JPS61179551A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61179551A
JPS61179551A JP1877685A JP1877685A JPS61179551A JP S61179551 A JPS61179551 A JP S61179551A JP 1877685 A JP1877685 A JP 1877685A JP 1877685 A JP1877685 A JP 1877685A JP S61179551 A JPS61179551 A JP S61179551A
Authority
JP
Japan
Prior art keywords
wiring
gate electrode
w5si3
sio2
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1877685A
Other languages
Japanese (ja)
Other versions
JPH0461496B2 (en
Inventor
Asamitsu Tosaka
浅光 東坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1877685A priority Critical patent/JPS61179551A/en
Publication of JPS61179551A publication Critical patent/JPS61179551A/en
Publication of JPH0461496B2 publication Critical patent/JPH0461496B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To realize a wiring having low resistance simultaneously while using a high heat-resistant metal as a gate electrode by forming a desired photo-resist pattern, dry-etching a low-resistance metallic material, a dielectric film and a high-resistance high heat-resistant gate material in succession while employing the photo-resist pattern as a mask and shaping the gate electrode and the wiring onto a wafer. CONSTITUTION:A conductive layer 12 for forming a GaAs MESFET is shaped into a desired region in a semi-insulating GaAs substrate 11, and a tungsten silicide 13 having the composition of W5Si3 is applied onto the whole surface of a wafer. A region as a gate electrode and an SiO2 film 14 in the vicinity of the region are formed. Ti-Au are evaporated onto the whole surface in succession. A photo-resist pattern 16 for shaping the gate electrode and a wiring is formed, Ti and Au are etched through an ion milling method and SiO2 and W5Si3 through a reactive ion etching method, and SiO2 is further removed through etching, thus also lifting off Ti-Au on SiO2, then forming the gate electrode 17 and the W5Si3 wiring 18 as a wiring in which the upper section of W5Si3 is coated with Ti-Au having low resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法、特に配線抵抗が低減さ
れた半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device with reduced wiring resistance.

性の立場から、あるいは各種セルファライン(自己整合
)技術導入のため、ゲート電極材料として耐熱性金属を
用いることがある。その際問題なのが、耐熱性金属は一
般に比抵抗が高い点である。
Heat-resistant metals are sometimes used as gate electrode materials for reasons of safety or for the introduction of various self-alignment technologies. The problem with this is that heat-resistant metals generally have a high specific resistance.

従ってゲート材料をそのまま第1層配線として用いると
配線抵抗が極めて大きくない半導体装置、例えばディジ
タル集積回路の特性を損うことになる。例えば、ゲート
材料としてWsS i 、を用いたとすると、比抵抗は
約200μΩ・傷であり、厚み0.5μm1幅2μmで
1ff長の配線を考えると配線抵抗は約2にΩとなる。
Therefore, if the gate material is used as it is as the first layer wiring, the characteristics of a semiconductor device, such as a digital integrated circuit, where the wiring resistance is not extremely high will be impaired. For example, if WsS i is used as the gate material, the specific resistance is about 200 μΩ·flaw, and when considering a wiring having a thickness of 0.5 μm, a width of 2 μm, and a length of 1 ff, the wiring resistance becomes about 2Ω.

発明者の検討によれば、IH当シの配線抵抗は200Ω
程度以下に抑える必要があシ、ゲート材料を第1層配線
材料としてそのまま用いることは極めて不都合であるこ
とが判る。この不都合さを避ける方法として、耐熱性ゲ
ート電極上に低抵抗金属を重ねる方法も考えられるが、
この場合、上層の低抵抗金属が耐熱性ゲート金属中を拡
散し、半導体表面に到達するために、ゲート電極の信頼
性を極めて損うことになる。これを防ぐためには、少な
くともゲート金属表面には低抵抗金属を重ねないか、重
ねるKしても訪電□体等拡散阻止上能力の大きい物質を
挿入する必要がある。このような考えから従来例えば第
2図に示すごとき方法、すなわちゲート電極21と、配
線22を別々に形成し、それぞれを層間絶縁膜23を介
して第2層配@24で連結する方法が採用されてきた。
According to the inventor's study, the wiring resistance of IH is 200Ω.
Although it is necessary to keep the amount of noise below a certain level, it is understood that it is extremely inconvenient to use the gate material as it is as the first layer wiring material. One possible way to avoid this inconvenience is to layer a low-resistance metal on the heat-resistant gate electrode.
In this case, the low-resistance metal in the upper layer diffuses through the heat-resistant gate metal and reaches the semiconductor surface, severely impairing the reliability of the gate electrode. In order to prevent this, it is necessary not to overlap a low-resistance metal on at least the surface of the gate metal, or to insert a material with a high ability to prevent diffusion, such as a conductive □ body, even if it is overlapped. Based on this idea, conventionally, a method as shown in FIG. 2 has been adopted, that is, a method in which a gate electrode 21 and a wiring 22 are formed separately, and each is connected by a second layer wiring 24 via an interlayer insulating film 23. It has been.

