JPS61179440A - Pattern forming organic film and formation of pattern - Google Patents

Pattern forming organic film and formation of pattern

Info

Publication number
JPS61179440A
JPS61179440A JP61041246A JP4124686A JPS61179440A JP S61179440 A JPS61179440 A JP S61179440A JP 61041246 A JP61041246 A JP 61041246A JP 4124686 A JP4124686 A JP 4124686A JP S61179440 A JPS61179440 A JP S61179440A
Authority
JP
Japan
Prior art keywords
resist
pattern
light
film
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041246A
Other languages
Japanese (ja)
Other versions
JPH0245325B2 (en
Inventor
Masaru Sasako
勝 笹子
Masataka Endo
政孝 遠藤
Kenichi Takeyama
竹山 健一
Noboru Nomura
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61041246A priority Critical patent/JPS61179440A/en
Publication of JPS61179440A publication Critical patent/JPS61179440A/en
Publication of JPH0245325B2 publication Critical patent/JPH0245325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Abstract

PURPOSE:To obtain a resist pattern true to a mask pattern by using a laminated film consisting of a resist and a water soluble org. film contg. pullulan and an absorber which absorbs light penetrating into the light shielding part of the mask pattern so as to increase the accuracy of a pattern on projections. CONSTITUTION:A laminated film consisting of a resist 3 and a water soluble org. film 8 contg. pullulan and a light absorber which absorbs excess light of <=500nm penetrating into the light shielding part 6 of a mask pattern 5 is formed on a substrate 1 having projections 2. The laminated film 3, 8 is exposed through the mask pattern 5 and developed to obtain a resist pattern 3f, 8a, Electrode wiring or the like can be obtd. by selectively removing an Al film 4 with the pattern 3f, 8a as a mask. The resist pattern 3f, 8a true to the mask pattern 5 and having high accuracy is obtd. independently of the projections 2. Since the resist 3 and the org. film 8 are not miscible with each other, they are easily formed in layers by coating and facilitate the formation of a fine resist pattern during development.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の製造等において、特にフォト
リングラフィのパターン形成における、マスクパターン
を通過した余分な光による悪影響を防止し、段差上での
パターン精度を向上し、かつ解像度を高めるための、放
射線感応性樹脂と水溶性有機膜の積層構造を使用するパ
ターン形成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in the manufacture of semiconductor integrated circuits, etc., in particular in photolithography pattern formation, to prevent the adverse effects of excess light passing through a mask pattern, This invention relates to pattern formation using a laminated structure of a radiation-sensitive resin and a water-soluble organic film to improve pattern accuracy and resolution.

従来例の構成とその問題点 集積回路の高集積化、高密度化は従来のリソグラフィ技
術の進歩により増大してきた。その最小線幅も1μm前
後となってきており、この加工線幅を達成するには、高
開口レンズを有した縮小投影法により紫外線露光する方
法、基板上に直接描画する電子ビーム露光法、X線を用
いたプロキシミティ露光法があげられる。しかし、いず
れの方法もスループットを犠牲にすることなく良好な線
幅制御と高解像度及び良好な段差部のカバレジを同時に
得ることは困難である。特に実際の集積回路上において
は必然的に凹凸が発生し、放射線感応性樹脂(以後、レ
ジストと略)を塗布した後では、凹凸部におけるレジス
トの膜厚差が発生し、良好な線幅制御が不可能となる。
Conventional configurations and their problems High integration and high density of integrated circuits have increased due to advances in conventional lithography technology. The minimum line width has become around 1 μm, and in order to achieve this processed line width, there are three methods: ultraviolet exposure using a reduction projection method with a high aperture lens, electron beam exposure that draws directly on the substrate, One example is the proximity exposure method using lines. However, with either method, it is difficult to simultaneously obtain good line width control, high resolution, and good step coverage without sacrificing throughput. In particular, unevenness inevitably occurs on actual integrated circuits, and after coating a radiation-sensitive resin (hereinafter referred to as resist), differences in resist film thickness occur at the uneven parts, making it difficult to control line width. becomes impossible.

