JPS5852547A - Measuring device for concentration distribution of impurities in semiconductor crystal - Google Patents

Measuring device for concentration distribution of impurities in semiconductor crystal

Info

Publication number
JPS5852547A
JPS5852547A JP15102681A JP15102681A JPS5852547A JP S5852547 A JPS5852547 A JP S5852547A JP 15102681 A JP15102681 A JP 15102681A JP 15102681 A JP15102681 A JP 15102681A JP S5852547 A JPS5852547 A JP S5852547A
Authority
JP
Japan
Prior art keywords
light
laser diode
impurities
concentration distribution
constitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15102681A
Other languages
Japanese (ja)
Inventor
Kuninori Kitahara
邦紀 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15102681A priority Critical patent/JPS5852547A/en
Publication of JPS5852547A publication Critical patent/JPS5852547A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To execute an analysis of Cr impurities with high resolution by a simple constitution, by projecting the light of an InP laser diode to a GaAs substrate, and detecting its transmission light. CONSTITUTION:Single color light of 1.35mum wavelength, which has emitted from an InP laser diode 21 is condensed by a condensing lens 14, and is irradiated to a GaAs wafer 3 installed to a moving stage. Its transmission light is made incident to an optical detector 6, its output passes through an amplifier 7, is converted to an absorption coefficient of impurities Cr byan operating circuit 8, and is recorded as a function of an irraidated positin, on an XY recorder. Since single color light is used, the resolution is large, also a spectroscope or a filter becomes unnecessary, and since the laser 21 is pulse-operated, a chopper also becomes unnecessary, and the constitution is simplified. When an optical fiber is used instead of the condensing lens 14, the number of degrees of freedom becomes large.

Description

【発明の詳細な説明】 本発明は半導体結晶中の不純物濃度分布測定装置、特に
ガリウム砒素(GaAs)バルク結晶中のりpム(Cr
) 114度分布の測定装置に係り、波長1.35(μ
m)の単色光の峡部係数からCr#度を推定する方式に
基づいた不純物濃度分布測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring impurity concentration distribution in a semiconductor crystal, and in particular to an apparatus for measuring impurity concentration distribution in a gallium arsenide (GaAs) bulk crystal.
) The wavelength is 1.35 (μ
The present invention relates to an impurity concentration distribution measuring device based on a method of estimating Cr# degree from the isthmus coefficient of monochromatic light.

Cr  をドープした半絶縁性ガリウム砒素(GaAa
)結晶は、GaAs  FETやrc  等の半導体素
子の基板として用いられているが、当該基板結晶中の不
純物濃度のウニ・へ−面内の均一性は半導体素子の動作
特性延〜・では信頼性の面にも影響を及ぼす。このため
、半導体素子の製造を行うに当たって、基板結晶中の不
純物濃度分布を高分解能で調べることは重要な工程であ
る。
Semi-insulating gallium arsenide (GaAa) doped with Cr
) crystals are used as substrates for semiconductor devices such as GaAs FETs and RCs, but the in-plane uniformity of the impurity concentration in the substrate crystals affects the operating characteristics of semiconductor devices and their reliability. It also affects aspects of Therefore, in manufacturing semiconductor devices, it is an important step to examine the impurity concentration distribution in the substrate crystal with high resolution.

上述のGaAs  基板中の不純物クロム原子濃度分布
の測定は、Cr  の吸収係数測定に基礎をおいている
。第1図は従来技術における不純物濃度分布の測定装置
の概略図である。以下同図を診照して従来技術を説明す
る。
The measurement of the impurity chromium atomic concentration distribution in the GaAs substrate described above is based on the measurement of the absorption coefficient of Cr. FIG. 1 is a schematic diagram of a conventional impurity concentration distribution measuring device. The prior art will be explained below with reference to the same figure.

光源1としてはタングステンランプが用いられており、
当該ランプは白色光源である。また図中2は分光器であ
’J、Cr  が波長1.35 (μm)付近に吸収帯
をもっていることから、白色光の中から当該波長の光を
選択する目的で使用される。かかる選択された光を工光
チョンパーにより強度変調された後に集光レンズ4およ
びピンホール5を通して小さな径のスポットに絞られ、
試料(ウェハ)3上に照射される。
A tungsten lamp is used as the light source 1,
The lamp is a white light source. In addition, 2 in the figure is a spectroscope, which is used for the purpose of selecting light of that wavelength from white light, since Cr has an absorption band around a wavelength of 1.35 (μm). After the selected light is intensity-modulated by an optical chopper, it is focused into a small diameter spot through a condenser lens 4 and a pinhole 5,
A sample (wafer) 3 is irradiated with light.

