JPS61182258A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61182258A
JPS61182258A JP2187785A JP2187785A JPS61182258A JP S61182258 A JPS61182258 A JP S61182258A JP 2187785 A JP2187785 A JP 2187785A JP 2187785 A JP2187785 A JP 2187785A JP S61182258 A JPS61182258 A JP S61182258A
Authority
JP
Japan
Prior art keywords
layer
base layer
mirror
semiconductor substrate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2187785A
Other languages
Japanese (ja)
Other versions
JPH0624245B2 (en
Inventor
Shunichi Koike
俊一 小池
Takashi Yotsudo
孝 四戸
Tsuneo Ogura
常雄 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2187785A priority Critical patent/JPH0624245B2/en
Publication of JPS61182258A publication Critical patent/JPS61182258A/en
Publication of JPH0624245B2 publication Critical patent/JPH0624245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding

Abstract

PURPOSE:To obtain an SCR by a method wherein a P base layer and an N emitter layer are superposed onto one surface of an N<->-Si substrate, a P emitter layer is formed onto one surface of another N<->-Si substrate,and mirror-finished N<-> layers are joined mutually in a clean atmosphere, and joined firmly at 200 deg.C or higher. CONSTITUTION:A P-type base (PB) 12 is shaped onto one surface of an N<->-Si substrate 11 through a thermal diffusion, and an N-type emitter (NE) 13 is superposed. A P-type emitter (PE) 15 is formed onto one surface of another N<->-type Si substrate 14 through the thermal diffusion. Surfaces to be bonded in the N<->-type substrates 11, 14 are mirror-polished and processed to surface roughness of 500Angstrom or less. Degreasing is conducted and a contaminated film is removed and washed by water and dried centrifigally. Mirror surfaces are bonded mutually under the state in which there is no foreign matter substantially, and treated at 1,000-1,200 deg.C and joined. According to the constitution, the PB layer and the PE layer are shaped separately and a SCR 16 can be formed, and the anode side and the cathode side can be designed independently, thus shortening production time. When a NB layer having low lifetime is interposed between NB layers in both substrates through the irradiation of radiation or a quenching method and joined, the lifetime of carriers can be controlled partially.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はダイオード、トランジスタ、サイリスタ、GT
Q 等半導体素子の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a diode, a transistor, a thyristor, a GT
Regarding the manufacturing method of semiconductor devices such as Q.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体素子の製造には複数の拡散工程を含む。 Manufacturing semiconductor devices includes multiple diffusion steps.

たとえはサイリスタは高抵抗のN型半導体基板に両面か
らP型不純物を熱拡散してPmmペースPn 及びPM
エミッタ層Pwを作り、更に上記P型ベースl1jPB
に選択的にn型不純物を同じく熱拡散してN型エミッタ
鳴NEを形成することlこよって製作される。また、P
型ベース層PnとP型エミッタ層PKの不純物プロファ
イルが異なるサイリスタを作る時はP型ベース層を片面
から熱拡散5こよって形成した後反対面から熱拡散によ
りP型エミッタ層を作る。このように複数の熱拡散工程
を含むため、後の熱拡散工程によって先に熱拡散によっ
て形成した不純物プロファイルが変化してしまい、不純
物プロファイルの設計精度をあげるのは難しく、後の熱
拡散工程例えばP型エミッタ鳴形成工程の温度1時間を
変更する時には前の熱拡散゛工程例えばP型ベース層形
成工程の温度。
For example, a thyristor is made by thermally diffusing P-type impurities from both sides of a high-resistance N-type semiconductor substrate to form Pmm paste Pn and PM.
The emitter layer Pw is formed, and the above P type base l1jPB is formed.
The N-type emitter is thus fabricated by selectively thermally diffusing n-type impurities to form an N-type emitter. Also, P
When making a thyristor in which the impurity profiles of the type base layer Pn and the P type emitter layer PK are different, the P type base layer is formed by thermal diffusion 5 from one side, and then the P type emitter layer is formed by thermal diffusion from the opposite side. Since multiple thermal diffusion processes are involved in this way, the impurity profile previously formed by thermal diffusion changes in the subsequent thermal diffusion process, making it difficult to improve the design accuracy of the impurity profile. When changing the temperature of the P-type emitter ring formation process for 1 hour, the temperature of the previous thermal diffusion process, for example, the P-type base layer formation process.

