JPH01182739A - Measurement of strain in compound semiconductor crystal - Google Patents

Measurement of strain in compound semiconductor crystal

Info

Publication number
JPH01182739A
JPH01182739A JP651988A JP651988A JPH01182739A JP H01182739 A JPH01182739 A JP H01182739A JP 651988 A JP651988 A JP 651988A JP 651988 A JP651988 A JP 651988A JP H01182739 A JPH01182739 A JP H01182739A
Authority
JP
Japan
Prior art keywords
strain
light
intensity
compound semiconductor
specified region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP651988A
Other languages
Japanese (ja)
Inventor
Futatsu Shirakawa
白川 二
Toshihiko Takebe
武部 敏彦
Toshio Ueda
登志雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP651988A priority Critical patent/JPH01182739A/en
Publication of JPH01182739A publication Critical patent/JPH01182739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make it possible to measure the distribution of the intensity of strain in a compound semiconductor substrate and an epitaxial film at high resolution, by observing a photoluminescence topography using first exciting light, and dividing and measuring backward scattering light caused by second exciting light. CONSTITUTION:A first exciting laser light beam 20 having energy larger than the band gap of a sample 13 is projected on the specified region on the surface of the sample 13, which is a compound semiconductor crystal, approximately uniformly from an Argon laser 9. A photoluminescence topography in the specified region is observed. A second exciting laser light beam 30 is projected in a minute region in a specified region from a laser 8. The backward scattering light is guided into a double-diffraction grating spectroscope 3 through an objective lens 12 and a mirror 15. The light undergoes spectroscopic action and is amplified by means of an amplifier 5. Thereafter, the light is recorded by means of a recorder 6 as the intensity of strain. Then the second exciting light 30 is swept in the specified region, and the intensity in each minute region is obtained. Thus the distribution of the intensity of the strain in the specified region is measured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、引上法およびブリッジマン法等により作製
される化合物半導体基板や、分子線エピタキシ(MBE
)法および有機金属気相成長(OMVPE)法等で作製
されるエピタキシャル膜などの化合物半導体結晶の歪を
測定する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] This invention is applicable to compound semiconductor substrates manufactured by the pulling method, Bridgman method, etc., and molecular beam epitaxy (MBE).
The present invention relates to a method for measuring strain in compound semiconductor crystals such as epitaxial films produced by methods such as ) method and organic metal vapor phase epitaxy (OMVPE) method.

[従来の技術] 半導体基板やエピタキシャル膜中の歪を測定する方法と
しては、散乱光スペクトル(ラマン散乱)の測定による
ものがあり、微小領域における測定としては顕微ラマン
散乱分光法が従来より広く知られている。
[Prior art] There is a method to measure strain in semiconductor substrates and epitaxial films by measuring scattered light spectra (Raman scattering), and microscopic Raman scattering spectroscopy is more widely known for measurements in microscopic areas. It is being

[発明が解決しようとする課題] しかしながら、このようなラマン散乱分光法による従来
の測定方法では、結晶基板面上あるいはエピタキシャル
膜面上での測定対象である領域を特定することができな
いという問題があった。たとえば、結晶基板面上では、
転位等の格子欠陥の位置を知ることができないため、格
子欠陥との相対的距離の関数としての歪強度の変化を測
定することができなかった^また、エピタキシャル膜に
おいては、基板とエピタキシャル膜との界面からの距離
の関数としての歪強度の変化を測定することができなか
った。
[Problems to be Solved by the Invention] However, with the conventional measurement method using Raman scattering spectroscopy, there is a problem that it is not possible to specify the region to be measured on the crystal substrate surface or epitaxial film surface. there were. For example, on the crystal substrate surface,
Since the positions of lattice defects such as dislocations cannot be known, it was not possible to measure the change in strain intensity as a function of the relative distance to the lattice defects.In addition, in epitaxial films, the relationship between the substrate and the epitaxial film cannot be measured. It was not possible to measure the change in strain intensity as a function of distance from the interface.

この発明の目的は、かかる従来の測定方法の問題を解消
し、所定領域における転位等の格子欠陥や界面の像を観
察しながら、該所定領域^の微小領域での歪を測定する
ことのできる歪測定方法を提供することにある。
The purpose of the present invention is to solve the problems of the conventional measurement method, and to make it possible to measure strain in a minute region of a predetermined region while observing images of lattice defects such as dislocations and interfaces in the predetermined region. The object of the present invention is to provide a strain measurement method.

