング時に感光性樹脂もエツチングされ、光
の回折で生じたノースおよびドレイン配線31上にオー
バラップしていた感光性樹脂が除去されたためである。
When this cross section was observed under a scanning microscope, SSiNx1il1
32 was formed with different amounts of overlap on the source and drain wirings 31 depending on the amount of overlap of the photosensitive resin pattern 33a. Moreover, if the amount of overlap of the photosensitive resin pattern 33& is small, 5iNxp! : There was no overlap, and there was a so-called negative overlap. This is because the photosensitive resin was also etched during etching of the SiNx film 32, and the photosensitive resin overlapping the north and drain wirings 31 caused by light diffraction was removed.

この後、活性層になる膜厚1000Aのa−8i膜35
を堆積し、T P T部分だけが残るようにa−8i膜
を加工した(第3図(f))。次に、ゲート絶縁膜36
として膜厚2000AのSiNx膜を堆積した(第3図
(g))。最後にゲート電極配線37を形成してトップ
ゲート形a−3i TFTを製作した(第3図市)〕。
After this, the a-8i film 35 with a thickness of 1000A becomes the active layer.
was deposited, and the a-8i film was processed so that only the TPT portion remained (Fig. 3(f)). Next, the gate insulating film 36
As shown in FIG. 3(g), a SiNx film with a thickness of 2000 Å was deposited. Finally, a gate electrode wiring 37 was formed to fabricate a top gate type a-3i TFT (Figure 3).

このようにした製作したa−8t  TFTの%注を測
定したところ、SiNx膜32&がソースおよびドレイ
ン配線31上にオーバラップしている水準では、ソース
およびドレイン配線を絶縁膜で埋め込まない場合や5i
Nxj4がソースおよびドレイン配線上にオーバラップ
してない場合に比べ、素子特性のばらつきが少ないこと
が分かった。これは、活性層であるa −S i膜35
が急峻な段差を越えることなく、おおむね平坦な表面上
に形成されているためである。
When we measured the percentage of the a-8t TFT manufactured in this way, we found that at the level where the SiNx film 32 overlaps the source and drain wiring 31, when the source and drain wiring is not buried with an insulating film, and when the 5i
It has been found that variations in device characteristics are smaller than when Nxj4 does not overlap the source and drain wirings. This is the a-Si film 35 which is the active layer.
This is because it is formed on a generally flat surface without going over any steep steps.

実施例3; 本実施例は、トップゲー)TPT に関するものであり
、上述した実施例2との相違はソースおよびドレイン配
線に画素電極となる透明導体を含ませたことにある。こ
れについて上記実施例2と異なる部分を説明すると、本
実施例においては、バリウム硼珪酸ガラス(コーニング
7059)基板上に膜厚500Aの酸化インジウム錫C
ITO)、腹膜の3層膜を連続して堆積した。次いで、
フォト工程により通常の感光性樹脂で所定のソースおよ
びドレイン配線パタンを形成したのち、これらITo膜
9Mo膜、H”aSi膜を順次エツチングして配線を形
成した。次に、画素電極となる部分のみn”a−8t膜
およびM□膜を除去した。そして、その以下の工程は実
施例2の第3図(c)以降と同じである。その結果、こ
のTPT特性に関しても上述した実施例2と同様であっ
た。
Embodiment 3: This embodiment relates to a top-gauge TPT, and the difference from the above-mentioned embodiment 2 is that the source and drain wirings include a transparent conductor that becomes a pixel electrode. To explain the differences from Example 2 above, in this example, indium tin oxide C with a thickness of 500A was deposited on a barium borosilicate glass (Corning 7059) substrate.
ITO), a three-layer membrane of the peritoneum was successively deposited. Then,
After forming a predetermined source and drain wiring pattern using an ordinary photosensitive resin using a photo process, the ITo film, 9Mo film, and H''aSi film were sequentially etched to form wiring. Next, only the portion that would become the pixel electrode was etched. The n''a-8t film and M□ film were removed. The subsequent steps are the same as those of the second embodiment shown in FIG. 3(c) and thereafter. As a result, the TPT characteristics were also similar to those of Example 2 described above.