しかしこの方法では、スルーホールコンタクトの形成が
必要なことおよび眉間絶縁膜上のある領域が第1層配線
を接続するだけのために占有され、他の信号パス用の配
線の布線の自由度を減じるという欠点があった。また配
線部のみ、あとで低抵抗金属を重ねる方法も考えられる
が、この場合には重ね合わせマージンが必要であるため
に、実質的な配線幅を狭くすることは不可能である。
However, with this method, it is necessary to form through-hole contacts, and a certain area on the glabella insulating film is occupied only for connecting the first layer wiring, which gives rise to the freedom of wiring for other signal paths. The disadvantage was that it reduced the It is also conceivable to layer only the wiring portion with a low-resistance metal later, but in this case, since an overlapping margin is required, it is impossible to reduce the actual wiring width.

(本発明の目的) 本発明は、従来の半導体装置製造方法における上記の欠
点に鑑みてなされたものであシ、その目的は高耐熱(高
抵抗)金属をゲート電極としつつ、低抵抗な配線を同時
に実現しうる半導体装置の全く新しい製造方法を提供す
ることKある。
(Object of the present invention) The present invention has been made in view of the above-mentioned drawbacks in the conventional semiconductor device manufacturing method. An object of the present invention is to provide a completely new manufacturing method for semiconductor devices that can simultaneously realize the following.

(発明の構成) 本発明によれば、高耐熱ゲート材料をウェーハ全面に被
着せしめる工程と、ゲート電極およびその近傍の領域を
誘電体膜で被覆する工程と、低抵抗金属材料を全面に被
着せしめる工程と、所望のホトレジストパターンを形成
し、それをマスクとして前記低抵抗金属材料、誘電体膜
、高抵抗高耐熱ゲート材料を順次ドライエツチングする
ことによシ、ウェーハ上にゲート電極と配線を形成する
工程を含むことを特徴とする半導体装置の製造方法がえ
られる。
(Structure of the Invention) According to the present invention, there are a step of depositing a high heat-resistant gate material over the entire surface of the wafer, a step of covering the gate electrode and its vicinity with a dielectric film, and a step of covering the entire surface with a low-resistance metal material. Gate electrodes and wiring are formed on the wafer by forming a desired photoresist pattern and dry-etching the low-resistance metal material, dielectric film, and high-resistance, high-heat-resistant gate material in sequence using the photoresist pattern as a mask. There is provided a method for manufacturing a semiconductor device characterized by including a step of forming a semiconductor device.

(実施例) 次に第1図を用いて本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail using FIG.

本実施例はガリウム砒素(GaAs )集積回路の製造
方法を例にとっているが、その中でG a A aショ
ットキー障壁ゲート型電界効果トランジスタ(GaAs
 MESFET )とそのゲート電極からの配線形成に
注目して説明する。
This example takes a method for manufacturing a gallium arsenide (GaAs) integrated circuit as an example, and in this example, a method for manufacturing a gallium arsenide (GaAs) integrated circuit is used.
The explanation will focus on the formation of wiring from the MESFET (MESFET) and its gate electrode.

まず第1図(2)において、半絶縁性G a A a基
板11の所望の領域にGaAs MESFET形成のた
めの導電層12がイオン注入法等によシ形成されている
。次に同図の)においてウェーハ全面に凧s i 。
First, in FIG. 1(2), a conductive layer 12 for forming a GaAs MESFET is formed in a desired region of a semi-insulating GaA substrate 11 by ion implantation or the like. Next, in () of the same figure, a kite s i is applied to the entire surface of the wafer.

