JPS6118156B2 - - Google Patents

Info

Publication number
JPS6118156B2
JPS6118156B2 JP52142209A JP14220977A JPS6118156B2 JP S6118156 B2 JPS6118156 B2 JP S6118156B2 JP 52142209 A JP52142209 A JP 52142209A JP 14220977 A JP14220977 A JP 14220977A JP S6118156 B2 JPS6118156 B2 JP S6118156B2
Authority
JP
Japan
Prior art keywords
core
power distribution
reactor
axial
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52142209A
Other languages
Japanese (ja)
Other versions
JPS5476798A (en
Inventor
Tsutomu Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP14220977A priority Critical patent/JPS5476798A/en
Publication of JPS5476798A publication Critical patent/JPS5476798A/en
Publication of JPS6118156B2 publication Critical patent/JPS6118156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所の原子炉炉心の状態たと
えば性能、ゼノン濃度、軸方向および径方向炉出
力分布等の炉心状態を予測する炉心状態予測装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactor core condition prediction device for predicting core conditions of a nuclear power plant, such as performance, xenone concentration, and axial and radial reactor power distribution.

原子力発電所の運転において、原子炉の安全性
や燃料の健全性を維持するには、運転制限条件が
存在するほか、最大線出力密度、限界熱流束比等
など種々の制限条件が課せられている。冷却材流
量を変化させて炉出力の変更を行なう際、出力変
更後の炉心状態において、前記の各種条件が満足
されているか否かを予測することは非常に重要で
ある。
In the operation of a nuclear power plant, in order to maintain the safety of the reactor and the integrity of the fuel, there are various operating restriction conditions, such as maximum linear power density, critical heat flux ratio, etc. There is. When changing the reactor output by changing the coolant flow rate, it is very important to predict whether or not the various conditions described above are satisfied in the state of the core after the output is changed.

炉心状態の予測を行なうには、本来ゼノンの動
特性を含めた3次元モデルを使用するのが望まし
いが、モデルの複雑さに伴う膨大な計算量と、予
測に必要とされる長時間とのため頗る困難であ
り、特に燃料被覆管と管内ペレツトの相互作用に
よる被覆管の破損を防止するため、ゆつくりとし
た出力密度の上昇率で炉出力を変更する運転法を
採用する場合、数日先までの予測は著しく困難で
ある。
In order to predict the state of the reactor core, it is desirable to use a three-dimensional model that includes Zenon's dynamic characteristics, but this requires a huge amount of calculation due to the complexity of the model and the long time required for prediction. In particular, when adopting an operating method in which the reactor power is changed at a slow rate of increase in power density in order to prevent damage to the cladding due to interaction between the fuel cladding and the pellets inside the tube, it can take several days. It is extremely difficult to predict the future.

本発明の目的は、原子力発電所の運転におい
て、現在の炉心のデータを基にして冷却材流量を
変化させた場合の炉出力や炉出力分布の変化さら
には前述の各種制限条件を満足するや否かを予測
する予測装置を提供するにある。
The purpose of the present invention is to change the reactor power and reactor power distribution when the coolant flow rate is changed based on the current core data in the operation of a nuclear power plant, and to satisfy the various limiting conditions described above. An object of the present invention is to provide a prediction device for predicting whether or not the answer is yes.

以下本発明の実施例について図面を参照して詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示すブロツク図で
ある。原子炉1には、炉心に挿入される制御棒の
位置、炉心内の中性子束、炉心の流量、圧力、温
度等のプロセス量の各種検出器(図示せず)が設
置されている。各種検出器からのプラントデータ
信号2は、炉心の性能を計算する炉心性能計算装
置3に入力されて炉心の性能値が計算される。炉
心性能計算装置3は電子計算機からなるもので従
来から使用されているものである。
FIG. 1 is a block diagram showing one embodiment of the present invention. The nuclear reactor 1 is equipped with various detectors (not shown) for detecting process variables such as the position of control rods inserted into the reactor core, neutron flux in the reactor core, flow rate, pressure, and temperature in the reactor core. Plant data signals 2 from various detectors are input to a core performance calculation device 3 that calculates the performance of the reactor core, and the performance value of the reactor core is calculated. The core performance calculation device 3 is composed of an electronic computer and is conventionally used.