[課題を解決するための手段] この発明の歪測定方法では、化合物半導体結晶の表面上
の所定領域に、化合物半導体結晶のバンドギャップより
大きいエネルギを有する第1の励起光をほぼ均等に照射
して所定領域でのフォトルミネッセンストポグラフィを
観察しながら、所定領域内の微小領域に第2の励起光を
照射し後方散乱光を分光測定して歪強度を求め、次に第
2の励起光を所定領域内で掃引して各微小領域での歪強
度を求めて所定領域内での全強度分布を測定している。
[Means for Solving the Problems] In the strain measurement method of the present invention, a predetermined region on the surface of a compound semiconductor crystal is almost uniformly irradiated with first excitation light having an energy larger than the band gap of the compound semiconductor crystal. While observing the photoluminescence topography in a predetermined area, the second excitation light is irradiated to a minute area within the predetermined area, and the backscattered light is spectroscopically measured to determine the strain intensity. The strain intensity in each minute area is determined by sweeping within the area, and the total intensity distribution within the predetermined area is measured.

すなわち、この発明では顕微フォトルミネッセンストポ
グラフィ測定技術と顕微ラマン散乱分光法とを組合わせ
、最初に顕微フォトルミネッセンストポグラフィによっ
て所定領域での転位や界面等の像を観測しモニタしなが
ら、所定領域内の微小領域での歪を顕微ラマン散乱分光
法により測定している。
That is, this invention combines microscopic photoluminescence topography measurement technology and microscopic Raman scattering spectroscopy, and first observes and monitors images of dislocations, interfaces, etc. in a predetermined region using microscopic photoluminescence topography, and then Strain in microscopic regions is measured using microscopic Raman scattering spectroscopy.

[作用] この発明の測定方法では、フォトルミネッセンストポグ
ラフィによって転位等の格子欠陥や界面の位置を観察し
ている。半導体結晶にバンドキャップより大きいエネル
ギを有するレーザ光を照射すると、電子・ホール対が生
成し、それらが直接もしくは不純物や格子欠陥により誘
起された禁止帯中のエネルギ準位を介して再結合する。
[Operation] In the measurement method of the present invention, the positions of lattice defects such as dislocations and interfaces are observed by photoluminescence topography. When a semiconductor crystal is irradiated with a laser beam having an energy greater than the band gap, electron-hole pairs are generated, which recombine directly or via energy levels in the forbidden band induced by impurities or lattice defects.

この再結合の際に、光として放出するエネルギがフォト
ルミネッセンスである。フォトルミネッセンストポグラ
フィは、試料結晶の所定領域にほぼ均等にレーザ光を照
射して得られるフォトルミネッセンス像である。フォト
ルミネッセンストポグラフィは、一般に0.2〜2mm
径の領域で観測される。
The energy released as light during this recombination is photoluminescence. Photoluminescence topography is a photoluminescence image obtained by irradiating a predetermined region of a sample crystal with laser light almost uniformly. Photoluminescent topography is generally 0.2-2 mm
It is observed in the area of diameter.

結晶基板にお□いては転位の分布状態や不純物濃度分布
を、エピタキシャル成長膜においては界面近傍の欠陥や
不純物濃度分布をその発光強度から求めることかできる
In a crystal substrate, the dislocation state and impurity concentration distribution can be determined, and in an epitaxially grown film, defects and impurity concentration distribution near the interface can be determined from the emission intensity.

この発明では、このようにフォトルミネッセンストポグ
ラフィ、によって格子欠陥や界面等の位置を観察しなが
ら、歪を測定すべき微小領域を特定している。
According to the present invention, a minute region in which strain is to be measured is specified while observing the positions of lattice defects, interfaces, etc. using photoluminescence topography.