時間を変える必要があった。また、熱拡散を何度も行う
為、素子の製造に時間がかかる。
I needed to change the time. Furthermore, since heat diffusion is performed many times, it takes time to manufacture the device.

またスイッチング時間を短くする為、PNPN構造形成
後重金属元素のドーピングや放射線照射などの少数キャ
リアのライフタイム制ME行うが、この際一部の鳴たと
えばN型ベース層のまん中だけのライフタイムを下げる
ことができず、全体のライフタイムを同時に下げるため
順方向電圧降下の上昇が大きいという問題点があった。
In addition, in order to shorten the switching time, after forming the PNPN structure, minority carrier lifetime control ME such as doping with heavy metal elements and radiation irradiation is performed, but in this case, the lifetime of only the center of the N-type base layer is reduced due to some noise. However, since the overall lifetime is reduced at the same time, there is a problem in that the forward voltage drop increases significantly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来の方法の欠点を除去し、アノー
ド側とカソード側の不純物プロファイルを独立に形成で
六、かつ製造時間も短縮できる半導体装置の製造方法を
提供することと、キャリアライフタイムの部分的制御法
を提供することにある。
It is an object of the present invention to provide a method for manufacturing a semiconductor device that eliminates the drawbacks of the conventional methods described above, can independently form impurity profiles on the anode side and cathode side, and shortens the manufacturing time. The purpose of this invention is to provide a partial control method.

〔発明の概要〕[Summary of the invention]

本発明は、2枚の半導体基板を直接接合させて一枚の半
導体基板を得るという方法を利用する。
The present invention utilizes a method of directly bonding two semiconductor substrates to obtain one semiconductor substrate.

先ず第1の高抵抗のN型半導体基板の片面にP型ベース
層とN型エミッタ層を熱拡散等の方法で形成し、これと
別に第2の高抵抗のN型半導体基板の片面にP型エミッ
タ層を熱拡散等の方法で形成する。次に第1の半導体基
板と@2の半導体基板を、N形の高抵抗鳴の面同士を対
向させて清浄な雰囲′気下で接合させ、200℃以上の
温度で熱処理し、接合を強固にする。このようにしてP
NPN構造のサイリスタを製造する。
First, a P-type base layer and an N-type emitter layer are formed on one side of a first high-resistance N-type semiconductor substrate by a method such as thermal diffusion, and separately, a P-type base layer and an N-type emitter layer are formed on one side of a second high-resistance N-type semiconductor substrate. A mold emitter layer is formed by a method such as thermal diffusion. Next, the first semiconductor substrate and @2 semiconductor substrate are bonded in a clean atmosphere with their N-type high resistance surfaces facing each other, and heat treated at a temperature of 200°C or higher to complete the bonding. Make it strong. In this way P
A thyristor with an NPN structure is manufactured.

〔発明の効果〕 本発明によればアノード側のプロファイルとカソード側
のプロファイルを独立に形成でき、相互に熱拡散による
プロファイル変化の影響を受けない。また平行に作業を
進めることができるため、製造時間を短縮することがで
きる。また接合前にキャリアライフタイム制御を行うこ
とにより、部分的にライフタイムを低下させることがで
きる。
[Effects of the Invention] According to the present invention, the anode side profile and the cathode side profile can be formed independently, and are not mutually affected by profile changes due to thermal diffusion. Furthermore, since work can proceed in parallel, manufacturing time can be shortened. Furthermore, by performing carrier lifetime control before bonding, the lifetime can be partially reduced.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例により更に詳しく説明する。 The present invention will be explained in more detail below with reference to Examples.

