JPS61181945A - Crystal evaluator - Google Patents

Crystal evaluator

Info

Publication number
JPS61181945A
JPS61181945A JP60022450A JP2245085A JPS61181945A JP S61181945 A JPS61181945 A JP S61181945A JP 60022450 A JP60022450 A JP 60022450A JP 2245085 A JP2245085 A JP 2245085A JP S61181945 A JPS61181945 A JP S61181945A
Authority
JP
Japan
Prior art keywords
crystal
light
bulk
relative position
emitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022450A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60022450A priority Critical patent/JPS61181945A/en
Publication of JPS61181945A publication Critical patent/JPS61181945A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

PURPOSE:To enable the evaluation of a III-V family compound semiconductor crystal, by moving the relative position between a light source comprising a silica fiber induced Raman light generator and a bulk crystal to rate the quantitative spatial distribution of various defects in the bulk crystal. CONSTITUTION:When an emitted light 2 from a Nd:YAG laser 1 is made incident into a long-sized single mode silica fiber 3 about 1km long, a 1.06mum excited light converted in the wavelength serves as a fiber induced Raman light generator and provides an emitted light 4. Once turned to a fine-diameter beam by an appropriate means such as Selfoc lens 5, this emitted light 4 is made incident into a half-insulating GaAs crystal wafer 6 with the side and the end face thereof ground and the scattered light 7 obtained from the face thereof is taken with an infrared vidicon 9 through a wave-length selective interference filter 8. In this case, to measure the entire crystal, a moving mechanism 10 for the infrared vidicon is necessary which makes the relative position between the incident luminous flux and the crystal change.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な構成を有する結晶評価装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a crystal evaluation device having a novel configuration.

(従来技術とその問題点) 近年における高速エレクトロニクス技術の光度の発展の
結果、シリコンに代わってガリウムヒ素(GaAs )
を用いた集積化電界トランジスタ回路(GaAs PE
T IC) K関心が集まっている。かかる集積化回路
は、通常引き上げ法で製作したGaAsバルク結晶にイ
オン注入などの方法によって活性領域などを形成するこ
とによシ製作が行われている。この場合、現在最大の問
題点のひとつは、かかるGaAs結晶が均質でなく、結
晶相互間はもとよシ、同一結晶内においても、組成・転
位密度・析出物・不純物などの不均一性が存在し、その
結果製作され九FET ICの特性不均一を生ずるとい
うことである。一方、かかる結晶上に直接FET IC
を製作してその結晶の評価を行うのは多数の工程を伴う
プロセスを必要とするため、多数の結晶について実施す
るのは現実的でない。
(Prior art and its problems) As a result of the development of high-speed electronics technology in recent years, gallium arsenide (GaAs) has replaced silicon.
Integrated field transistor circuit using GaAs PE
TIC) K Interest is gathering. Such integrated circuits are usually manufactured by forming active regions and the like by ion implantation or other methods in a GaAs bulk crystal manufactured by a pulling method. In this case, one of the current biggest problems is that such GaAs crystals are not homogeneous, and there are non-uniformities in composition, dislocation density, precipitates, impurities, etc. not only between crystals but also within the same crystal. This results in non-uniformity in the characteristics of the nine FET ICs being fabricated. On the other hand, a FET IC directly on such a crystal
Manufacturing and evaluating the crystals requires a process involving many steps, so it is not realistic to carry out the process on a large number of crystals.

かかる理由から、バルクGaA S結晶をはじめとする
m−vi化合物半導体結晶について簡単かつ非破壊的に
定量的評価を行い得る方法の出現が待望されていた。
For this reason, there has been a long-awaited development of a method that can easily and non-destructively quantitatively evaluate m-vi compound semiconductor crystals such as bulk GaAs crystals.

(発明の目的) 本発明は、従来におけるこのような問題点にかんがみ、
定量的・非破壊的方法によりGaAsバルク引き上げ結
晶をはじめとする■−v族化合物半導体結晶の評価を可
能ならしめる結晶評価装置を提供することを目的とする
(Object of the invention) The present invention has been made in view of these problems in the past,
The object of the present invention is to provide a crystal evaluation device that enables the evaluation of group 1-V compound semiconductor crystals, including GaAs bulk-pulled crystals, by a quantitative and non-destructive method.