軸方向炉出力分布予測装置4は本出願人が先に
提出した特願昭52−106262号に詳細に開示されて
あるが、要約すると炉心を軸方向一次元モデルで
近似してゼノン濃度変化、流量変化に伴う炉出力
の予測を必要な精度で迅速に求める装置である。
またゼノン濃度分布計算装置5は、前者に必要と
される軸方向ゼノン濃度変化の現在値を炉心性能
計算装置の出力信号6に基づいて計算する装置で
ある。
The axial reactor power distribution prediction device 4 is disclosed in detail in Japanese Patent Application No. 106262/1987 previously filed by the present applicant, but to summarize, the reactor core is approximated by an axial one-dimensional model, and changes in xenone concentration, This is a device that quickly predicts the furnace output as the flow rate changes with the necessary accuracy.
Further, the xeno concentration distribution calculation device 5 is a device that calculates the current value of the axial xenon concentration change required for the former based on the output signal 6 of the core performance calculation device.

軸方向炉出力分布予測装置4がデータ要求信号
7を炉心性能計算装置3とゼノン濃度分布計算装
置5にそれぞれ発するとこれらの装置3,5から
データを示す信号8,8′が転送され、転送され
たデータを初期値として、軸方向出力分布予測装
置4は炉出力と軸方向炉出力分布を予測する。
When the axial reactor power distribution prediction device 4 sends a data request signal 7 to the core performance calculation device 3 and the Zenon concentration distribution calculation device 5, signals 8 and 8' indicating the data are transferred from these devices 3 and 5, and then transferred. Using the obtained data as initial values, the axial power distribution prediction device 4 predicts the furnace output and the axial furnace power distribution.

径方向炉出力分布予測装置9は、炉心性能計算
装置3から得られる信号10に基づいて現在(T
=0)の軸方向炉出力分布K(0)と、軸方向炉出
力予測装置4から得られる信号11に基づいてT
時間後の軸方向炉出力分布K(T)とから軸方向の
ノードKにおける出力変化割合RKを次式により
求める。
The radial reactor power distribution prediction device 9 calculates the current (T) based on the signal 10 obtained from the core performance calculation device 3.
= 0 ) and the signal 11 obtained from the axial furnace power prediction device 4.
From the axial furnace power distribution K (T) after time, the output change rate R K at the axial node K is determined by the following equation.

KK(T)/K(0) (1) ここにノードKは、炉心軸方向の高さを等分し
た番号のうち任意の番号を、Tは、時間を、0は
T=0を、KはノードKにおける平均炉出力を
表わす記号である。
R K = K (T) / K (0) (1) Here, node K is an arbitrary number among the numbers equally dividing the height in the core axis direction, T is time, and 0 is T = 0. , K is the symbol representing the average furnace power at node K.

次に炉心性能計算装置3から得られる炉内出力
分布PI,J,K(0)に(1)式で得られるRKを掛けれ
ばT時間経過後の炉内出力分布 PI,J,K(T)が予測される。ここにI.J.は炉心の
平面座標を示す。
Next, by multiplying the in-core power distribution P I,J,K (0) obtained from the core performance calculation device 3 by R K obtained by equation (1), the in-core power distribution P I,J after T time elapses, K (T) is predicted. Here, IJ indicates the planar coordinates of the core.

軸方向、径方向炉出力分布予測装置4,9で出
力分布の予測を行なうのは、運転員入力装置12
により、流量を時間の関数で表わした信号13を
入力し、初期条件の設定は、プラントデータを処
理する炉心性能計算装置3とゼノン濃度分布計算
装置5を利用して行なう。逆に炉出力を指定し、
そのときの炉心流量の予測を行なうには、運転員
入力装置12に炉出力を時間の関数として与えれ
ばよい。これらの結果は信号14により予測結果
表示装置15に入力されて表示される。
The operator input device 12 predicts the power distribution in the axial and radial furnace power distribution prediction devices 4 and 9.
Accordingly, a signal 13 representing the flow rate as a function of time is input, and initial conditions are set using a core performance calculation device 3 and a Zenon concentration distribution calculation device 5 that process plant data. Conversely, specify the furnace output,
In order to predict the core flow rate at that time, the reactor power may be given to the operator input device 12 as a function of time. These results are input to the prediction result display device 15 via a signal 14 and displayed.