第1図(a)は高抵抗のN型シリコン基板11に片面か
らP型不純物を熱拡散し、P型ベース層(PR)12を
形成して続いて同一面にN型不純物を熱拡散し、N型エ
ミッタ啼(NB)13を形成した状態を示している。$
1図(b)は高抵抗のN型シリコン基板14に片面から
P型不純物を熱拡散し、P型エミv1層(PE)15を
形成した状態を示している。
In FIG. 1(a), P-type impurities are thermally diffused from one side of a high-resistance N-type silicon substrate 11 to form a P-type base layer (PR) 12, and then N-type impurities are thermally diffused on the same surface. , shows a state in which an N-type emitter (NB) 13 is formed. $
FIG. 1(b) shows a state in which a P-type impurity is thermally diffused from one side of a high-resistance N-type silicon substrate 14 to form a P-type emitter v1 layer (PE) 15.

これらの基板を充分に洗浄し、清浄な雰囲気中で第1図
(C) jこ示すように密着させて接合する。
These substrates are thoroughly cleaned and bonded in a clean atmosphere in close contact as shown in FIG. 1(C).

直接接着法iこよる素子ウェーハの形成工程は次の通り
である。まず二枚の半導体基板の被接着面を鏡面研磨し
て表面粗さ500A以下に形成する。
The process of forming an element wafer using the direct bonding method is as follows. First, the surfaces of two semiconductor substrates to be bonded are mirror-polished to a surface roughness of 500A or less.

そして半導体基板の表面状襲によっては脱脂およびステ
ィンフィルム除去の前処理を行なう。S」基板であれば
、この前処理は例えばs H2O2+Hm ”4→王水
ボイル→HFのような工程とする。この後基板を清浄な
水で数分程度水洗し、室温でのスピンナ乾燥による脱水
処理をする。この脱水処理は鍾面研磨面に過剰に吸着し
ている水分を除去するためのもので、吸着水分の殆どが
揮散するような100℃以上の加熱乾燥は避けることが
重要である。
Depending on the surface condition of the semiconductor substrate, pretreatments such as degreasing and stain film removal are performed. In the case of a "S" substrate, this pretreatment is, for example, a process such as s H2O2 + Hm "4 → aqua regia boil → HF. After this, the substrate is washed with clean water for several minutes, and dehydrated by drying with a spinner at room temperature. This dehydration process is to remove excessive moisture adsorbed on the polished surface of the ferrule, and it is important to avoid heating and drying at temperatures above 100°C, which will evaporate most of the adsorbed moisture. .

その後置基板を、クラス1以下の清浄な雰囲気下で実質
的に異物が介在しない状態で研磨面同士を接着させ、2
00℃以−ヒで熱処理する。Si基板の場合好ましい熱
処理温度は1000℃〜1200℃であるO こうして本笑施例によればPBとPEを別々に形成して
サイリスタ16を製造することができ、γノード側とカ
ソード側を独立Eこ設計できる。また製造時間も短縮す
ることができる。
The polished surfaces of the post-substrates are bonded to each other in a clean atmosphere of class 1 or below with substantially no foreign matter intervening, and 2
Heat treatment at 00°C or higher. In the case of a Si substrate, the preferable heat treatment temperature is 1000°C to 1200°C. Thus, according to this embodiment, the thyristor 16 can be manufactured by forming the PB and PE separately, and the γ node side and the cathode side are independent. E can be designed. Moreover, manufacturing time can also be shortened.