このことを第1図を用いて説明する。第1図は従来法に
より単層レジスト膜を段差部へ塗布し、その段差部に対
して交叉してパターニングを行なった状態を示しだもの
である。第1図(八は半導体基板等の基板1上にSi○
2膜2等の段差物パターン2aが形成されておりその上
にレジスト3が塗布された状態の断面図である。この場
合、段差物パターン2aがない平坦な膜上のレジスト3
の膜厚をtRlの厚さに塗布した時、段差物パター72
a上のレジスト3の膜厚は、レジスト自身の粘性と塗布
時の回転数により膜厚tRメ決定される。この時tR1
=tR2にすること、つまり凹凸部でのレジスト膜の膜
厚差を皆無にすることは物理的に不可能である。このよ
うにtR4〜’R2の膜厚においてレジストパターンを
形成した場合の平面図を第1図(B)に示す。
This will be explained using FIG. FIG. 1 shows a state in which a single-layer resist film is applied to a stepped portion by a conventional method and patterned across the stepped portion. Figure 1 (8 shows Si○ on substrate 1 such as a semiconductor substrate)
2 is a cross-sectional view of a state in which a step pattern 2a such as a two-layer film 2 is formed and a resist 3 is applied thereon. FIG. In this case, the resist 3 on a flat film without the step pattern 2a
When the film thickness of tRl is applied, the step pattern 72
The film thickness of the resist 3 on a is determined by the viscosity of the resist itself and the number of revolutions during coating. At this time tR1
=tR2, that is, it is physically impossible to completely eliminate the difference in the thickness of the resist film at the uneven portions. FIG. 1B shows a plan view when a resist pattern is formed with a film thickness of tR4 to 'R2 in this manner.

これは、段差物パターン2aに対して直角に交叉して形
成されたレジストパターン3の膜厚tR1の位置でパタ
ーン幅が11 と決定されると、膜厚tR2の位置では
tRl>tR2という関係があるためパターン幅はl 
でかつ11>112となり段差部における寸法変換差が
発生してしまう。つまシ、非常に微細パターンになると
良好な線幅制御が得られず、更に段差物2aのエツジ部
2bで実質上、平坦部の膜厚tR1よシ厚くなるため解
像度が低下する。一般に解像度はレジストの膜厚が薄く
なればなるほど向上する。これは、放射線自身の波長に
よって微細間隙になると干渉、回折現像のため入射する
エネルギーが減衰してしまうためである。つ″19段差
物上のレジスト膜厚差を少なくするために、ただ単にレ
ジストを厚く塗布し見掛は上のレジスト膜厚差を軽減し
ようとしても解像度が低下するためにパターン形成上好
ましくない。
This means that if the pattern width is determined to be 11 at the position of the film thickness tR1 of the resist pattern 3 formed perpendicularly to the step pattern 2a, then at the position of the film thickness tR2 there is a relationship of tRl>tR2. Therefore, the pattern width is l
Since 11>112, a dimensional conversion difference occurs at the stepped portion. However, when a very fine pattern is used, good line width control cannot be obtained, and furthermore, the edge portion 2b of the step 2a becomes substantially thicker than the film thickness tR1 of the flat portion, resulting in a decrease in resolution. Generally, the resolution improves as the resist film thickness becomes thinner. This is because the incident energy is attenuated due to interference and diffraction development when fine gaps are formed due to the wavelength of the radiation itself. In order to reduce the difference in resist film thickness on the stepped object, simply applying a thick layer of resist to reduce the apparent difference in resist film thickness is undesirable in terms of pattern formation because the resolution deteriorates.

更に反射の影響について第2図を用いて説明する。Furthermore, the influence of reflection will be explained using FIG. 2.

第2図式は基板1上の凸部状段差2に金属膜4例えばA
l膜が全面に蒸着され、更に上部に感光性樹脂(以後、
レジスト)3が塗布された状態にマスク5のクロム6を
介して紫外線を照射した場合の断面図である。この時の
紫外線(以後、UV光)の入射状態を拡大した図が第2
図の)である。
The second diagram shows a metal film 4, for example A, on a convex step 2 on the substrate 1.
A film is deposited on the entire surface, and a photosensitive resin (hereinafter referred to as
3 is a cross-sectional view of a state where resist 3 is applied and ultraviolet rays are irradiated through chromium 6 of mask 5. FIG. The second diagram shows an enlarged view of the incident state of ultraviolet rays (hereinafter referred to as UV light) at this time.
) in the figure.

入射するUV光7のうち平坦部3aへ入射するUV光7
aの反射光7bは正確に18o0の角度で反射するが、
Al膜4の段差部の位置へ入射するUV光7CはAl膜
4の側面から反射して反射光7dとなシ、この反射光7
dは未露光部のレジスト領域3bに侵入しレジストパタ
ーン形成用の光としては余分な光であシ、実質現像後の
レジスト断面3cはマスク5のクロム部6の幅よりも狭
くなりパターン精度が劣化する。また段差間とレジスト
パターン端部との距離によってはレジストパターンが消
滅し、パターン断線が発生する。
Of the UV light 7 that enters, the UV light 7 that enters the flat portion 3a
The reflected light 7b of a is reflected at an angle of exactly 18o0, but
The UV light 7C incident on the stepped portion of the Al film 4 is reflected from the side surface of the Al film 4 and becomes reflected light 7d.
The light d penetrates into the unexposed resist region 3b and is unnecessary light for resist pattern formation, and the resist cross section 3c after development is actually narrower than the width of the chrome part 6 of the mask 5, resulting in poor pattern accuracy. to degrade. Furthermore, depending on the distance between the steps and the end of the resist pattern, the resist pattern may disappear, causing pattern breakage.