の組成のタングステンシリサイド13を例えば共スパッ
タ法によシ厚み500OA被着せしめる。次に同図C)
において、ゲート電極とすべき領域およびその近傍にS
xO,膜(厚み100OA ) 14を形成する。実際
には、全面にSxO,を被着せしめリングラフィ技術に
より所望の領域以外の該S10゜膜をエツチング除去す
ればよい。なおこのとき、St、、で覆う領域はゲート
電極となるべき領域のみに厳密に限ることなく、数μm
程度はそれからはみ出していても何ら問題はない。
Tungsten silicide 13 having a composition of 500 OA is deposited by co-sputtering, for example. Next, C)
In this case, S is applied to the region to be used as the gate electrode and its vicinity.
A film 14 of xO (thickness: 100 OA) is formed. In practice, it is sufficient to deposit SxO on the entire surface and etch away the S10° film in areas other than the desired areas using phosphorography. At this time, the area covered with St is not strictly limited to the area that should become the gate electrode, but is several μm thick.
There is no problem even if the degree is outside that range.

次に全面にTi−Auを順次500A、2000A15
蒸着する(第1図D)。次にゲート電極と配線を形成す
るためのホトレジストパターン16を形成しく第1図E
平面図参照)、T I 、 A uはイオンシリング法
によシ、s to、 、w、 s l、は反応性イオン
エツチング法によシエッチングし、更に前記St、。
Next, Ti-Au was sequentially applied to the entire surface at 500A and 2000A15.
Deposit (Fig. 1D). Next, a photoresist pattern 16 for forming gate electrodes and wiring is formed.
(see plan view), T I and A u were etched by the ion scilling method, s to, , w, and s l were etched by the reactive ion etching method, and the above-mentioned St.

を例えばHFでエツチング除去すれば、その上のTiA
uもり7トオ7され第1図Fに示すようにゲート電極1
7はW、 S s 、配線18はWl S l 、上に
低抵抗のT iAuがかぶさった配線が形成される。
For example, if you remove it by etching with HF, the TiA on it
As shown in FIG. 1F, the gate electrode 1 is
7 is made of W, S s , and the wiring 18 is made of Wl S l , on which a wiring with low resistance TiAu is formed.

以上で本発明に係る工程は終了するが、そのあと、例え
ばW、S i 、膜をマスクにして高ドーズSl+をイ
オン注入し、アニールすることによシゲート電極17の
両側Kn十層を形成することが可能である。この際ゲー
ト電極としては高耐熱材料のみが用いられているために
%GaAgと反応することはない。なお、配線部はW、
 S s 、上にTiAuが被着しておシ、アニール時
にW、S s 、中を拡散することがあるが、実際上何
ら問題にならない。以上の様な工程を経て実現される半
導体装置の1部分を第3図の斜視図に示す。第3図にお
いて、31.32は各々ソース、ドレイン電極である。
This completes the process according to the present invention. After that, for example, high-dose Sl+ is ion-implanted using the W, Si, or film as a mask, and then annealing is performed to form ten Kn layers on both sides of the silicate electrode 17. Is possible. At this time, since only a highly heat-resistant material is used for the gate electrode, it does not react with %GaAg. In addition, the wiring part is W,
When TiAu is deposited on S s , W may diffuse into S s during annealing, but this does not pose any problem in practice. A portion of the semiconductor device realized through the above steps is shown in a perspective view in FIG. In FIG. 3, 31 and 32 are source and drain electrodes, respectively.

表お上記実施例においてはSxO,膜は除去したが、S
xO,膜自体TlAu K対して強い拡散阻止能を有し
ているので、除去せずそのまま残置しておいても何ら問
題はない。また低抵抗金属としてはTi−Auに限るこ
となく、A L、W、Mo等のあらゆる低抵抗材料が通
用できることは言うまでもない。
In the above example, the SxO film was removed, but the SxO film was removed.
Since the xO film itself has a strong diffusion inhibiting ability against TlAu K, there is no problem if the film is left as is without being removed. It goes without saying that the low resistance metal is not limited to Ti-Au, and any low resistance materials such as AL, W, and Mo can be used.

また半導体装置としてはS i MOS トランジスタ
等地の装置に適用可能である。
Further, as a semiconductor device, it is applicable to a device such as a Si MOS transistor.