〔発明の他の実施例〕[Other embodiments of the invention]

次にダイオードを例にキャリアライフタイムを制御する
場合を説明する。従来ダイオード、トランジスタ、サイ
リスタ等の半導体素子のスイッチング時間を短縮する手
段として金、白金などの電金属を拡散して少数キャリア
に対するライフタイムキラーを形成する方法と、電子線
、ガンマ線などの放射線を半導体に照射し照射によって
半導体結晶中に生じる格子欠陥を少数キャリアのライフ
タイムキラーとして利用する方法が用いられてきた。
Next, the case of controlling carrier lifetime using a diode as an example will be explained. Conventional methods for shortening the switching time of semiconductor devices such as diodes, transistors, and thyristors include methods to diffuse electrical metals such as gold and platinum to form lifetime killers for minority carriers, and methods to reduce the switching time of semiconductor devices such as electron beams and gamma rays. A method has been used in which lattice defects generated in semiconductor crystals by irradiation are used as minority carrier lifetime killers.

いずれの方法にしてもスイッチング時間を短縮すると順
方向電圧降下(以下VFと称す)が増大し、半導体素子
の消費′螺力が増大して素子の温度を上昇させる為、順
電流耐量を低下させるという問題があった。
In either method, if the switching time is shortened, the forward voltage drop (hereinafter referred to as VF) increases, the screw force consumed by the semiconductor element increases, and the temperature of the element increases, which reduces the forward current withstand capability. There was a problem.

IBEE   Transactions  on  
Electron  Devices。
IBEE Transactions on
Electron Devices.

VOL、ED−30、L7 、July 1983 p
、782〜p、790掲載のTEMPLEとI(OLR
OYDの論文Opt1mizlngCarrier L
ifetime Profile for Impro
ved Trade −off Between Tu
rn−off Time and Forward D
ropによればスイッチングにおいて過剰キャリアが両
端から引き出される際Nベースの中央部付近の過剰キャ
リアの減少が遅れる。(第3図(a))その為Nベース
中央に低ライフタイム領域を設けると低ライフタイム領
域にあるキャリア密度は隣りあう領域のキャリア密度よ
り速やかに小さくなり、その結果キャリア密度勾配を生
じ5通常のライフタイム領域からキャリアを速やかに引
き出す。(第3図(b))低ライフタイム領域なしの場
合と、Nベース中央付近lこライフタイムが通常の11
50の領域を設けた場合tこついて計算機により計算を
行なうとVF=1.5V からスイッチングした場合逆
方向電流密度がピークから1mA/cm”に減少するま
での時間toff  は低ライフタイム領域を設けた方
が20チ小す<、シかもVF=1.5V  オン状態の
電流密度も25%大きくできる。しかし、従来のライフ
タイム制御法ではこのようにNベース領域の一部だけの
ライフタイムを下げることはできない。
VOL, ED-30, L7, July 1983 p.
, 782-p., 790 TEMPLE and I (OLR
OYD paper Opt1mizlngCarrier L
ifetime Profile for Impro
ved Trade-off Between Tu
rn-off Time and Forward D
According to rop, when excess carriers are extracted from both ends during switching, the reduction of excess carriers near the center of the N base is delayed. (Figure 3 (a)) Therefore, if a low lifetime region is provided at the center of the N base, the carrier density in the low lifetime region will quickly become smaller than the carrier density in the adjacent region, resulting in a carrier density gradient. Quickly extract a career from the normal lifetime domain. (Figure 3(b)) Case without low lifetime region and the case where the lifetime near the center of N base is 11
If a region of 50 is provided, a calculation using a computer shows that when switching from VF = 1.5V, the time toff required for the reverse current density to decrease from the peak to 1 mA/cm'' is set as a low lifetime region. The current density in the on state can be increased by 25%.However, in the conventional lifetime control method, the lifetime of only a part of the N base region can be increased by 25%. It cannot be lowered.

本発明ニよればNベース内に低ライフタイム領域を設け
ることができる。
According to the present invention, a low lifetime region can be provided within the N base.