以上、実施例で説明したように、本発明によるときは、
エツチング後の絶縁膜はゲート電極配線またはソースお
よびドレイン配線、つまり配線上にオーバラップするこ
とが望ましい。したがって、背面露光によるネガ形感光
性樹脂の露光においては感光性樹脂のパタンか配線上に
十分の膜厚でオーバラップすることが必要になる。この
オーバラップ領域は光の回折で形成されるため、十分な
露光量を与えてもオーバラップ量は極端に増加すること
がなく、容易に要求条件を満足する形状が得られる。
As explained above in the examples, according to the present invention,
It is desirable that the insulating film after etching overlaps the gate electrode wiring or the source and drain wiring, that is, the wiring. Therefore, when exposing a negative photosensitive resin by back exposure, it is necessary that the pattern of the photosensitive resin overlap the wiring with a sufficient film thickness. Since this overlap region is formed by diffraction of light, the amount of overlap does not increase excessively even if a sufficient amount of exposure is given, and a shape that satisfies the required conditions can be easily obtained.

また、絶縁膜のエツチングには、サイドエツチングを生
じず、感光性樹脂も同時にエツチングされるドライエツ
チングを用いるのが望ましい。これは、絶縁膜と配線の
境の感光性樹脂の膜厚が薄いため、絶縁膜のエツチング
とともに感光性樹脂もエツチング除去され、絶縁膜と配
線の境の絶縁膜が自動的に整形され不用な突起を生じな
いためである。
Further, for etching the insulating film, it is desirable to use dry etching in which side etching does not occur and the photosensitive resin is etched at the same time. This is because the photosensitive resin at the boundary between the insulating film and the wiring is thin, so when the insulating film is etched, the photosensitive resin is also etched away, and the insulating film at the boundary between the insulating film and the wiring is automatically reshaped and unnecessary. This is to prevent protrusions from forming.

さらに、上記実施例2.3で示したように、配線は感光
性舗脂の感光波長に対し透過率の低い膜が1層含まれて
いる多層膜であってもよい。ここでは、Mo膜を透過率
の低い膜として用いたが、(It;の金〈膜が用い得る
ことは自明である。
Further, as shown in Example 2.3 above, the wiring may be a multilayer film including one film having a low transmittance for the wavelength at which the photosensitive resin is sensitive. Here, a Mo film was used as a film with low transmittance, but it is obvious that a gold film of (It;) can also be used.

また、本発明では配線以外の領域上にネガ型感光性樹脂
が感光されて残ればよく、基板や絶縁膜の透過率の絶対
値自体は問題とならない。このため、絶縁膜とし、て実
施例に挙げた窒化シリコン腺(SiNx)以外に、5i
O1、SiO、Tag 05等が用い得る。
Further, in the present invention, it is sufficient that the negative photosensitive resin is exposed and remains on the area other than the wiring, and the absolute value of the transmittance of the substrate or the insulating film itself does not matter. Therefore, as an insulating film, in addition to silicon nitride (SiNx) mentioned in the example, 5i
O1, SiO, Tag 05, etc. can be used.

また、ネガ形感光性樹脂に対する特別な制約はなく、市
販のネガ形感光性樹脂が適用できることは明かでちる。
Further, there are no special restrictions on the negative photosensitive resin, and it is obvious that commercially available negative photosensitive resins can be applied.