以上述べたように、基板上の段差等により、フォトマス
クパターンを通過した余分な光の回り込みが発生し、パ
ターン精度が低下し微細化に対し大きな障害であった。
As described above, extra light passing through the photomask pattern is caused to wrap around due to steps on the substrate, reducing pattern accuracy and posing a major obstacle to miniaturization.

特に光強度の高い縮小投影露光法においては、前記余分
な光による解像度。
Particularly in the reduction projection exposure method where the light intensity is high, the resolution due to the extra light.

パターン精度の低下がはなはだしく、例えば段差を有す
るAl上の配線パターン形成において2μm以下のパタ
ーン寸法は必らず断線する現象がある。
The pattern accuracy is significantly lowered, and, for example, when forming a wiring pattern on Al having a step, a pattern dimension of 2 μm or less always causes wire breakage.

発明の目的 本発明は、微細パターン形成に適したレジストを損うこ
となく、かつ工程を複雑化することなく容易に微細パタ
ーン形成を行うもので、特にフォトリングラフィにおけ
るフォトマスクパターンを通過した余分な光の影響によ
る解像度の低下とパターン精度の低下を防ぐのに好適で
安定なパターン形成有機膜とこれを用いたパターン形成
方法を提供することを目的とするものである。
Purpose of the Invention The present invention facilitates the formation of fine patterns without damaging the resist suitable for fine pattern formation and without complicating the process. It is an object of the present invention to provide a stable pattern-forming organic film suitable for preventing a decrease in resolution and a decrease in pattern accuracy due to the influence of light, and a pattern-forming method using the same.

発明の構成 本発明は、たとえば室温で可溶で有機溶媒系のレジスト
と積層可能であってかつ、光吸収剤とこのレジストの現
像液であるアルカリ水溶液及び水に対して可溶なプルラ
ンを含む水溶性有機膜を使用し、基板上に上記レジスト
と水溶性有機膜との積層膜を塗布形成した後、選択的に
500nm以下の放射線例えば紫外線、遠紫外線、X線
などを露光し、前記選択的に露光したレジストと水溶性
有機膜よりなる積層膜を同時に現像除去しパターン形成
するものである。
Components of the Invention The present invention includes a light absorber, an alkaline aqueous solution as a developer of the resist, and pullulan which is soluble in water and is soluble at room temperature and can be laminated with an organic solvent-based resist. After coating and forming a laminated film of the resist and the water-soluble organic film on the substrate using a water-soluble organic film, selectively exposing to radiation of 500 nm or less, such as ultraviolet rays, deep ultraviolet rays, and X-rays, A laminated film consisting of a resist exposed to light and a water-soluble organic film is simultaneously developed and removed to form a pattern.

すなわち、本発明は、レジストと、マスクパターンを通
過した前記レジスト露光時の光のうち前記マスクパター
ンの遮光部分に入り込む500nm以下の余分な光を吸
収する光吸収剤およびプルランを含む水溶性有機膜との
積層構造を有してなるパターン形成有機膜、さらには段
差を有する基板上に、レジストとマスクパターンを通過
した前記ポジレジスト露光時の光のうち前記マスクパタ
ーン遮光部分に入り込む余分な光を吸収する光吸収剤お
よびプルランを含む水溶性有機膜との積層膜を形成する
工程と、前記マスクパターンを通して前記パターン形成
有機膜を選択的に露光する工程と、前記レジストおよび
水溶性有機膜の光照射部を同時に現像除去する工程とを
有するパターン形成方法を提供するものである。
That is, the present invention provides a resist, a water-soluble organic film containing pullulan, and a light absorber that absorbs excess light of 500 nm or less that enters the light-shielding portion of the mask pattern out of the light that passes through the mask pattern during resist exposure. A pattern-forming organic film having a laminated structure with a substrate, and furthermore, on a substrate having steps, excess light entering the light-shielding portion of the mask pattern out of the light during exposure of the positive resist that has passed through the resist and the mask pattern is removed. a step of forming a laminated film with a water-soluble organic film containing an absorbing light absorber and pullulan; a step of selectively exposing the patterned organic film through the mask pattern; and a step of exposing the resist and the water-soluble organic film to light through the mask pattern. The present invention provides a pattern forming method that includes a step of developing and removing the irradiated area at the same time.