以下、ラマン散乱光について説明すると、結晶にhν菫
のエネルギを有する光を照射すると、結晶中の格子振動
(フォノン)と相互作用して、入射光が非弾性散乱され
、hシ!±hシP (hニブランク定数、hνP :フ
ォノンのエネルギ)のエネルギを有する散乱光が放射さ
れる。この放射された散乱光のエネルギを測定すること
によって、フォノンのエネルギを知ることができる。結
晶に歪を生じると、結晶を構成する原子は平衡位置から
偏位し、この結果フォノンのエネルギが変化するので、
フォノンのエネルギの変化量を測定することによって歪
の大きさ、すなわち歪強度を求めることができる。第2
図は、歪が存在するときに散乱光強度のピーク位置がシ
フトする状態を示す図である。実線で示したピークは歪
がないときのラマン散乱光を示しており、点線で示した
ピークは歪が存在するときのラマン散乱光のピークを示
している。なお、第2図において、縦軸は散乱光強度、
横軸は波数(cm”)を示している。通常のラマン散乱
光測定では、励起光として1mm〜2mmのビーム径を
有するレーザ光を用いているが、この発明では微小領域
での測定をするために、顕微鏡の対物レンズを利用し、
レーザビームを1μm〜2μmに絞って照射している。
To explain Raman scattered light below, when a crystal is irradiated with light having an energy of hv violet, it interacts with lattice vibrations (phonons) in the crystal, and the incident light is inelastically scattered, resulting in hv violet! Scattered light having an energy of ±hP (hNblank constant, hνP: phonon energy) is emitted. By measuring the energy of this emitted scattered light, the energy of the phonon can be determined. When strain occurs in a crystal, the atoms that make up the crystal deviate from their equilibrium positions, and as a result, the energy of phonons changes, so
By measuring the amount of change in phonon energy, the magnitude of distortion, that is, the strain intensity, can be determined. Second
The figure is a diagram showing a state in which the peak position of scattered light intensity shifts when strain exists. The peak shown by the solid line shows the Raman scattered light when there is no strain, and the peak shown by the dotted line shows the peak of the Raman scattered light when there is strain. In Fig. 2, the vertical axis is the scattered light intensity;
The horizontal axis indicates the wave number (cm"). In normal Raman scattering light measurement, a laser beam with a beam diameter of 1 mm to 2 mm is used as excitation light, but in this invention, measurement is performed in a micro region. To do this, use the objective lens of a microscope,
The laser beam is irradiated with a focus of 1 μm to 2 μm.

一般に、このようなラマン散乱分光法を、顕微ラマン散
乱分光法と呼んでいる。
Generally, such Raman scattering spectroscopy is called microscopic Raman scattering spectroscopy.

[実施例] 第1図は、この発明の一実施例を説明するための装置を
示す概略構成図である。アルゴンレーザ9は、フォトル
ミネッセンストポグラフィを得るための第1の励起光の
光源である。アルゴンレーザ9からのレーザビームは、
クララセンフィルタ11で発振線(λ−488nmまた
は514.5nm)以外の螢光を除去した後、ビームエ
キスパンダ10でビーム径を10mm程度に拡大し、ハ
−フミラー17および対物レンズ12を通して試料13
に照射される。試料13はX−Yステージ14上に載せ
られている。第1の励起光としての第1励起レーザビー
ム20が照射された試料13からは、フォトルミネッセ
ンスが放射される。放射されたフォトルミネッセンスは
、対物レンズ12で集光され、カットフィルタ2でレー
ザ光を除去した後、映像増強管1に導入され、フォトル
ミネッセンストポグラフィが観測される。
[Embodiment] FIG. 1 is a schematic configuration diagram showing an apparatus for explaining an embodiment of the present invention. The argon laser 9 is a light source of first excitation light for obtaining photoluminescent topography. The laser beam from the argon laser 9 is
After removing fluorescence other than the oscillation line (λ-488 nm or 514.5 nm) with the Clarasen filter 11, the beam diameter is expanded to about 10 mm with the beam expander 10, and the sample 13 is passed through the half mirror 17 and the objective lens 12.
is irradiated. The sample 13 is placed on an XY stage 14. Photoluminescence is emitted from the sample 13 irradiated with the first excitation laser beam 20 as the first excitation light. The emitted photoluminescence is collected by an objective lens 12, the laser beam is removed by a cut filter 2, and then introduced into an image intensifier tube 1, where photoluminescence topography is observed.

レーザ8は、ラマン散乱光を得るための第2の励起光の
光源であり、レーザ8から出射されたレーザは、クララ
センフィルタ7を通り、ハーフミラ−16と対物レンズ
12を通して試料13に照射される。第2の励起光とし
ての第2励起レーザビーム30が照射された試料13か
らは、散乱光が放射される。この放射された散乱光は対
物レンズ12で集光され、ミラー15により、複回折格
子分光器3に導入されて分光された後、光電子増倍管4
により電気信号に変換され、増幅器5で増幅され、記録
計6で記録される。
The laser 8 is a light source of second excitation light for obtaining Raman scattered light, and the laser emitted from the laser 8 passes through the Clarasen filter 7 and is irradiated onto the sample 13 through the half mirror 16 and the objective lens 12. Ru. Scattered light is emitted from the sample 13 irradiated with the second excitation laser beam 30 as the second excitation light. This emitted scattered light is collected by the objective lens 12, introduced into the double diffraction grating spectrometer 3 by the mirror 15, where it is spectrally separated, and then passed through the photomultiplier tube 4.
The signal is converted into an electrical signal by an amplifier 5, and then recorded by a recorder 6.