さらに、本実施例に挙げたTFT横゛造は一例であって
、基板上に感光波長に対し透過率の高い膜を介在させる
、n”a−SiO代わりにリン(P)等のn形不純物を
含む金属膜をソース・ドレイン接合を形成するために用
いるなど、本発明の主旨に反しない範囲において変更可
能であることは明かである。
Furthermore, the TFT structure mentioned in this example is just one example, and a film with high transmittance for the photosensitive wavelength is interposed on the substrate, and n-type impurities such as phosphorus (P) are used instead of n''a-SiO. It is obvious that modifications can be made within the scope of the invention, such as using a metal film containing the same to form a source/drain junction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、配線上に活性層
を形成して裏作される薄膜トランジスタにおいて、その
配線の間隔を絶縁膜で埋め込み配線の段差をなくしてそ
の表面を平坦化することができるので、配線抵抗低減の
ために配線膜厚を増加しても、良好なTPT%性が得ら
れる。したがって、アクティブマ) IJクス方式の平
面デイスプレィの大画槓化に対する配線抵抗に起因する
問題を一掃できる利点があり、実用上の効果は頗る大で
ある。
As explained above, according to the present invention, in a thin film transistor fabricated by forming an active layer on the wiring, it is possible to bury the interval between the wirings with an insulating film to eliminate the level difference in the wiring and flatten the surface. Therefore, even if the wiring film thickness is increased to reduce the wiring resistance, a good TPT% property can be obtained. Therefore, it has the advantage of eliminating problems caused by wiring resistance in large scale active mask IJ type flat displays, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念である配線間隔を絶H膜で埋
め込む方法を説明する工程断面図、第2図は本発明の一
実施例を示す工程断面図、第3図は本発明の別の実施例
を示す工程断面図である。 10 、20 、30・・・・透明な基板、11・・Φ
嗜配線、12.12m、22.22m 、32゜32a
 ―・・・絶縁膜、13,23.33Φ・・・ネガ形感
光性樹脂、13a、23a、33m−φ・・ネガ形感光
性樹脂のバタン、14・・・・ネガ形感光性樹脂の感光
波長の光、21.370φ嗜・ゲート電極配線、24.
34・・・・紫外光、25.36・・・・ゲート絶縁、
痕、26.35・φ・拳アモルファスシリコン(a−9
i)膜(?Y5性層)、27.31 ・・9・ソースお
よびドレイン配線、311 ・書・・Mo膜、3121
1e−IIn形アモルファスシリコン(H”a  Si
)M。
FIG. 1 is a cross-sectional view of a process illustrating the basic concept of the present invention, which is a method of filling the wiring gaps with an H film, FIG. 2 is a cross-sectional view of a process showing an embodiment of the present invention, and FIG. It is a process cross-sectional view which shows another Example. 10, 20, 30...transparent substrate, 11...Φ
Straight line, 12.12m, 22.22m, 32°32a
---Insulating film, 13, 23.33Φ...Negative photosensitive resin, 13a, 23a, 33m-φ...Bang of negative photosensitive resin, 14...Photosensitivity of negative photosensitive resin Wavelength of light, 21.370φ diameter/gate electrode wiring, 24.
34...Ultraviolet light, 25.36...Gate insulation,
Trace, 26.35・φ・Fist amorphous silicon (a-9
i) Film (?Y5 layer), 27.31...9.Source and drain wiring, 311.Write...Mo film, 3121
1e-IIn type amorphous silicon (H”a Si
)M.

Claims (9)