先に述べた水溶性有機膜は、水溶性有機物例えば多糖体
であるプルランを主成分として含みSOOnm以下の光
(紫外線)を吸収する物質例えば酸性又は塩基性染料を
含むもので、水などへの溶解速度を調整するだめの架橋
剤例えばジアルデヒドデンプン、重クロム酸塩、ジアジ
ド化合物、アジド化合物、アルデヒド化合物などと、水
等を含んでもよい。
The above-mentioned water-soluble organic film contains a water-soluble organic substance such as pullulan, which is a polysaccharide, as a main component, and contains a substance that absorbs light (ultraviolet rays) of SOOnm or less, such as an acidic or basic dye. It may contain a crosslinking agent such as dialdehyde starch, dichromate, diazide compound, azide compound, aldehyde compound, etc. to adjust the dissolution rate, and water.

実施例の説明 まず、本発明の中で特に冷水に易溶性で多糖類であるプ
ルラ/を主成分とする水溶性有機膜について説明する。
DESCRIPTION OF EMBODIMENTS First, a water-soluble organic film of the present invention, which is particularly easily soluble in cold water and whose main component is PULLA, which is a polysaccharide, will be described.

プルランの構造は、次のように示されろう (以下余白) このプルランはグルコース単位を中心とするデンプン、
セルロースなどの多糖類と分子構造が異な−ている。そ
して更にその性質も異なる。例えば、デンプン、セルロ
ースは冷水に溶けにくいのに対し、プルランは冷水に易
溶であり、その水溶液は水溶性高分子の水溶液の中で同
一の濃度、同一の分子量においては、粘度の低いものの
1つである。
The structure of pullulan can be shown as follows (in the margins below). Pullulan is a starch mainly composed of glucose units.
It has a different molecular structure from polysaccharides such as cellulose. Moreover, their properties are also different. For example, starch and cellulose are difficult to dissolve in cold water, whereas pullulan is easily soluble in cold water, and its aqueous solution has a lower viscosity than that of an aqueous solution of water-soluble polymers at the same concentration and molecular weight. It is one.

壕だプルラン水溶液は長時間安定であって、ゲル化ある
いは老化現象は認められない。更にその膜は有機溶媒に
対してまったく溶解しない性質も有する。つまり半導体
製造におけるリングラフイー技術に使用する有機溶媒系
の放射線感応性樹脂(以後、レジスト)と重ねて塗布し
やすい性質を有している。
The pullulan aqueous solution is stable for a long time, and no gelation or aging phenomenon is observed. Furthermore, the film has the property of not being dissolved at all in organic solvents. In other words, it has properties that allow it to be easily coated in layers with organic solvent-based radiation-sensitive resins (hereinafter referred to as resists) used in phosphorography technology in semiconductor manufacturing.

更に放射線例えば紫外線を吸収する材料として染料等を
前記プルラン水溶液に溶解させる。この時、染料は酸性
業料であるが、プルラン水溶液はpHにまったく影響さ
れず安定した水溶液である。
Furthermore, a dye or the like as a material that absorbs radiation such as ultraviolet rays is dissolved in the pullulan aqueous solution. At this time, although the dye is an acidic material, the pullulan aqueous solution is completely unaffected by pH and is a stable aqueous solution.

そして、レジストのパターン形成の現像工程における現
像液(アルカリ水溶液)、リンス液(水)に対してプル
ラン膜の溶解速度をコントロールするだめ、架橋剤とし
てたとえばジアルデヒドデンプンを少量混合してもよい
。ジアルデヒドはデンプンを過沃素酸により酸化して、
デンプンの構成単位をジアルデヒドに換えたものである
。このジアルデヒドデンプンは前記のプルランと反応し
アセタール結合を作り水に対し難溶性を示す。
In order to control the dissolution rate of the pullulan film in the developing solution (alkaline aqueous solution) and rinsing solution (water) in the development step of resist pattern formation, a small amount of dialdehyde starch, for example, may be mixed as a crosslinking agent. Dialdehyde is produced by oxidizing starch with periodic acid.
It is made by replacing the constituent units of starch with dialdehyde. This dialdehyde starch reacts with the above-mentioned pullulan to form an acetal bond and exhibits poor solubility in water.