以上説明したような装置を用いて、試料13に第1励起
レーザビーム20を照射することにより得られるフォト
ルミネッセンストポグラフィを観察し、結晶基板におけ
る転位の分布状態や不純物濃度分布あるいはエピタキシ
ャル成長膜における界面近傍の欠陥や不純物濃度分布等
を知ることができる。これらの情報か=、さらに顕微ラ
マン散乱分光すべき測定対象の微小領域を特定し、その
微小領域に第2励起レーザビーム30を照射し、散乱光
強度のピーク位置のずれから、その微小領域における歪
強度を求めることができる。次に、第2励起レーザービ
ーム30を試料13上で掃引、すなわち走査して各微小
領域での歪強度を求めて所定領域内での歪強度の分布を
測定することがで、 きる。
Using the apparatus described above, the photoluminescence topography obtained by irradiating the sample 13 with the first excitation laser beam 20 is observed, and the dislocation distribution state and impurity concentration distribution in the crystal substrate or the vicinity of the interface in the epitaxially grown film is observed. Defects and impurity concentration distribution can be known. Based on this information, a micro region of the measurement target to be subjected to microscopic Raman scattering spectroscopy is specified, the micro region is irradiated with the second excitation laser beam 30, and from the shift in the peak position of the scattered light intensity, the micro region of the measurement target is identified. Strain strength can be determined. Next, the second excitation laser beam 30 is swept, that is, scanned, over the sample 13 to determine the strain intensity in each minute area, and the distribution of strain intensity within a predetermined area is measured.

[発明の効果] 以上説明したように、この発明の測定方法によれば、化
合物半導体基板やエピタキシャル膜中などの歪強度の分
布を高分解能で測定することができる。したがって、こ
の発明の歪測定方法は、半導体基板やエピタキシャル膜
上に作製される高密度の集積回路、発光ダイオードおよ
び半導体レーザなどの特性向上のために利用することが
できる。
[Effects of the Invention] As explained above, according to the measuring method of the present invention, the strain intensity distribution in a compound semiconductor substrate, an epitaxial film, etc. can be measured with high resolution. Therefore, the strain measurement method of the present invention can be used to improve the characteristics of high-density integrated circuits, light emitting diodes, semiconductor lasers, etc. manufactured on semiconductor substrates and epitaxial films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を説明するための装置を
示す概略構成図である。第2図は、散乱光強度のピーク
位置が歪の存在によりシフトする状態を示す図である。 図において、1は映像増強管、2はカットフィルタ、3
は複回折格子分光器、4は光電子増倍管、5は増幅器、
6は記録計、7はクララセンフィルタ、8はレーザ、9
はアルゴンレーザ、10はビームエキスパンダ、11は
クララセンフィルタ、12は対物レンズ、13は試料、
14はx−yステージ、15はミラー、16はハーフミ
ラ−117はハーフミラ−120は第1励起レーザビー
ム、30は第2励起レーザビームを示す。 第2図 波数(cm”)
FIG. 1 is a schematic configuration diagram showing an apparatus for explaining one embodiment of the present invention. FIG. 2 is a diagram showing a state in which the peak position of the scattered light intensity shifts due to the presence of strain. In the figure, 1 is an image intensifier tube, 2 is a cut filter, and 3
is a double grating spectrometer, 4 is a photomultiplier tube, 5 is an amplifier,
6 is a recorder, 7 is a Clarasen filter, 8 is a laser, 9
is an argon laser, 10 is a beam expander, 11 is a Clarasen filter, 12 is an objective lens, 13 is a sample,
14 is an xy stage, 15 is a mirror, 16 is a half mirror, 117 is a half mirror, 120 is a first excitation laser beam, and 30 is a second excitation laser beam. Figure 2 Wave number (cm”)

Claims (1)