(発明の構成) 本発明の結晶評価装置の構成は、近赤外部に吸収端を有
する■−■族化合物半導体バルク結晶の光学的手段によ
る非破壊的な評価を行う結晶評価装置において、Nd:
YAGレーザを励起源とするシリカ・ファイバ誘導ラマ
ン光発生器からなる光源と、該光源と該バルク結晶の相
対的位置を移動せしめつる手段と、該バルク結晶からの
透過光あるいは散乱光の波長的および空間的分布を検知
して相互比較を行う波長選択可能な手段をもつ像形成可
能な光検出手段とを備え、該バルク結晶内の各種の欠陥
の定量的な空間的分布を評価することを特徴とする。
(Structure of the Invention) The structure of the crystal evaluation apparatus of the present invention is that the crystal evaluation apparatus performs non-destructive evaluation by optical means of a ■-■ group compound semiconductor bulk crystal having an absorption edge in the near-infrared region.
A light source consisting of a silica fiber stimulated Raman light generator using a YAG laser as an excitation source; a means for moving the relative position of the light source and the bulk crystal; and a means for moving the relative position of the light source and the bulk crystal; and imageable photodetection means with wavelength selectable means for detecting and intercomparing the spatial distribution, for quantitatively evaluating the spatial distribution of various defects within the bulk crystal. Features.

(発明の原理) 一般に、m−v族化合物半導体結晶、特に引き上げ法に
よって得られた半絶縁性GaAs結晶においては、ヒ素
原子が結晶内に化学量論的に過剰に存在し、このうちの
相当部分が数原子程度のクラスタを形成して、深い準位
を作って電気的特性に影響を与え、他の相当部分は更に
大きなりラスタとなって、転位線に沿ってまたは結晶中
に析出し、電気的にはほぼ中性の性質をもつことが知ら
れている。一方、光学的特性に関しては、数原子程度の
クラスタは特有の1μm付近の吸収帯を与え。
(Principle of the Invention) In general, in m-v group compound semiconductor crystals, especially in semi-insulating GaAs crystals obtained by the pulling method, arsenic atoms exist in a stoichiometric excess in the crystal, and a considerable amount of Some parts form clusters of several atoms, creating deep levels that affect electrical properties, while other considerable parts form larger rasters and precipitate along dislocation lines or in the crystal. It is known that it has almost electrically neutral properties. On the other hand, regarding optical properties, a cluster of several atoms gives a unique absorption band around 1 μm.

波長と同程度の大きさの析出物はレーリー散乱の原因と
なり強い波長依存性を示し、更に大きな析出物は波長に
ほとんど関係しないミー散乱の原因となる。かかる理由
から各種の光学的手段によって過剰なヒ素の存在状態を
検知することによって結晶の良否あるいは不均一性の程
度などの情報を得ることが可能となる。
Precipitates with a size comparable to the wavelength cause Rayleigh scattering and exhibit strong wavelength dependence, while even larger precipitates cause Mie scattering, which is almost unrelated to wavelength. For this reason, by detecting the presence of excess arsenic using various optical means, it is possible to obtain information such as the quality of the crystal or the degree of non-uniformity.

半絶縁性GaAs結晶において、これまで光吸収または
光散乱の空間的分布を個個に測定しGaAsFETIC
のもつ緒特性と対比せしめた例は、かなりの数存在する
が、従来例においては、各種の測定結果間の関連が十分
に理解されていなかったため、評価手段として不十分な
ものであった。
Until now, the spatial distribution of light absorption or light scattering in semi-insulating GaAs crystals has been measured individually, and GaAsFETIC
Although there are quite a number of examples in which comparisons have been made with the underlying characteristics of the conventional methods, the relationships between various measurement results have not been fully understood, and as a result, they have been insufficient as evaluation tools.

今回の研究の結果、多数の赤外域発光線を有し、しかも
細いビームが得られるファイバ誘導ラマン光発生器を光
源に使用することにより、多波長における吸収および散
乱の特性を分離測定することが可能になり、 GaAs
 t−はじめとする■−■族化合物半導体結晶における
諸欠陥の直接的評価が可能となった。
As a result of this research, absorption and scattering characteristics at multiple wavelengths can be measured separately by using a fiber-stimulated Raman light generator as a light source, which has many infrared emission lines and can obtain narrow beams. Now possible, GaAs
It has become possible to directly evaluate various defects in ■-■ group compound semiconductor crystals such as t-.

(実施例) 次に、本発明を図面により詳細な説明を行う。(Example) Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.