同様に、水に対する難溶性を出すため、感光性やエステ
ル化、エーテル化させるため、重クロム酸塩、ジアジド
化合物、アジド化合物(感光性)。
Similarly, dichromates, diazide compounds, and azide compounds (photosensitive) are used to make them poorly soluble in water, and to make them photosensitive, esterified, and etherified.

アルデヒド化合物などと反応させるのもよいっ以下、詳
細な実施例を説明する。
It is also possible to react with an aldehyde compound or the like.Detailed examples will be described below.

まず、本発明に用いる光吸収用の膜としての水溶性有機
膜の一例の合成方法とその性質について述べる。
First, a method for synthesizing an example of a water-soluble organic film as a light-absorbing film used in the present invention and its properties will be described.

ビー力に純水(脱イオン水)を100ccを入れ温度を
室温のまま、重金属を充分とった平均分子量20万のプ
ルランを攪拌しながら添加してゆき、20p溶解させる
。一方、温度80’Cの温水100ccに酸性染料(5
00nm以下の紫外領域を吸収する染料)2.5gを攪
拌しながら溶解していく。
Pour 100 cc of pure water (deionized water) into a beaker, and while keeping the temperature at room temperature, add pullulan with an average molecular weight of 200,000, which contains enough heavy metals, with stirring to dissolve 20 parts. On the other hand, add acid dye (5%
2.5 g of a dye that absorbs ultraviolet light below 00 nm is dissolved with stirring.

次にプルラン水溶液と染料水溶液を混合して染料人りプ
ルラン水溶液を作製した。次にジアルデヒドデンプン水
溶液(1o%)数CCを染料人シプルラン水溶液に混合
させた。この状態では、ゲル化はみられず長期間おいて
も品質はまったく変化がみられない。この溶液を石英ガ
ラス板上にスピンナーを用いて300o rpmで回転
塗布したところ、均一な5000Aの膜厚が得られ、紫
外透過特性も波長500nm以下で、50係以下の透過
を示し半導体製造における紫外線露光に対しポジレジス
ト露光時の余分な光を充分に吸収する効果があった。更
にこの水溶性有機膜を塗布した後この有機膜上に有機溶
媒系のポジレジストの塗布を行ったところ溶解もなく、
きわめて容易にこのレジストを積層することが可能であ
った。水への溶解速度も架橋剤なしの時よりも10倍程
度遅くなり、半導体製造における制御性もあった。
Next, the pullulan aqueous solution and the dye aqueous solution were mixed to prepare a dye-containing pullulan aqueous solution. Next, several CCs of dialdehyde starch aqueous solution (10%) were mixed with the dye Cipululan aqueous solution. In this state, gelation is not observed and the quality does not change at all even after a long period of time. When this solution was spin coated on a quartz glass plate at 300o rpm using a spinner, a uniform film thickness of 5000A was obtained, and the ultraviolet transmission property was 500 nm or less at a wavelength of 500nm or less. It had the effect of sufficiently absorbing excess light during positive resist exposure. Furthermore, after coating this water-soluble organic film, an organic solvent-based positive resist was coated on this organic film, and there was no dissolution.
It was possible to layer this resist extremely easily. The dissolution rate in water was also about 10 times slower than without a crosslinking agent, and it was also easier to control in semiconductor manufacturing.

前述したプルランは、他の多糖類とは分子構造が異なり
、冷水に易溶である。そしてその水溶液は粘度の低いも
のの1つで分子量制御も容易であって、前記のように長
期間安定であり溶解性も制御しやすく、その膜は有機溶
媒に対してまったく溶解せず、耐熱性および紫外線に対
する透明性も高い。
The aforementioned pullulan has a different molecular structure from other polysaccharides and is easily soluble in cold water. The aqueous solution has one of the lowest viscosity and the molecular weight can be easily controlled, and as mentioned above, it is stable for a long time and its solubility is easy to control, and the film does not dissolve at all in organic solvents and is heat resistant. It also has high transparency against ultraviolet rays.

なお、プルラン、染料、架橋剤の量は、塗布する膜厚、
紫外線吸収量、水への溶解速度によって任意に選択する
ことが可能である。また、水への溶解性の制御には、プ
ルラン自身をエーテル、エステル化することも考えられ
る。
The amount of pullulan, dye, and crosslinking agent depends on the coating thickness,
It can be arbitrarily selected depending on the amount of ultraviolet absorption and the rate of dissolution in water. Furthermore, in order to control the solubility in water, it is also possible to ether or esterify pullulan itself.

この水溶性有機膜を使用したパターン形成方法の実施例
を第3図を用いて説明する。
An example of a pattern forming method using this water-soluble organic film will be described with reference to FIG.