第2(図(a)は高抵抗のN型シリコン基板17にPエ
ミッタ118を形成した状態を示している。第2図(b
lは高抵抗のN型シリコン基板19を急冷法や放射線照
射等の方法で低ライフタイムにした状態を示している。
Figure 2 (a) shows a state in which a P emitter 118 is formed on a high-resistance N-type silicon substrate 17. Figure 2 (b)
1 indicates a state in which a high-resistance N-type silicon substrate 19 is made to have a low lifetime by a method such as quenching or radiation irradiation.

第2図(C)はN型シリコン基板20にNエミッタ層2
1を形成した状態である。17゜19.20のシリコン
基板を接合し、ダイオード22を作る。(第2図(d)
)接合は、3枚同時に行っても、2枚ずつ2回行っても
かまわない。低ライフタイム領域23の厚さを薄くする
には1度シリコン基板17と低ライフタイムシリコン基
板19を接合した後、低ライフタイムシリコン基板側を
ラッピングし、シリコン基板20と接合を行えばよい。
FIG. 2(C) shows an N emitter layer 2 on an N type silicon substrate 20.
1 is formed. A diode 22 is made by bonding silicon substrates of 17° and 19.20°. (Figure 2(d)
) The bonding may be performed for three sheets at the same time or twice for two sheets at a time. In order to reduce the thickness of the low lifetime region 23, the silicon substrate 17 and the low lifetime silicon substrate 19 may be bonded once, and then the low lifetime silicon substrate side may be lapped and bonded to the silicon substrate 20.

このようにすればNベース内のどこにでも低ライフタイ
ム領域を設けることができる。トランジスタ、サイリス
タ、GTQ等でも同様に最適なライフタイムプロファイ
ルを実現できる。低ライフタイム領域を放射線照射で作
る際には、接合時の熱処理によるアニール効果を考慮し
、照射する必要がある。電子線照射の場合の400℃で
のアニール効果を特開昭54−53857より引用し、
第4図に示す。
In this way, a low lifetime region can be provided anywhere within the N base. Similarly, optimum lifetime profiles can be achieved with transistors, thyristors, GTQs, etc. When creating a low lifetime region by irradiation, it is necessary to consider the annealing effect caused by heat treatment during bonding. The annealing effect at 400°C in the case of electron beam irradiation is quoted from JP-A-54-53857,
It is shown in Figure 4.

N(o) :放射線照射後の再結合中心濃度N(t) 
ニアニーリング後の再結合中心濃度τ。:放射線照射前
のライフタイム値 τ(0):放射線照射後のライフタイム値D τ(t);アニーリング後のライフタイム値、である。
N(o): Recombination center concentration N(t) after radiation irradiation
Recombination center concentration τ after near annealing. : Lifetime value before radiation irradiation τ(0): Lifetime value D after radiation irradiation D τ(t); Lifetime value after annealing.

尚、第1図においてはサイリスタ構造を実現した。しか
し、その他第5図に示すように一導′成型のエミッタI
ii#51と、高抵抗の逆導電型のベース層52とから
なる2層構造のシリコン基板と、高抵抗の第2導電型の
ベース層53と第14電型のコレクタ層54とからなる
2−構造のシリコン基板を上記手法により接合してトラ
ンジスタ構造を実現してもよい。また、第6図に示すよ
うに一導電型のエミッタ@61と高抵抗の第2導電型の
ベース層62とからなるシリコン基板と、高抵抗の第2
導電型のベース層63と第2導電型のエミッタ層64と
からLCるシリコン基板を同様に接合してダイオード構
造を実現してもよい。
In addition, in FIG. 1, a thyristor structure is realized. However, as shown in FIG.
ii#51, a two-layer structure silicon substrate consisting of a high resistance base layer 52 of the opposite conductivity type, a high resistance base layer 53 of the second conductivity type, and a collector layer 54 of the fourteenth conductivity type. - The transistor structure may be realized by bonding silicon substrates of the structure by the above method. In addition, as shown in FIG.
A diode structure may be realized by similarly bonding a silicon substrate consisting of a base layer 63 of a conductivity type and an emitter layer 64 of a second conductivity type.