本実施例は、Nd:YAGレーザ1の出射光2をl k
m程度の長さをもつ長尺の単一モード・シリカ・ファイ
バ3に入射せしめると、1.0.6μmの励起光は波長
変換を受けてファイバ誘導ラマン光発生器とな、9、!
2図にそのスペクトルを示す如き出射光4を与える。こ
の出射光4をセルフォック・レンズ5などの適当な手段
によシ細径のビームとした上、側面および端面を研摩し
た半絶縁性GaAs結晶ウエノつ−6に入射せしめ、こ
のウェハー面よシ得られた散乱光7を波長選択性の干渉
フィルタ8を介して赤外ビジコン9によって撮像する。
In this embodiment, the emitted light 2 of the Nd:YAG laser 1 is
When input into a long single-mode silica fiber 3 with a length of about m, the 1.0.6 μm excitation light undergoes wavelength conversion and becomes a fiber-stimulated Raman light generator, 9,!
An emitted light 4 whose spectrum is shown in FIG. 2 is provided. This emitted light 4 is made into a narrow beam by a suitable means such as a Selfoc lens 5, and is made incident on a semi-insulating GaAs crystal wafer 6 whose side and end surfaces have been polished. The scattered light 7 is imaged by an infrared vidicon 9 via a wavelength-selective interference filter 8.

この場合、複数個の干渉フィルタ8を交換することによ
って得られた画像を適当な記憶装置に保管して直接比較
することが、散乱光の解析上有効である。さらにかかる
測定を結晶全域にわたりて行うためには、入射光束と結
晶との相対的位置を変化せしめ得る赤外ビジコンの移動
機構10が必要である。
In this case, it is effective for analyzing scattered light to store images obtained by replacing a plurality of interference filters 8 in an appropriate storage device and directly compare them. Furthermore, in order to perform such measurements over the entire crystal area, an infrared vidicon moving mechanism 10 is required that can change the relative position of the incident light beam and the crystal.

第3図は本発明の第2の実施例の模式図である。FIG. 3 is a schematic diagram of a second embodiment of the invention.

本実施例は、第2図に示す如きスペクトルをもつ第1図
と同様のファイバ誘導ラマン光発生器(1〜3)からの
出射光4を、ビーム・工中スパンダ11により一様な光
束12にした上、 GaAs結晶6を透過せしめ、干渉
フィルタ8を用いて結晶の全面または一部のパターンを
赤外ビジコン9によって撮像し、散乱光の空間的分布と
対比せしめて、結晶内の吸収分布を知ることもできる。
In this embodiment, the emitted light 4 from the fiber stimulated Raman light generator (1 to 3) similar to that shown in FIG. 1 having the spectrum shown in FIG. The infrared vidicon 9 images the entire surface or part of the pattern of the crystal through the GaAs crystal 6 using the interference filter 8, and compares it with the spatial distribution of the scattered light to determine the absorption distribution within the crystal. You can also know.

かかる方法は通常行われているタングステン・ランプを
使用する方法と比較して平行度がよいため、良好な1i
TI像を得ることができる。
This method has better parallelism compared to the commonly used method using tungsten lamps, so it has a good 1i
TI images can be obtained.

本実施例による評価方法は、ここに述べた半絶縁性Ga
 A−s結晶のみでなく、近赤外域に吸収端を有する他
のm−V族化合物半導体結晶おるいはその混晶にも適用
することができる。
The evaluation method according to this example is based on the semi-insulating Ga
It can be applied not only to As crystals but also to other m-V group compound semiconductor crystals having absorption edges in the near-infrared region or mixed crystals thereof.

(発明の効果) 以上説明したように、本発明の結晶評価装置によれば、
()aAsB’ETなどのIC用半絶縁性GaAs結晶
をはじめとする■−V族化合物半導体結晶の定量的・非
破壊的評価を有効に行うことが可能となる。
(Effects of the Invention) As explained above, according to the crystal evaluation apparatus of the present invention,
It becomes possible to effectively perform quantitative and non-destructive evaluation of ■-V group compound semiconductor crystals, including semi-insulating GaAs crystals for ICs such as ()aAsB'ET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかわる結晶評価装置の一実施例の模
式図、第2図Vi!1図のファイバ誘導ラマン光発生器
の発光の一例のスペクトル図、第3図は本発明の第2の
実施例の模式図である。図において 1・・・・・・Nd : YAGレーザ、2・・・・・
・レーザ出射光、3・・・・・・単一モード・シリカ・
ファイバ、4・・・・・・ファイバ誘導ラマン光発生器
出射光、5・山・・セルフォック・レンズ、6・・・・
・・半絶縁性GaAs結晶、7・・・・・・散乱光、8
・・・・・・干渉フィルタ、9・・・・・・赤外ビジコ
ン、10・・・・・・移動機L  11・・・・・・ヒ
ーム・エキスパンダ、12・・・・・・一様な光束であ
る。 代理人 弁理士  内 原   晋 ゛覧、−一一
Fig. 1 is a schematic diagram of an embodiment of a crystal evaluation apparatus according to the present invention, and Fig. 2 Vi! FIG. 1 is a spectrum diagram of an example of light emission from a fiber-stimulated Raman light generator, and FIG. 3 is a schematic diagram of a second embodiment of the present invention. In the figure, 1...Nd: YAG laser, 2...
・Laser emission light, 3...Single mode silica
Fiber, 4... Fiber stimulated Raman light generator output light, 5 Mountain... Selfoc lens, 6...
...Semi-insulating GaAs crystal, 7...Scattered light, 8
......Interference filter, 9...Infrared vidicon, 10...Mobile device L 11...Heam expander, 12...1 It is a different kind of luminous flux. Agent: Patent Attorney Shinran Uchihara, -11