(本発明の効果) 本発明によればゲート電極材料の抵抗に拘らず、低抵抗
でかつ微細な配線を実現できるので、生産性もよく、し
かも高性能な半導体装置を製造できる。
(Effects of the Present Invention) According to the present invention, it is possible to realize low resistance and fine wiring regardless of the resistance of the gate electrode material, so that it is possible to manufacture a semiconductor device with good productivity and high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図であ!6A)。 B)、C)、D)、F)は断面図、E)は平面図、第2
図は従来技術を説明する断面図、第3図は本発明によシ
得られる半導体装置の1例を示す斜視図であシ、11−
 GaAs基板、12−・導電層、13−・・W、Si
、、 14− SIO,膜、 15− TiAu膜、1
6−・・ホトレジストパターン、17.21−ゲート電
極、18.22・・・配線、31・−ソース電極、32
・−ドレイン電極。 丁「ぺT、7.、.1.! 二′:院、−ユ糖1 図 第1 図
FIG. 1 is a diagram showing an embodiment of the present invention! 6A). B), C), D), F) are cross-sectional views, E) are plan views, 2nd
The figure is a sectional view explaining the prior art, and FIG. 3 is a perspective view showing an example of a semiconductor device obtained by the present invention.
GaAs substrate, 12-・Conductive layer, 13-・W, Si
,, 14- SIO, film, 15- TiAu film, 1
6--Photoresist pattern, 17.21-Gate electrode, 18.22--Wiring, 31--Source electrode, 32
-Drain electrode. Ding ``PeT, 7., .1.! 2': In, - Yutang 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高耐熱ゲート材料をウェーハ全面に被着せしめる工程と
、ゲート電極とすべき領域、およびその近傍の領域を誘
電体膜で覆う工程と、低抵抗金属を全面に被着せしめる
工程と、ゲート電極と配線とを形成するための所望のホ
トレジストパターンを形成し、それをマスクとして上記
低抵抗金属膜、誘電体膜、高耐熱ゲート材料を選択的に
除去し、ウェーハ上にゲート電極と配線とを形成するこ
とを特徴とする半導体装置の製造方法。
A process of depositing a high heat-resistant gate material on the entire surface of the wafer, a process of covering the area to be used as the gate electrode and its vicinity with a dielectric film, a process of depositing a low-resistance metal on the entire surface, and a process of coating the entire surface of the wafer with a gate electrode. Form a desired photoresist pattern to form wiring, and use it as a mask to selectively remove the low-resistance metal film, dielectric film, and high heat-resistant gate material to form gate electrodes and wiring on the wafer. A method for manufacturing a semiconductor device, characterized in that:
JP1877685A 1985-02-04 1985-02-04 Manufacture of semiconductor device Granted JPS61179551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877685A JPS61179551A (en) 1985-02-04 1985-02-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877685A JPS61179551A (en) 1985-02-04 1985-02-04 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61179551A true JPS61179551A (en) 1986-08-12
JPH0461496B2 JPH0461496B2 (en) 1992-10-01

Family

ID=11981033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877685A Granted JPS61179551A (en) 1985-02-04 1985-02-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61179551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030589A (en) * 1987-10-22 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Production method for a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030589A (en) * 1987-10-22 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Production method for a semiconductor device

Also Published As

Publication number Publication date
JPH0461496B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
US4503599A (en) Method of fabricating field effect transistors
JP2596962B2 (en) Semiconductor device and manufacturing method thereof
JPS6229175A (en) Manufacture of field effect type transistor
JPH06204215A (en) Method for forming interconnection
US4551907A (en) Process for fabricating a semiconductor device
JPH03151645A (en) Manufacture of compound semiconductor device
KR930011800B1 (en) Mos type semiconductor device
JPH03166734A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH0324060B2 (en)
US4400867A (en) High conductivity metallization for semiconductor integrated circuits
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JPS61179551A (en) Manufacture of semiconductor device
JP3023934B2 (en) Method for manufacturing semiconductor device
JPH05326518A (en) Semiconductor device, peripheral wiring and their manufacture
JP3121272B2 (en) Field effect transistor and method of manufacturing the same
JPS6116576A (en) Manufacture of semiconductor device
JPH08115923A (en) Manufacture of field effect transistor
JPH0622247B2 (en) Field effect semiconductor device
JPS616870A (en) Manufacture of field-effect transistor
JPS60124969A (en) Control electrode of semiconductor device and manufacture thereof
JPS6070770A (en) Manufacture of field-effect transistor
JPS60110163A (en) Manufacture of mos transistor
JPH05211175A (en) Manufacture of gate electrode
JPS61150379A (en) Manufacture of semiconductor device
JPS6112084A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term