更に、第2図の様なキャリアライフタイムの制御の他l
こ、第1図のベース1ijll、14の一方又は両方、
第5図においてはベース層52 、53の一方又は両方
、第6図においてはベース@62゜63の一方又は両方
のライフタイムを予め下げる(1の 様番こしてもよい。これは、上記したように放射線照射
や急冷法により達成できる。
Furthermore, in addition to carrier lifetime control as shown in Figure 2,
This, one or both of the bases 1ijll and 14 in FIG.
In FIG. 5, the lifetime of one or both of the base layers 52 and 53, and in FIG. This can be achieved by radiation irradiation or rapid cooling.

また、惧2図においてはライフタイムの短いベース基板
を介在させたが、これは第5図、第6図においてもライ
フタイムの短いベース基板をベース間に同様に介挿して
適用できる。更に、第2図。
Furthermore, although a base substrate with a short lifetime is interposed in FIG. 2, this can also be applied to FIGS. 5 and 6 by similarly inserting a base substrate with a short lifetime between the bases. Furthermore, Fig. 2.

@5図、第6図の例においてベース基板を例えば2枚ベ
ース間に介挿し、そのベース基板の一方をライフタイム
の短い基板としても同様に実施できる。
In the examples shown in FIGS. 5 and 6, the base substrates may be inserted between, for example, two bases, and one of the base substrates may be used as a substrate with a short lifetime.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるサイリスタの製造工程
を示す図、箒2図は本発明の一実施例によるNベース中
央領域に低ライフタイム領域を設けたダイオードの製造
工程を示す図、第3図はライフタイムが均一の場合(a
)とNベース中央に低ライフタイム領域がある場合(b
)の過剰キャリア濃度の減少を示す図、第4図は電子線
のアニール効果を示す図、第5図、第6図は他の実施例
の図である。 図において 11.14・・・N型シリコン基板、12・・・P型ベ
ース層、13・・・N型エミクタ層、15・・・PMエ
ミッタ層、16・・・サイリスタ、17.20・・・N
mシリコン基板、19・・・低ライフタイムN型シリコ
ン基板、21・・・N型エミッタ鳴、22・・・ダイオ
ード、23・・・低ライフタイム。 代理人弁即士  則 近 憲 佑(ばか1名)I坤桝報 待tW轄や 第  3  図 N〜゛−ス 第  4  図
FIG. 1 is a diagram showing the manufacturing process of a thyristor according to an embodiment of the present invention, and FIG. Figure 3 shows the case where the lifetime is uniform (a
) and when there is a low lifetime region in the center of the N base (b
), FIG. 4 is a diagram showing the annealing effect of an electron beam, and FIGS. 5 and 6 are diagrams of other examples. In the figure, 11.14...N-type silicon substrate, 12...P-type base layer, 13...N-type emitter layer, 15...PM emitter layer, 16...thyristor, 17.20...・N
m silicon substrate, 19...Low lifetime N-type silicon substrate, 21...N-type emitter noise, 22...Diode, 23...Low lifetime. Noriyuki Chika (one idiot), who is the attorney-at-large attorney, is in charge of the report, Figure 3, and Figure 4.

Claims (9)