従来例の説明に使用した第2図と同様に半導体基板1上
に絶縁物等の段差2が形成し、反射率の高い金属膜例え
ば配線となるムl膜4を蒸着する。
Similar to FIG. 2 used to explain the conventional example, a step 2 made of an insulating material or the like is formed on a semiconductor substrate 1, and a metal film having a high reflectance, such as a mulch film 4 that will become a wiring, is deposited.

そして前述の水溶性有機膜8を塗布する〔第3図人〕。Then, the water-soluble organic film 8 described above is applied (Figure 3).

この時の水溶性有機膜の膜厚はこの後で露光する際に施
こすエネルギー量によって適当に設定されるものである
が、本実施例においては20oO人に塗布形成し薄い膜
とした。
The thickness of the water-soluble organic film at this time is appropriately set depending on the amount of energy applied during subsequent exposure, but in this example, a thin film was obtained by coating the film at 200°C.

続いて、ポジ型UVレジスト3を水溶性有機膜8上に塗
布する。この際、ポジ型UVレジスト3と水溶性有機膜
8とは互いに溶解することなく均一に塗布することが可
能であった〔第3図B〕。
Subsequently, a positive UV resist 3 is applied onto the water-soluble organic film 8. At this time, it was possible to apply the positive UV resist 3 and the water-soluble organic film 8 uniformly without dissolving each other [FIG. 3B].

この積層塗布に際し、何ら余分な工程が必要でなく、積
層塗布工程は容易に行うことができる。このことは、通
常の半導体集積回路工程の変更の必要がなく、プロセス
上すぐれた利点である。
In this laminated coating, no extra steps are required, and the laminated coating process can be easily performed. This is an excellent process advantage since there is no need to change the normal semiconductor integrated circuit process.

そして、フォトマスク5のクロムパターン6を介して縮
小投影露光法によって436nHの紫外線7を1som
J/z  のエネルギーで露光する。
Then, 1som of 436 nH ultraviolet rays 7 is transmitted through the chrome pattern 6 of the photomask 5 by the reduction projection exposure method.
Expose with an energy of J/z.

この時、段差側面や表面からの反射光すなわちマスクパ
ターンの遮光部分に入り込む余分な光は水溶性有機膜8
中の紫外線吸収剤により吸収されるため、クロムパター
ン6通りの未露光領域3eの潜像が形成される〔第3図
C〕。
At this time, the reflected light from the side surfaces and the surface of the step, that is, the excess light that enters the light-shielding part of the mask pattern is removed by the water-soluble organic film 8.
Since it is absorbed by the ultraviolet absorber therein, latent images of six chrome patterns in the unexposed areas 3e are formed (FIG. 3C).

次に通常のアルカリ現像液によって露光したポジ型UV
レジスト3を現像除去と同時にリンス工程で露出した水
溶性有機膜を除去しバター/3f。
Next, positive UV was exposed using a normal alkaline developer.
At the same time as developing and removing the resist 3, the exposed water-soluble organic film was removed in a rinsing process, and the butter/3f was removed.

8&を得た〔第3図D〕。通常ポジレジストのパターン
形成にはアルカリ現像液による現像に続いて水によるリ
ンス工程を行うものであり、この通常の工程を何ら変更
することなく、この積層膜のパターン形成が可能となる
。この工程も、何ら通常の半導体プロセスを変更するこ
とな〈実施でき、極めて好都合である。
8 & was obtained [Figure 3 D]. Normally, patterning of a positive resist involves development with an alkaline developer followed by a rinsing process with water, and it is possible to form a pattern on this laminated film without changing this normal process. This step can also be carried out without any modification to the normal semiconductor process, which is extremely convenient.

なお、現像リンス工程での水溶性有機膜8の水への溶解
速度は塗布後熱処理や架橋剤の添加量によって自在にコ
ントロールが可能で上層のポジ型UVレジストの膜厚に
よって設定すればよい。
The dissolution rate of the water-soluble organic film 8 in water in the development and rinsing step can be freely controlled by post-coating heat treatment and the amount of crosslinking agent added, and may be set by the thickness of the upper positive UV resist.

第3図(D)ののち、パターン3f、Bhをマスクとし
てAl膜4を選択除去して電極配線を形成する。
After FIG. 3(D), the Al film 4 is selectively removed using the patterns 3f and Bh as masks to form electrode wiring.

次に第2の実施例を第4図を用いて説明する。Next, a second embodiment will be explained using FIG. 4.