【特許請求の範囲】[Claims] (1)ネガ形の感光性樹脂の感光波長に対し透過率の高
い基板と、該基板上に設けられたゲート配線と、該ゲー
ト配線の上側に設けられたゲート絶縁膜と、該ゲート絶
縁膜上に設けられたソースおよびドレイン配線とを備え
る薄膜トランジスタにおいて、前記ゲート電極配線を前
記感光波長に対し透過率の低い膜または該感光波長に対
し透過率の低い膜を含む多層膜から構成し、このゲート
電極配線上に前記感光波長に対し透過率の高い絶縁膜を
当該ゲート電極配線の膜厚と大略等しい膜厚に堆積し、
次いでネガ形感光性樹脂を塗布して、基板の背面より前
記ネガ形感光性樹脂を露光した後、その現像処理により
前記ゲート電極配線領域を除く領域に形成される前記ネ
ガ形感光性樹脂のパタンをエッチングマスクとして前記
絶縁膜をエッチングして、前記ゲート電極配線を前記絶
縁膜で埋め込むことを特徴とする薄膜トランジスタ製作
法。
(1) A substrate with high transmittance for the photosensitive wavelength of a negative photosensitive resin, a gate wiring provided on the substrate, a gate insulating film provided above the gate wiring, and the gate insulating film In a thin film transistor comprising source and drain wiring provided on the top, the gate electrode wiring is composed of a film having a low transmittance for the photosensitive wavelength or a multilayer film including a film having a low transmittance for the photosensitive wavelength, and depositing an insulating film having high transmittance to the photosensitive wavelength on the gate electrode wiring to a thickness approximately equal to that of the gate electrode wiring;
Next, a negative photosensitive resin is applied, and after exposing the negative photosensitive resin from the back side of the substrate, a pattern of the negative photosensitive resin is formed in an area excluding the gate electrode wiring area through a development process. A method for manufacturing a thin film transistor, characterized in that the insulating film is etched using the insulating film as an etching mask, and the gate electrode wiring is embedded in the insulating film.
(2)ネガ形感光性樹脂の基板の背面からの露光におい
て、現像処理により作られる当該感光性樹脂のパタンの
端をゲート電極配線上にオーバラップさせ、かつエッチ
ング後の絶縁膜の端もゲート電極配線上にオーバラップ
させることを特徴とする特許請求の範囲第1項記載の薄
膜トランジスタ製作法。
(2) When exposing from the back side of a negative photosensitive resin substrate, the edge of the pattern of the photosensitive resin created by the development process overlaps the gate electrode wiring, and the edge of the insulating film after etching is also applied to the gate electrode. 2. The method of manufacturing a thin film transistor according to claim 1, wherein the thin film transistor is overlapped with the electrode wiring.
(3)絶縁膜のエッチングをドライエッチングで行なう
ことを特徴とする特許請求の範囲第1項または第2項記
載の薄膜トランジスタ製作法。
(3) The thin film transistor manufacturing method according to claim 1 or 2, wherein the insulating film is etched by dry etching.
(4)活性層がアモルファスシリコン膜からなることを
特徴とする特許請求の範囲第1項ないし第3項いずれか
1つに記載の薄膜トランジスタ製作法。
(4) The method for manufacturing a thin film transistor according to any one of claims 1 to 3, wherein the active layer is made of an amorphous silicon film.
(5)ネガ形の感光性樹脂の感光波長に対し透過率の高
い基板と、該基板上に設けられたソースおよびドレイン
配線と、該ソースおよびドレイン配線の上側に設けられ
た活性層と、該活性層上に設けられたゲート絶縁膜と、
該ゲート絶縁膜上に設けられたゲート電極とを備える薄
膜トランジスタにおいて、前記ソースおよびドレイン配
線を前記感光波長に対し透過率の低い膜または該感光波
長に対し透過率の低い膜を含む多層膜から構成し、この
ソースおよびドレイン配線上に前記感光波長に対し透過
率の高い絶縁膜を当該ソースおよびドレイン配線の膜厚
と大略等しい膜厚に堆積し、次いでネガ形感光性樹脂を
塗布して、基板の背面より前記ネガ形感光性樹脂を露光
した後、その現像処理により前記ソースおよびドレイン
配線領域を除く領域に形成される前記ネガ形感光性樹脂
のパタンをエッチングマスクとして前記絶縁膜をエッチ
ングして、前記ソースおよびドレイン配線を前記絶縁膜
で埋め込むことを特徴とする薄膜トランジスタ製作法。
(5) A substrate having high transmittance for the photosensitive wavelength of a negative photosensitive resin, source and drain wiring provided on the substrate, an active layer provided above the source and drain wiring, and a gate insulating film provided on the active layer;
In a thin film transistor comprising a gate electrode provided on the gate insulating film, the source and drain wirings are composed of a film having low transmittance to the photosensitive wavelength or a multilayer film including a film having low transmittance to the photosensitive wavelength. Then, an insulating film having high transmittance for the photosensitive wavelength is deposited on the source and drain wirings to a thickness approximately equal to that of the source and drain wirings, and then a negative photosensitive resin is applied to the substrate. After exposing the negative photosensitive resin to light from the back side, the insulating film is etched using a pattern of the negative photosensitive resin formed in an area excluding the source and drain wiring areas by a development process as an etching mask. . A thin film transistor manufacturing method, characterized in that the source and drain wirings are buried with the insulating film.
(6)ネガ形感光性樹脂の基板の背面からの露光におい
て、現像処理により作られる当該感光性樹脂のパタンの
端をソースおよびドレイン配線上にオーバラップさせ、
かつエッチング後の絶縁膜の端もソースおよびドレイン
配線上にオーバラップさせることを特徴とする特許請求
の範囲第5項記載の薄膜トランジスタ製作法。
(6) During exposure from the back side of the negative photosensitive resin substrate, the edges of the pattern of the photosensitive resin created by the development process overlap the source and drain wiring,
6. The method of manufacturing a thin film transistor according to claim 5, wherein the ends of the insulating film after etching are also overlapped with the source and drain wirings.
(7)絶縁膜のエッチングをドライエッチングで行なう
ことを特徴とする特許請求の範囲第5項または第6項記
載の薄膜トランジスタ製作法。
(7) The thin film transistor manufacturing method according to claim 5 or 6, wherein the insulating film is etched by dry etching.
(8)ソースおよびドレイン配線が透明導体膜を含む多
層膜であることを特徴とする特許請求の範囲第5項ない
し第7項のいずれか1つに記載の薄膜トランジスタ製作
法。
(8) The method for manufacturing a thin film transistor according to any one of claims 5 to 7, wherein the source and drain wirings are multilayer films including a transparent conductor film.
(9)活性層がアモルファスシリコン膜からなることを
特徴とする特許請求の範囲第5項ないし第8項いずれか
1つに記載の薄膜トランジスタ製作法。
(9) The method for manufacturing a thin film transistor according to any one of claims 5 to 8, wherein the active layer is made of an amorphous silicon film.
JP62329956A 1987-07-31 1987-12-28 Manufacture of thin-film transistor Pending JPH01173646A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62329956A JPH01173646A (en) 1987-12-28 1987-12-28 Manufacture of thin-film transistor
US07/222,844 US4918504A (en) 1987-07-31 1988-07-22 Active matrix cell
EP88112172A EP0304657B1 (en) 1987-07-31 1988-07-27 Active matrix cell and method of manufacturing the same
DE88112172T DE3884891T2 (en) 1987-07-31 1988-07-27 Active matrix cell and its manufacturing process.
US07/728,851 US5198377A (en) 1987-07-31 1991-07-09 Method of manufacturing an active matrix cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329956A JPH01173646A (en) 1987-12-28 1987-12-28 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPH01173646A true JPH01173646A (en) 1989-07-10