ウェハ3を通過した透過光は光検知器6で電気信号に変
換され、増幅器7を通し、演算回路8で吸収係数に変換
される。この結果はX−YVコーダー9にウェハ上の照
射位置とともに不純物嬢度の一次元分布として記録され
る。なお、ウェハ3は移動ステージ12上に保持され、
光軸の垂直方向(図中矢印方向)に移動可能である。
The transmitted light that has passed through the wafer 3 is converted into an electrical signal by a photodetector 6, passed through an amplifier 7, and converted into an absorption coefficient by an arithmetic circuit 8. This result is recorded in the X-YV coder 9 as a one-dimensional distribution of the impurity degree together with the irradiation position on the wafer. Note that the wafer 3 is held on a moving stage 12,
It is movable in the direction perpendicular to the optical axis (in the direction of the arrow in the figure).

ところで、上記従来技術において最も重要なことは濃度
分布に対する分解能であ心。高分解能を達成するにを工
、分光器2から出た単色光を集光レンズ4とピンホール
5iCよってできるだけ/」\さな径のスポットに絞Φ
必要があるが、タングステンランプ1のフィラメントが
太きいため十分小さなスポットを効率よく得ることがで
きない。
By the way, the most important thing in the above conventional technology is the resolution of the concentration distribution. In order to achieve high resolution, the monochromatic light emitted from the spectrometer 2 is narrowed down to a spot with a small diameter as much as possible by the condenser lens 4 and pinhole 5iC.
However, since the filament of the tungsten lamp 1 is thick, it is not possible to efficiently obtain a sufficiently small spot.

一方、装置中に分光器や集光レンズなどを含むため、装
置構成の複雑化、測定手順の繁雑さの原因となり、測定
能率の低下、測定誤差の増大なまねくおそれがある。
On the other hand, since the device includes a spectroscope, a condensing lens, etc., the device configuration becomes complicated and the measurement procedure becomes complicated, which may lead to a decrease in measurement efficiency and an increase in measurement errors.

以上述べた如(、従来技術におけるGaAs  結晶基
板中のCr  不純物濃度の基板ウェハー面内における
一次元分布測定には、空間的分解能、装置構成の面で問
題があり、半導体素子製造効率の低下の原因になる。
As mentioned above, the conventional one-dimensional distribution measurement of the Cr impurity concentration in a GaAs crystal substrate within the substrate wafer surface has problems in terms of spatial resolution and equipment configuration, and may lead to a decrease in semiconductor device manufacturing efficiency. become the cause.

本発明の目的は上述した従来技術における問題点を解決
する事にある。かかる目的を達成するため、本願の発明
者は、単色光光源を用い、空間的な分解能の向上した半
導体結晶中の不純物濃度測定製電を開発した。
An object of the present invention is to solve the problems in the prior art described above. In order to achieve this objective, the inventors of the present application have developed an electronic method for measuring impurity concentration in semiconductor crystals with improved spatial resolution using a monochromatic light source.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図は本発明における不純物測定装置の概略図である
(図中、第1図と同じ部分は同じ符号で示されている。
FIG. 2 is a schematic diagram of the impurity measuring device according to the present invention (in the figure, the same parts as in FIG. 1 are indicated by the same symbols.

)同図に於いてはインジウム燐(InP )レーザーダ
イオード21が光源として使用され、当該光源から出る
光は波長1.35 (μm)の単色光である。上記単色
光は集光レンズ14によって集光され、GaAs  ウ
ェハー3に照射されろ。
) In the figure, an indium phosphide (InP) laser diode 21 is used as a light source, and the light emitted from the light source is monochromatic light with a wavelength of 1.35 (μm). The monochromatic light is condensed by a condenser lens 14 and irradiated onto the GaAs wafer 3.