【特許請求の範囲】[Claims] (1)一導電型の第1エミッタ層、逆導電型の第1ベー
ス層および高抵抗の一導電型の第2ベース層とからなる
3層構造を形成し、高抵抗の第2ベース層側を鏡面研摩
した第1の半導体基板の鏡面研摩面と、高抵抗層の第1
導電型のベース層と第2導電型のエミッタ層とからなる
2層構造を形成し、高抵抗のベース層側を鏡面研摩した
第2の半導体基板の鏡面研摩を、直接密着させて200
℃以上の温度で接合し、4層のサイリスタ構造を形成す
る工程を備えたことを特徴とする半導体装置の製造方法
(1) A three-layer structure consisting of a first emitter layer of one conductivity type, a first base layer of opposite conductivity type, and a second base layer of one conductivity type with high resistance is formed, and the second base layer side with high resistance is formed. The mirror-polished surface of the first semiconductor substrate mirror-polished and the first mirror-polished surface of the high-resistance layer.
A two-layer structure consisting of a base layer of a conductivity type and an emitter layer of a second conductivity type is formed, and the high-resistance base layer side is mirror-polished.
A method for manufacturing a semiconductor device, comprising the step of forming a four-layer thyristor structure by bonding at a temperature of .degree. C. or higher.
(2)接合する第1の半導体基板のベース層および第2
の半導体基板のベース層の一方のライフタイムを他方の
ライフタイルよりあらかじめ下げておくことを特徴とす
る前記特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) The base layer of the first semiconductor substrate and the second semiconductor substrate to be bonded.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the lifetime of one of the base layers of the semiconductor substrate is lowered in advance than the other.
(3)接合する第1の半導体基板のベース層および第2
の半導体基板のベース層の接合面近傍のライフタイムを
あらかじめ下げておくことを特徴とする前記特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) The base layer of the first semiconductor substrate and the second semiconductor substrate to be bonded.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the lifetime of the base layer of the semiconductor substrate near the bonding surface is lowered in advance.
(4)接合する第1の半導体基板のベース層と第2の半
導体基板のベース層の間にライフタイムの低いベース基
板を介在させて接合することを特徴とする前記特許請求
の範囲第1項記載の半導体装置の製造方法。
(4) A base substrate with a low lifetime is interposed between the base layer of the first semiconductor substrate and the base layer of the second semiconductor substrate to be bonded. A method of manufacturing the semiconductor device described above.
(5)接合する第1の半導体基板のベース層と第2の半
導体基板のベース層の間にライフタイムの低いベース基
板とライフタイムの高いベース基板を介在させて接合す
ることを特徴とする前記特許請求の範囲第1項記載の半
導体装置の製造方法。
(5) The above method characterized in that a base substrate with a low lifetime and a base substrate with a high lifetime are interposed between the base layer of the first semiconductor substrate and the base layer of the second semiconductor substrate to be bonded. A method for manufacturing a semiconductor device according to claim 1.
(6)ライフタイムの低い領域を放射線照射により形成
することを特徴とする前記特許請求の範囲第1項記載の
半導体装置の製造方法。
(6) A method for manufacturing a semiconductor device according to claim 1, characterized in that the region with a low lifetime is formed by radiation irradiation.
(7)ライフタイムの低いベース基板を急冷法によって
製造することを特徴とする前記特許請求の範囲第1項記
載の半導体装置の製造方法。
(7) A method for manufacturing a semiconductor device according to claim 1, characterized in that a base substrate with a short lifetime is manufactured by a rapid cooling method.
(8)一導電型のエミッタ層と、高抵抗の逆導電型のベ
ース層とからなる2層構造を形成し、高抵抗のベース層
側を鏡面研摩した第1の半導体基板の鏡面研摩面と、高
抵抗の第2導電型のベース層と第1導電型のコレクタ層
とからなる2層構造を形成し、高抵抗のベース層側を鏡
面研摩した第2の半導体基板の鏡面研摩を、直接密着さ
せて200℃以上の温度で接合し、トランジスタ構造を
形成する工程を備えたことを特徴とする半導体装置の製
造方法。
(8) A mirror-polished surface of a first semiconductor substrate formed with a two-layer structure consisting of an emitter layer of one conductivity type and a high-resistance base layer of the opposite conductivity type, with the high-resistance base layer side mirror-polished; , a two-layer structure consisting of a high-resistance base layer of the second conductivity type and a collector layer of the first conductivity type is formed, and the second semiconductor substrate is mirror-polished with the high-resistance base layer side mirror-polished. A method for manufacturing a semiconductor device, comprising the step of forming a transistor structure by bringing them into close contact and bonding at a temperature of 200° C. or higher.
(9)第1導電型のエミッタ層と、高抵抗の第2導電型
のベース層とからなる2層構造を形成し、高抵抗のベー
ス層側を鏡面研摩した第1の半導体基板と、高抵抗の第
2導電型のベース層と、第2導電型のエミッタ層とから
なる2層構造を形成し、高抵抗のベース層側を鏡面研摩
した第2の半導体基板の鏡面研摩面を、直接密着させて
200℃以上の温度で接合し、ダイオード構造を形成す
る工程を備えたことを特徴とする半導体装置の製造方法
(9) A first semiconductor substrate formed with a two-layer structure consisting of a first conductivity type emitter layer and a high resistance second conductivity type base layer, the high resistance base layer side being mirror polished; The mirror-polished surface of a second semiconductor substrate, which has a two-layer structure consisting of a base layer of a second conductivity type of a resistor and an emitter layer of a second conductivity type, and whose high-resistance base layer side is mirror-polished, is directly polished. A method for manufacturing a semiconductor device, comprising the step of forming a diode structure by bringing them into close contact and bonding at a temperature of 200° C. or higher.
JP2187785A 1985-02-08 1985-02-08 Method for manufacturing semiconductor device Expired - Lifetime JPH0624245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187785A JPH0624245B2 (en) 1985-02-08 1985-02-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187785A JPH0624245B2 (en) 1985-02-08 1985-02-08 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61182258A true JPS61182258A (en) 1986-08-14
JPH0624245B2 JPH0624245B2 (en) 1994-03-30