Family

ID=18227147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329956A Pending JPH01173646A (en) 1987-07-31 1987-12-28 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPH01173646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259536A (en) * 1990-03-09 1991-11-19 Sanyo Electric Co Ltd Manufacture of semiconductor device
EP1691340A1 (en) * 2003-11-28 2006-08-16 OHMI, Tadahiro Thin film transistor integrated circuit device, active matrix display device, and manufacturing method of the same
JP2016066807A (en) * 2010-03-12 2016-04-28 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103677A (en) * 1983-11-11 1985-06-07 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPS61182266A (en) * 1985-02-08 1986-08-14 Seiko Instr & Electronics Ltd Thin-film transistor device and manufacture thereof
JPS61201469A (en) * 1985-03-05 1986-09-06 Oki Electric Ind Co Ltd Thin-film transistor and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103677A (en) * 1983-11-11 1985-06-07 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPS61182266A (en) * 1985-02-08 1986-08-14 Seiko Instr & Electronics Ltd Thin-film transistor device and manufacture thereof
JPS61201469A (en) * 1985-03-05 1986-09-06 Oki Electric Ind Co Ltd Thin-film transistor and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259536A (en) * 1990-03-09 1991-11-19 Sanyo Electric Co Ltd Manufacture of semiconductor device
EP1691340A1 (en) * 2003-11-28 2006-08-16 OHMI, Tadahiro Thin film transistor integrated circuit device, active matrix display device, and manufacturing method of the same
EP1691340A4 (en) * 2003-11-28 2012-06-27 Tadahiro Ohmi Thin film transistor integrated circuit device, active matrix display device, and manufacturing method of the same
JP2016066807A (en) * 2010-03-12 2016-04-28 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US9917109B2 (en) 2010-03-12 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
USRE41632E1 (en) Liquid crystal display device and method of manufacturing the same
US5926235A (en) Active matrix liquid crystal display and method of making
KR100325079B1 (en) Method of manufacturing lcd having high aperture ratio and high transmittance
US8048598B2 (en) Method of fabricating a halftone mask having a shielding pattern and plural overlapping halftone patterns of different widths
US7586123B2 (en) Thin film transistor (TFT) array substrate and fabricating method thereof that protect the TFT and a pixel electrode without a protective film
US6960484B2 (en) Method of manufacturing liquid crystal display device
US8097480B2 (en) Liquid crystal display and method of making the same
US7718994B2 (en) Array substrates for use in liquid crystal displays and fabrication methods thereof
JP2003140189A (en) Array substrate for liquid crystal display device and its manufacturing method
US6970209B2 (en) Thin film transistor array substrate for a liquid crystal display and method for fabricating the same
US6853405B2 (en) Method of fabricating liquid crystal display
US6876428B2 (en) Method of manufacturing a liquid crystal display panel using a gray tone mask
US7705925B2 (en) Method of manufacturing an array substrate for use in a LCD device
US8698148B2 (en) Display devices and fabrication methods thereof
US6391499B1 (en) Light exposure mask and method of manufacturing the same
KR100623982B1 (en) Manufacturing method of a thin film transistor array panel for liquid crystal display
KR100475111B1 (en) Method for manufacturing liquid crystal display device
US20020140877A1 (en) Thin film transistor for liquid crystal display and method of forming the same
JPH0823102A (en) Electronic component and manufacture thereof
JPH01173646A (en) Manufacture of thin-film transistor
JPH01165127A (en) Method of flattening surface
JPH11119251A (en) Production of active matrix substrate
KR100205867B1 (en) Active matrix substrate and its fabrication method
JP2000187241A (en) Liquid crystal display device and its manufacture
US6842201B2 (en) Active matrix substrate for a liquid crystal display and method of forming the same