Claims (1)

【特許請求の範囲】[Claims]  近赤外部に吸収端を有するIII−V族化合物半導体バ
ルク結晶の光学的手段による非破壊的な評価を行う結晶
評価装置において、Nd:YAGレーザを励起源とする
シリカ・ファイバ誘導ラマン光発生器からなる光源と、
該光源と該バルク結晶の相対的位置を移動せしめうる手
段と、該バルク結晶からの透過光あるいは散乱光の波長
的および空間的分布を検知して相互比較を行う波長選択
可能な手段をもつ像形成可能な光検出手段とを含むこと
を特徴とする結晶評価装置。
A silica fiber stimulated Raman light generator using a Nd:YAG laser as an excitation source is used in a crystal evaluation device that non-destructively evaluates III-V compound semiconductor bulk crystals having an absorption edge in the near-infrared region by optical means. a light source consisting of;
An image having means capable of moving the relative position of the light source and the bulk crystal, and wavelength selectable means for detecting and mutually comparing the wavelength and spatial distribution of transmitted light or scattered light from the bulk crystal. 1. A crystal evaluation device comprising a formable photodetection means.
JP60022450A 1985-02-07 1985-02-07 Crystal evaluator Pending JPS61181945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022450A JPS61181945A (en) 1985-02-07 1985-02-07 Crystal evaluator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022450A JPS61181945A (en) 1985-02-07 1985-02-07 Crystal evaluator

Publications (1)

Publication Number Publication Date
JPS61181945A true JPS61181945A (en) 1986-08-14

Family

ID=12083050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022450A Pending JPS61181945A (en) 1985-02-07 1985-02-07 Crystal evaluator

Country Status (1)

Country Link
JP (1) JPS61181945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370536A (en) * 1986-09-12 1988-03-30 Nec Corp Crystal evaluating device
WO1995010768A1 (en) * 1993-10-09 1995-04-20 Renishaw Plc Raman spectroscopic analysis of damages in semiconductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370536A (en) * 1986-09-12 1988-03-30 Nec Corp Crystal evaluating device
WO1995010768A1 (en) * 1993-10-09 1995-04-20 Renishaw Plc Raman spectroscopic analysis of damages in semiconductors

Similar Documents

Publication Publication Date Title
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
EP0563863B1 (en) Method and apparatus for measuring photoluminescence in crystal
Chavez-Pirson et al. Near-field optical spectroscopy and imaging of single InGaAs/AlGaAs quantum dots
US5302832A (en) Method for evaluation of spatial distribution of deep level concentration in semiconductor crystal
JPS63250835A (en) Inspection of epitaxial wafer
DE4400097B4 (en) Device for estimating the life of semiconductor material
JP2525894B2 (en) Fluorescence characteristic inspection device for semiconductor samples
JPS61181945A (en) Crystal evaluator
JPH0697508A (en) Inspection of water for manufacturing light emitting element
DE19882660B4 (en) Optical process for marking the electrical properties of semiconductors and insulating films
JPH01182738A (en) Measurement of impurity in compound semiconductor crystal
US5512999A (en) Method for nondestructive measurement of dislocation density in GaAs
White et al. Uniformity of quantum efficiency of single and trap-configured silicon photodiodes
GB1454013A (en) Method and apparatus for testing luminescent materials
JPS61160046A (en) Apparatus for evaluating crystal
Harris et al. High spatial resolution spectroscopy of single semiconductor nanostructures
US4588946A (en) Method for measuring current at a p-n junction
JPH01182739A (en) Measurement of strain in compound semiconductor crystal
Azema et al. Guided‐wave measurement of the 1.06‐μm two‐photon absorption coefficient in GaAs epitaxial layers
JP2688040B2 (en) Fluorescence characteristic inspection device
JPH0478191B2 (en)
JPH05291624A (en) Method of inspecting epitaxial wafer for light emitting diode
JPS5852547A (en) Measuring device for concentration distribution of impurities in semiconductor crystal
JPS62115346A (en) Method and instrument for measuring impurity concentration in semiconductor crystal
JP2678629B2 (en) Determination of trace impurities in semi-insulating semiconductors