Family

ID=12067353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187785A Expired - Lifetime JPH0624245B2 (en) 1985-02-08 1985-02-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0624245B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323549A2 (en) * 1987-12-28 1989-07-12 Motorola Inc. Bipolar semiconductor device having a conductive recombination layer
CN111230412A (en) * 2020-01-13 2020-06-05 宜兴市晶科光学仪器有限公司 Method for processing light chopping mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323549A2 (en) * 1987-12-28 1989-07-12 Motorola Inc. Bipolar semiconductor device having a conductive recombination layer
CN111230412A (en) * 2020-01-13 2020-06-05 宜兴市晶科光学仪器有限公司 Method for processing light chopping mirror

Also Published As

Publication number Publication date
JPH0624245B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US4935386A (en) Method of manufacturing semiconductor device including substrate bonding and outdiffusion by thermal heating
US4370180A (en) Method for manufacturing power switching devices
JPS61183917A (en) Manufacture of semiconductor device
JPH05347413A (en) Manufacture of semiconductor device
JPS61182258A (en) Manufacture of semiconductor device
JP2579928B2 (en) Semiconductor device and method of manufacturing the same
JPS5942989B2 (en) High voltage semiconductor device and its manufacturing method
US3377258A (en) Anodic oxidation
US3376172A (en) Method of forming a semiconductor device with a depletion area
JPS5821342A (en) Semiconductor device
JPS63246841A (en) Dielectric isolating method of silicon crystal body
JPS62128532A (en) Semiconductor device and manufacture thereof
JPS61182260A (en) Gate turn-off thyristor
JP3207146B2 (en) Semiconductor device manufacturing method
JPS6152976B2 (en)
TW201732896A (en) Method of manufacturing semiconductor device
JPS60236243A (en) Manufacture of semiconductor device
JPS61182259A (en) Gate turn-off thyristor
JPS6245709B2 (en)
JPS5831730B2 (en) Manufacturing method of semiconductor device
JPS62229820A (en) Manufacture of semiconductor device
JPS60117681A (en) Semiconductor device
JPH0563075A (en) Manufacture of porous semiconductor layer
JPS61183965A (en) Manufacture of thyristor
JPH02100364A (en) Manufacture of thyristor