第1の実施例の場合には水溶性有機膜8を露光エネルギ
のうちの反射光を防ぐ最小の膜厚にしたため下地基板1
の段差2の形状は変化せず、ポジ型UVレジスト3は段
差付近で膜厚の変動が発生し、最終的にパターン精度が
劣化する。これを防ぐために、第2の実施例では水溶性
有機膜8を厚く塗布し平坦に形成する〔第4図A〕。こ
の後、ポジ型U”/レジスト3は平坦に塗布されるため
にレジスト膜厚の変動がまったく無くなる。そして露光
現像、リンス工程を加えれば、(B)のごとくパターン
精度が高く、高アスペクト比パターン3f、saが得ら
れた。この時、水溶性有機膜8は熱処理を低温で行なっ
たためかつ架橋剤の添加量を最適化したため水への溶解
速度が犬きく、膜厚にあ′!シ依存しなくないので上層
であるポジ型UVボジレジストハターン3fに忠実に転
写される。
In the case of the first embodiment, since the water-soluble organic film 8 was made to have the minimum thickness to prevent reflected light of the exposure energy, the underlying substrate 1
The shape of the step 2 does not change, and the film thickness of the positive UV resist 3 fluctuates near the step, ultimately deteriorating the pattern accuracy. In order to prevent this, in the second embodiment, the water-soluble organic film 8 is applied thickly and formed flat (FIG. 4A). After this, the positive type U"/resist 3 is applied flatly, so there is no variation in the resist film thickness. Then, by adding exposure, development, and rinsing steps, the pattern accuracy is high and the aspect ratio is high as shown in (B). Patterns 3f and sa were obtained. At this time, because the water-soluble organic film 8 was heat-treated at a low temperature and the amount of crosslinking agent added was optimized, the dissolution rate in water was very high, and the film thickness was very high. Since there is no dependence, it is faithfully transferred to the upper layer of positive UV resist pattern 3f.

具体的に本発明による実験データを第6図に示す。横軸
は第1図における段差エツジからマスクパターンの遮光
部分であるクロームのパターンエツジまでの距離Sを示
し、縦軸はパターン形成後のレジストパターンを示し、
マスクパターンを転写したものである。これによると、
従来例の曲線11に示されるものはS(段差からの距離
)が1〜2μmの距離でレジストパターンが下地人lか
らの反射によって、レジストパターンが断線あるいは、
断線傾向となる。例えばSが0.5μmの時は、レジス
トパターンが0.6μmとパターン細りが生じていた。
Specifically, experimental data according to the present invention is shown in FIG. The horizontal axis shows the distance S from the step edge to the chrome pattern edge which is the light-shielding part of the mask pattern in FIG. 1, and the vertical axis shows the resist pattern after pattern formation.
This is a transfer of a mask pattern. according to this,
In the case of the conventional example shown by curve 11, when S (distance from the step) is 1 to 2 μm, the resist pattern is disconnected or broken due to reflection from the substrate l.
The wire tends to break. For example, when S was 0.5 μm, the resist pattern was thinned to 0.6 μm.

一方、曲線1oに示す本発明のものは、Sの距離に関係
なく、レジストパターンに変動なく1μmパターンが形
成可能であった。
On the other hand, in the case of the present invention shown by curve 1o, a 1 μm pattern could be formed without fluctuation in the resist pattern regardless of the distance S.

なお、以上の実施例ではレジストとしてポジ型のものを
説明したが、ネガレジストを用いた場合でも本発明を適
用できることは当然である。
In the above embodiments, a positive type resist was used, but it goes without saying that the present invention can also be applied to a case where a negative resist is used.

発明の効果 本発明は、レジストとマスクパターンの遮光部分に入り
込む余分な光を吸収する吸収剤とプルランを含む水溶性
の有機膜との積層膜を用いてパターン形成を行うもので
あり、基板の段差に影響されることなく、マスクパター
ンに忠実で高精度なレジストパターンを形成することが
可能となる。
Effects of the Invention The present invention performs pattern formation using a laminated film of a water-soluble organic film containing pullulan and an absorber that absorbs excess light that enters the light-shielding portion of the resist and mask pattern. It becomes possible to form a highly accurate resist pattern that is faithful to the mask pattern without being affected by steps.