制限条件比較装置16は軸方向炉出力分布予測
装置4で得られる炉出力信号17や、径方向炉出
力分布予測装置9からの炉出力分布信号18を入
力し、制限条件となる項目たとえば最大線出力密
度、限界熱流速比などを求めて、さらに制限条件
設定盤19に設定された制限条件と比較して必要
に応じて予測結果表示装置15に出力する装置で
ある。
The limiting condition comparing device 16 inputs the furnace output signal 17 obtained by the axial furnace power distribution predicting device 4 and the furnace power distribution signal 18 from the radial furnace power distribution predicting device 9, and compares items that become limiting conditions, such as the maximum line. This device calculates the output density, critical heat flow velocity ratio, etc., compares the results with the limit conditions set on the limit condition setting board 19, and outputs the results to the prediction result display device 15 as necessary.

本発明による炉心状態予測装置を用いて予測し
た1例を第2図以下に示す。
An example of prediction using the core state prediction device according to the present invention is shown in FIG. 2 and below.

第2図は炉心流量100%、原子炉94%で運転し
ていた炉心を炉心流量40%まで急激に低下させ
(そのときの時間Tを基準にとり0とする)、その
後炉心流量を40%に維持した場合の炉出力変化の
予測を軸方向炉出力分布予測装置4で予測した結
果を示す図である。点線は炉心流量を実線は炉出
力を示す。
Figure 2 shows a reactor that was operating at 100% core flow rate and 94% reactor core flow rate, which suddenly drops to 40% core flow rate (time T at that time is taken as 0), and then the core flow rate is reduced to 40%. FIG. 4 is a diagram showing the results of prediction of changes in furnace output when the furnace output is maintained using the axial furnace output distribution prediction device 4. The dotted line shows the core flow rate and the solid line shows the reactor power.

第3図は第2図の予測において使用された炉心
の制御棒パターンを示す図である。炉心を構成す
る燃料集合体は正方形格子状に配列されるので、
これらを横座標I、および縦座標Jで表わし、図
中の数字は4本の正方形燃料集合体の中央に挿入
される制御棒の引抜位置を表わしている。数字の
記入のない格子は全引抜を24とした場合の制御
棒位置に該当する。
FIG. 3 is a diagram showing the core control rod pattern used in the prediction of FIG. 2. The fuel assemblies that make up the core are arranged in a square grid, so
These are represented by the abscissa I and the ordinate J, and the numbers in the figure represent the withdrawal positions of the control rods inserted into the centers of the four square fuel assemblies. The grids without numbers correspond to the control rod positions assuming 24 total withdrawals.

第4図は第2図の予測結果に基づいてゼノン濃
度が最大となる7時間(T=7)後と基準時(T
=0)の軸方向炉出力分布をノードKに対して示
した図である。図から7時間後の軸方向のノード
K別の出力変化割合RKが前述の(1)式から求めら
れる。
Figure 4 shows the time after 7 hours (T = 7) when the xenone concentration reaches its maximum and the reference time (T
FIG. 3 is a diagram showing the axial furnace power distribution of node K with respect to node K. From the figure, the output change rate R K for each node K in the axial direction after 7 hours is obtained from the above-mentioned equation (1).

第5図は径方向出力分布予測装置9が予測した
7時間後の炉心位置1<I<26.I=13、J=13
(炉心座標は第3図および第4図参照)での径方
向炉出力分布を示した図である。図中点線は炉心
性能計算装置から得られた現在の径方向出力分布
曲線である。
Figure 5 shows the core position predicted by the radial power distribution prediction device 9 after 7 hours 1<I<26.I=13, J=13
(See FIG. 3 and FIG. 4 for core coordinates) A diagram showing the radial reactor power distribution. The dotted line in the figure is the current radial power distribution curve obtained from the core performance calculation device.