一方、透過光強度は従来技術と同じ方法でウニ・・−照
射位置とともvc x −yレコーダー91C記録され
る。光源として用いられるInPレーザーダイオード2
1は、第3図にその斜視図で示される如(、下部にリー
ド紗31を設けたステム32によって構成され、当該ス
テム31の側面には光源用の照射孔33が設けられてい
る。当該InPレーザーダイオードは波長1.35 (
μm)付近に発光帯を持ち、発光部の直径は数10(μ
m)程度であり点光源として用いられる。
On the other hand, the transmitted light intensity is recorded on the VC x-y recorder 91C along with the irradiation position of the sea urchin in the same manner as in the prior art. InP laser diode 2 used as a light source
1 is composed of a stem 32 with a reed gauze 31 provided at its lower part, and an irradiation hole 33 for a light source is provided on the side surface of the stem 31, as shown in a perspective view in FIG. InP laser diode has a wavelength of 1.35 (
The diameter of the light-emitting part is several tens of micrometers (μm).
m) and is used as a point light source.

上述した如(本発明の測定装置においては、InPレー
ザーダイオードの発光部の直径が数10(μm)程度で
あるため、集光したスポットも同程度の太きさまで絞る
ことが容易にできることから、高分解能を得ることが可
能である。また、 InPレーザーダイオードは単色光
源であるため、分光器や二次元カントフィルターを必要
とせず、またレーザーダイオードの電源としてパルス電
源を使用Y ):+ため、光検知器のドリフトによる影
響などを除去するための光チョッパーも不要となり、光
学系の装置構成を簡易化が可能になる。
As mentioned above (in the measuring device of the present invention, the diameter of the light emitting part of the InP laser diode is about several tens (μm), so the focused spot can be easily narrowed down to the same size. It is possible to obtain high resolution.Also, since the InP laser diode is a monochromatic light source, it does not require a spectrometer or two-dimensional cant filter, and a pulsed power source is used as the power source for the laser diode. There is also no need for an optical chopper to remove the effects of drift of the photodetector, making it possible to simplify the configuration of the optical system.

以上説明した如く、本発明によれば装置構成が簡単でし
かも高分解能が得られるGaAa  結晶中のCr  
B度分布測定装置が提供され、半導体素子製造効率の向
上および装量信頼性の向上に太いに貢M−f6 i、、
 17)−t)あ、。   1なお、本発明装置におけ
るInPレーザーダイオード21および集光レンズ14
0代わりに光ファイバー付きのレーザーダイオードを使
用することができる。かかる装置によれば、照射光をウ
ェハー表面まで光ファイバーによって誘導でき、自由度
の高〜・光学系を有する半導体結晶中の不純物濃度分布
測定装置を提供することが可能となる。
As explained above, according to the present invention, the device configuration is simple and high resolution can be obtained.
A B degree distribution measurement device has been provided, which has greatly contributed to improving semiconductor device manufacturing efficiency and loading reliability.
17)-t) Ah. 1. Note that the InP laser diode 21 and the condensing lens 14 in the device of the present invention
0 can be replaced by a laser diode with an optical fiber. According to such an apparatus, irradiation light can be guided to the wafer surface by an optical fiber, and it is possible to provide an apparatus for measuring impurity concentration distribution in a semiconductor crystal having an optical system with a high degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術におけ7) GaAg  結晶中のC
r不純物濃度分布測定装置の概略構成図、第2図は本発
明における上記測定装置の概略構成図、第3図はInP
レーザーダイオード外観を示す斜視図である。 1・・・タングステンランプ、2・・・分光器、3・・
・試料(ウェハー)、4.14・・・集光レンズ、5・
・・ピンホール、6・・・光検知器、7・・・増幅器、
8・・・演算回路、 9・・・X−Yレフーダ、10・・・光チヨツパ−,1
2・・・移動ステージ、 21・・・InP  レーザ
ーダイオード、31・・・リード線、32・・・ステム
、33・・・照射孔特許出願人 富士通株式会社 第2図
Figure 1 shows the conventional technology 7) C in GaAg crystal.
2 is a schematic diagram of the r-impurity concentration distribution measuring device, FIG. 2 is a schematic diagram of the measuring device of the present invention, and FIG. 3 is an InP
FIG. 2 is a perspective view showing the appearance of a laser diode. 1...Tungsten lamp, 2...Spectrometer, 3...
・Sample (wafer), 4.14...Condensing lens, 5.
...Pinhole, 6...Photodetector, 7...Amplifier,
8... Arithmetic circuit, 9... X-Y refuder, 10... Optical chopper, 1
2...Moving stage, 21...InP laser diode, 31...Lead wire, 32...Stem, 33...Irradiation hole Patent applicant Fujitsu Limited Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  ガリウム砒素中のクロム濃度及びその分布を
測定する製電において、光源としてインジウム燐(In
P )レーザーダイオードと集光レンズとを用い、当該
光源によりウェハを照射し、当該ウェハ透過光を電気的
装置lvcより検出、記録することを特徴とする半導体
結晶中の不純物嬢度測定装置。
(1) Indium phosphide (In
P) An apparatus for measuring impurity levels in semiconductor crystals, which uses a laser diode and a condensing lens, irradiates a wafer with the light source, and detects and records the light transmitted through the wafer by an electric device lvc.
(2)  光源としてInPレーザーダイオードと光フ
ァイバーとを組合わせた光学系を用いることを特徴とす
る特許請求の範囲第1項記載の半導体中の不純物織度測
定装置。
(2) An apparatus for measuring impurity texture in a semiconductor according to claim 1, characterized in that an optical system combining an InP laser diode and an optical fiber is used as a light source.
JP15102681A 1981-09-24 1981-09-24 Measuring device for concentration distribution of impurities in semiconductor crystal Pending JPS5852547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15102681A JPS5852547A (en) 1981-09-24 1981-09-24 Measuring device for concentration distribution of impurities in semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15102681A JPS5852547A (en) 1981-09-24 1981-09-24 Measuring device for concentration distribution of impurities in semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5852547A true JPS5852547A (en) 1983-03-28