【特許請求の範囲】[Claims] (1)化合物半導体結晶の表面上の所定領域に、前記化
合物半導体結晶のバンドギャップより大きいエネルギを
有する第1の励起光をほぼ均等に照射して前記所定領域
でのフォトルミネッセンストポグラフィを観察しながら
、前記所定領域内の微小領域に第2の励起光を照射し後
方散乱光を分光測定して歪強度を求め、次に前記第2の
励起光を前記所定領域内で掃引して各微小領域での歪強
度を求めて前記所定領域内での歪強度分布を測定する、
化合物半導体結晶の歪測定方法。
(1) While irradiating a predetermined region on the surface of a compound semiconductor crystal almost uniformly with first excitation light having an energy larger than the band gap of the compound semiconductor crystal and observing photoluminescence topography in the predetermined region, , irradiate a second excitation light onto a minute area within the predetermined area, perform spectroscopic measurement of the backscattered light to determine the strain intensity, and then sweep the second excitation light within the predetermined area to determine each minute area. determining the strain intensity at and measuring the strain intensity distribution within the predetermined area;
Method for measuring strain in compound semiconductor crystals.
JP651988A 1988-01-13 1988-01-13 Measurement of strain in compound semiconductor crystal Pending JPH01182739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP651988A JPH01182739A (en) 1988-01-13 1988-01-13 Measurement of strain in compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP651988A JPH01182739A (en) 1988-01-13 1988-01-13 Measurement of strain in compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH01182739A true JPH01182739A (en) 1989-07-20

Family

ID=11640643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP651988A Pending JPH01182739A (en) 1988-01-13 1988-01-13 Measurement of strain in compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH01182739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JP2009521796A (en) * 2005-10-27 2009-06-04 ザイトロニクス・コーポレーション Method for characterization of light reflection of strain and active dopants in semiconductor structures
JP2010096698A (en) * 2008-10-20 2010-04-30 Nagoya City Distortion sensor using internal alkyne containing resin
WO2015037643A1 (en) * 2013-09-10 2015-03-19 株式会社Ihi Material identification system and material identification method
JP2017062263A (en) * 2012-03-16 2017-03-30 株式会社堀場製作所 Sample analyzing device and sample analysis program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JP2009521796A (en) * 2005-10-27 2009-06-04 ザイトロニクス・コーポレーション Method for characterization of light reflection of strain and active dopants in semiconductor structures
KR101314929B1 (en) * 2005-10-27 2013-10-04 지트로닉스 코포레이션 Method of phot0-reflectance characterization of strain and active dopant in semiconductor structures
JP2010096698A (en) * 2008-10-20 2010-04-30 Nagoya City Distortion sensor using internal alkyne containing resin
JP2017062263A (en) * 2012-03-16 2017-03-30 株式会社堀場製作所 Sample analyzing device and sample analysis program
WO2015037643A1 (en) * 2013-09-10 2015-03-19 株式会社Ihi Material identification system and material identification method
JPWO2015037643A1 (en) * 2013-09-10 2017-03-02 株式会社Ihi Substance identification system and substance identification method

Similar Documents

Publication Publication Date Title
KR100483357B1 (en) Apparatus and method for detecting micro defects in semi-conductors
JP4248249B2 (en) Detection and classification of semiconductor microdefects
Ponce et al. Spatial distribution of the luminescence in GaN thin films
JP3917154B2 (en) Defect evaluation method and apparatus for semiconductor sample
US5381016A (en) Method and apparatus for measuring photoluminescence in crystal
Moore et al. A spatially resolved spectrally resolved photoluminescence mapping system
TW200427978A (en) Detection method and apparatus
JPH01182739A (en) Measurement of strain in compound semiconductor crystal
JPH01182738A (en) Measurement of impurity in compound semiconductor crystal
Nango et al. An optical study on dislocation clusters in a slowly pulled silicon crystal
JP3275022B2 (en) Photoluminescence measurement device in crystal
JP6020073B2 (en) Method for analyzing crystal defects in semiconductor samples
JP7363423B2 (en) Method for manufacturing silicon carbide single crystal
JPH033946B2 (en)
JPS60126816A (en) Molecular beam epitaxial growth device
JP5505769B2 (en) Semiconductor wafer surface layer evaluation method
JPH0868757A (en) Evaluation of surface of sample
Ziegler Energy resolved and spatially resolved photoluminescence
Khulbe et al. Raman scattering from oval defects in GaAs epilayers
Masarotto et al. Development of an UV scanning photoluminescence apparatus for SiC characterization
Guttroff et al. Near field scanning optical spectroscopy of InP single quantum dots
Ogawa¹ et al. Light scattering tomography for characterization of semiconductors
JPH0714894A (en) Evaluation of compound semiconductor
Kitamura et al. A cathodoluminescence microscope and its application to the study of growth zoning of minerals
Young et al. Fourier Transform Spectroscopy Of Semiconductor Photoluminescence