第6図は第5図で予測した結果と、ゼノンの動
特性を含めた3次元モデルによる予測結果とを比
較した図である。図中実線は3次元モデルによる
結果を示し、点は径方向炉出力分布予測装置によ
る結果を示したもので後者は前者の曲線上に乗
り、両者は非常によく一致していることがわか
る。流量制御による出力分布の変化は主として軸
方向出力分布の変化であり、初期値はすべてオン
ラインで得られるので、径方向炉出力分布予測装
置による予測結果は精度よくしかも予測演算時間
もほぼ1次元計算に要する時間ですませることが
できる。
FIG. 6 is a diagram comparing the results predicted in FIG. 5 with the results predicted by a three-dimensional model including Zenon's dynamic characteristics. In the figure, the solid line shows the results from the three-dimensional model, and the dots show the results from the radial reactor power distribution prediction device.The latter is on the former curve, and it can be seen that the two coincide very well. Changes in the power distribution due to flow rate control are mainly changes in the axial power distribution, and all initial values are obtained online, so the prediction results by the radial furnace power distribution prediction device are accurate and the prediction calculation time is almost one-dimensional calculation. It can be done in the time required.

本発明装置によれば出力変更中または変更後の
炉心状態を予測しうるので、原子力発電所の安全
に必要な制限条件を満足する運転を行なうことが
容易である。
According to the device of the present invention, it is possible to predict the state of the reactor core during or after the change in output, so that it is easy to operate a nuclear power plant that satisfies the restrictive conditions necessary for safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による炉心状態を予測する装置
のブロツク図、第2図は炉心流量変化に対する炉
出力の予測結果を示すグラフ。第3図は第2図の
炉心状態予測時の炉心内に挿入された制御棒パタ
ーンを示す図、第4図は基準時間(T=0)とゼ
ノン濃度が最大となる7時間後の軸方向高さKと
軸方向炉出力の関係を示すグラフ、第5図は径方
向炉出力分布の予測結果のグラフ、第6図は3次
元モデルで得られる径方向炉出力分布と本発明装
置で得られる径方向炉出力分布の予測とを比較し
たグラフである。 1…原子炉、2…プラントデータ信号、3…炉
心性能計算装置、4…軸方向炉出力分布予測装
置、5…ゼノン濃度分布計算装置、6…出力信
号、7…データ要求信号、8,8′…転送信号、
9…径方向炉出力分布予測装置、10,11…信
号、12…運転員入力装置、13,14…信号、
15…予測結果表示装置、16…制限条件比較装
置、17,18…信号、19…制限条件設定盤。
FIG. 1 is a block diagram of a device for predicting the state of the reactor core according to the present invention, and FIG. 2 is a graph showing the predicted results of the reactor output with respect to changes in the core flow rate. Figure 3 is a diagram showing the control rod pattern inserted into the reactor core when predicting the core state in Figure 2, and Figure 4 is the reference time (T = 0) and the axial direction after 7 hours when the xenone concentration is at its maximum. A graph showing the relationship between height K and axial furnace power, Figure 5 is a graph showing the predicted results of radial furnace power distribution, and Figure 6 shows the radial furnace power distribution obtained by the three-dimensional model and the radial furnace power distribution obtained by the device of the present invention. This is a graph comparing the predicted radial reactor power distribution. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Plant data signal, 3... Core performance calculation device, 4... Axial reactor power distribution prediction device, 5... Zenon concentration distribution calculation device, 6... Output signal, 7... Data request signal, 8, 8 ′...transfer signal,
9... Radial furnace power distribution prediction device, 10, 11... Signal, 12... Operator input device, 13, 14... Signal,
15... Prediction result display device, 16... Limit condition comparison device, 17, 18... Signal, 19... Limit condition setting board.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の炉心に挿入される制御棒の位置、炉
心内の中性子束、炉心内外のプロセス量等を検出
する各種検出器から得られるプラントデータから
炉心性能を計算する炉心性能計算装置と、前記炉
心性能計算装置で出力されるデータを利用してゼ
ノン濃度を計算するゼノン濃度分布計算装置と、
前記炉心性能計算装置で出力されるデータから軸
方向一次元拡散モデルによる軸方向炉出力を予想
する軸方向炉出力分布予測装置と、前記炉心性能
計算装置および前記軸方向炉出力分布予測装置か
ら径方向炉出力分布を予測する径方向炉出力分布
予測装置と、前記軸方向炉出力分布予測装置およ
び径方向炉出力分布予測装置の予測結果をあらか
じめ設定された制限条件と比較する制限条件比較
装置とからなることを特徴とする原子力発電所の
原子炉炉心状態予測装置。
1. A core performance calculation device that calculates core performance from plant data obtained from various detectors that detect the position of control rods inserted into the reactor core, neutron flux in the core, process quantities inside and outside the core, etc.; a Zenon concentration distribution calculation device that calculates the Zenon concentration using data output by the core performance calculation device;
an axial reactor power distribution prediction device that predicts axial reactor power output based on an axial one-dimensional diffusion model from data output by the core performance calculation device; a radial furnace power distribution prediction device that predicts a directional furnace power distribution; and a limit condition comparison device that compares the prediction results of the axial furnace power distribution prediction device and the radial furnace power distribution prediction device with preset limit conditions. A nuclear power plant reactor core state prediction device characterized by comprising:
JP14220977A 1977-11-29 1977-11-29 Device of estimating reactor core condition of nuclear power plant Granted JPS5476798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14220977A JPS5476798A (en) 1977-11-29 1977-11-29 Device of estimating reactor core condition of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14220977A JPS5476798A (en) 1977-11-29 1977-11-29 Device of estimating reactor core condition of nuclear power plant