Family

ID=15509673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15102681A Pending JPS5852547A (en) 1981-09-24 1981-09-24 Measuring device for concentration distribution of impurities in semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5852547A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133027A (en) * 1985-12-05 1987-06-16 Honda Motor Co Ltd Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy
JPS62146994A (en) * 1985-12-19 1987-06-30 Honda Motor Co Ltd Sliding member
JPS62146228A (en) * 1985-12-19 1987-06-30 Honda Motor Co Ltd Manufacture of self lubricating sintered copper alloy
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133027A (en) * 1985-12-05 1987-06-16 Honda Motor Co Ltd Manufacture of sintered copper alloy having self lubricating property, material sheet and powder for sintered copper alloy
JPS62146994A (en) * 1985-12-19 1987-06-30 Honda Motor Co Ltd Sliding member
JPS62146228A (en) * 1985-12-19 1987-06-30 Honda Motor Co Ltd Manufacture of self lubricating sintered copper alloy
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers

Similar Documents

Publication Publication Date Title
US5025145A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
JP4001862B2 (en) System and method for a wafer inspection system using multiple angle and multiple wavelength illumination
US5381016A (en) Method and apparatus for measuring photoluminescence in crystal
JPS5852547A (en) Measuring device for concentration distribution of impurities in semiconductor crystal
KR101136865B1 (en) Apparatus for inspecting uniformity of pattern
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
US4777146A (en) Fabrication process involving semi-insulating material
JPS62112322A (en) Laser annealing device
JP2848874B2 (en) Contact hole opening inspection method
JPH033946B2 (en)
JPH0410578B2 (en)
JP3777394B2 (en) Semiconductor junction capacitance evaluation method and junction capacitance measuring apparatus
JPS6135516A (en) Semiconductor heat processing control method
RU2077754C1 (en) Method and device for detection of physical characteristics of semiconductor plate
JPH10239028A (en) Etching depth measuring method and its device
JPH02242140A (en) Breakdown spectral analysis method and apparatus
JPS5812123Y2 (en) X-ray analysis equipment for electron microscopes, etc.
JPS61219852A (en) Apparatus for evaluating ion implantation layer
JPH08193893A (en) Raman stress measuring apparatus
JPS60103636A (en) Measurement of resistivity of compound semiconductor substrate
JPS61181945A (en) Crystal evaluator
JPS62293733A (en) Measuring method for solid state property of semiconductor
JPS59149029A (en) Evaluating device for compound semiconductor crystal substrate
JPS61218929A (en) Crystal evaluating device
JPH02187689A (en) Method of calibrating energy dispersion type x-ray detector for light element