Publications (2)

Publication Number Publication Date
JPS5476798A JPS5476798A (en) 1979-06-19
JPS6118156B2 true JPS6118156B2 (en) 1986-05-10

Family

ID=15309928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14220977A Granted JPS5476798A (en) 1977-11-29 1977-11-29 Device of estimating reactor core condition of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS5476798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379949U (en) * 1986-11-14 1988-05-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113997A (en) * 1973-03-07 1974-10-30
JPS51121689A (en) * 1975-04-18 1976-10-25 Hitachi Ltd Supervisary device for estimating furnace center of atomic furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113997A (en) * 1973-03-07 1974-10-30
JPS51121689A (en) * 1975-04-18 1976-10-25 Hitachi Ltd Supervisary device for estimating furnace center of atomic furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379949U (en) * 1986-11-14 1988-05-26

Also Published As

Publication number Publication date
JPS5476798A (en) 1979-06-19

Similar Documents

Publication Publication Date Title
EP2613324B1 (en) Critical heat flux prediction device, critical heat flux prediction method and safety evaluation system
US6611572B2 (en) Determination of operating limit minimum critical power ratio
JP2001042079A (en) Method and system for monitoring at least one operation parameter of reactor core
Ibrahim Particle Swarm Optimization to the U-tube steam generator in the nuclear power plant
WO2021209237A1 (en) Computer-based simulation methods for boiling water reactors (bwr)
EP2071581A2 (en) Method and apparatus for determination of safety limit minimum critical power ratio for a nuclear fuel core
JPS6118156B2 (en)
JPS6122278B2 (en)
JP2696049B2 (en) Reactor core characteristics simulation device
JP2001133581A (en) Reactor core performance calculating method and apparatus
US20220115155A1 (en) Method for operating a nuclear reactor with calculation of the ctfr on line, corresponding nuclear reactor
JP4008131B2 (en) Reactor core performance calculator
Druzhaev et al. Method of WWER active core power parameters evaluation by readings of ex-core neutron flux monitoring system using additional information
JPH06186380A (en) Performance calculator for reactor core
JP2585357B2 (en) Prediction method of axial power distribution of reactor
RU2808104C2 (en) Method of operating nuclear reactor with on-line calculation of safety factor before heat exchange crisis
JPS6148117B2 (en)
JP2023036106A (en) Operation training device and method for training operation
JPH02130498A (en) Thermal operation margin monitor of boiling water reactor
Graves Experience with xenon oscillations
JPS61104295A (en) Monitor device for distribution of output from boiling watertype reactor
JPS6132639B2 (en)
JPS6316718B2 (en)
JPS5931489A (en) Reactor core performance calculating device
Kallol et al. Temporal redundancy methods using risk-sensitive filtering and parameter estimation to detect failures in neutronic sensors during reactor start-up and steady-state operation