さらに本発明によれば、有機溶剤可溶性のレジストを用
いる場合水溶性有機膜とは互いに溶解が起らないため、
積層塗布は容易であり、かつ通常のレジストに適用され
る現像リンス工程にて選択的にパターン形成が行え、現
像工程の変更なく容易に微細レジストパターンが得られ
る。t−た、プルランを含む水溶性有機膜を用いると、
冷水に溶けやすく、安定な品質で、塗布も容易であり、
半導体フォトリソ工程に極めて有効となり、本発明は微
細な半導体装置の製造にすぐれた工業的価値を発揮する
ものである。
Furthermore, according to the present invention, when an organic solvent-soluble resist is used, it does not dissolve with the water-soluble organic film;
Laminated coating is easy, and patterns can be selectively formed in a developing and rinsing process applied to ordinary resists, and a fine resist pattern can be easily obtained without changing the developing process. When using a water-soluble organic film containing pullulan,
It dissolves easily in cold water, has stable quality, and is easy to apply.
The present invention is extremely effective in semiconductor photolithography processes, and exhibits excellent industrial value in manufacturing fine semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)は従来の工程によるパターン
形成後の断面図および平面図、第2図(ム)、(B)は
従来のレジストパターン形成工程断面図、第3図(A)
〜(D)は本発明の第1の実施例のパターン形成工程断
面図、第4図(A)、(B)は本発明の第2の実施例の
パターン形成工程断面図、第5図は本発明と従来例との
比較データを示す図である。 1・・・・・・基板、2・・・・・・段差、3・・・・
・・レジスト、8・・・・・・水溶性有機膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 畝 第2図 第3図 第31に 第4図 第5図
Figures 1 (A) and (B) are a cross-sectional view and a plan view after pattern formation by a conventional process, Figures 2 (M) and (B) are a cross-sectional view of a conventional resist pattern formation process, and Figure 3 (A). )
-(D) are cross-sectional views of the pattern forming process of the first embodiment of the present invention, FIGS. 4(A) and (B) are cross-sectional views of the pattern forming process of the second embodiment of the present invention, and FIG. FIG. 3 is a diagram showing comparative data between the present invention and a conventional example. 1... Board, 2... Step, 3...
...Resist, 8... Water-soluble organic film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ridge Figure 2 Figure 3 Figure 31 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)レジストと、マスクパターンを通過した前記レジ
スト露光時の光のうち前記マスクパターンの遮光部分に
入り込む500nm以下の余分な光を吸収する光吸収剤
およびプルランを含む水溶性有機膜との積層構造を有し
てなることを特徴とするパターン形成有機膜。
(1) Lamination of a resist and a water-soluble organic film containing pullulan and a light absorber that absorbs excess light of 500 nm or less that enters the light-shielding portion of the mask pattern among the light that passes through the mask pattern during resist exposure. A pattern-forming organic film characterized by having a structure.
(2)レジストが有機溶媒系レジストであることを特徴
とする特許請求の範囲第1項記載のパターン形成有機膜
(2) The pattern-forming organic film according to claim 1, wherein the resist is an organic solvent-based resist.
(3)段差を有する基板上に、レジストと、マスクパタ
ーンを通過した前記レジスト露光時の光のうち前記マス
クパターン遮光部分に入り込む余分な光を吸収する光吸
収剤およびプルランを含む水溶性有機膜との積層膜を形
成する工程と、前記マスクパターンを通して前記積層膜
を選択的に露光する工程と、前記レジストおよび水溶性
有機膜を同時に現像除去してレジストパターンを形成す
る工程とを有することを特徴とするパターン形成方法。
(3) A water-soluble organic film containing a resist, a light absorber that absorbs excess light that enters the light-shielding portion of the mask pattern out of the light that has passed through the mask pattern during resist exposure, and pullulan, on a substrate having steps. a step of selectively exposing the laminated film through the mask pattern; and a step of simultaneously developing and removing the resist and the water-soluble organic film to form a resist pattern. Characteristic pattern formation method.
(4)基板が半導体基板、レジストが有機溶媒系レジス
トであることを特徴とする特許請求の範囲第3項記載の
パターン形成方法。
(4) The pattern forming method according to claim 3, wherein the substrate is a semiconductor substrate and the resist is an organic solvent resist.
JP61041246A 1986-02-26 1986-02-26 Pattern forming organic film and formation of pattern Granted JPS61179440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041246A JPS61179440A (en) 1986-02-26 1986-02-26 Pattern forming organic film and formation of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041246A JPS61179440A (en) 1986-02-26 1986-02-26 Pattern forming organic film and formation of pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59078868A Division JPS60223121A (en) 1984-04-19 1984-04-19 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS61179440A true JPS61179440A (en) 1986-08-12
JPH0245325B2 JPH0245325B2 (en) 1990-10-09

Family

ID=12603080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041246A Granted JPS61179440A (en) 1986-02-26 1986-02-26 Pattern forming organic film and formation of pattern

Country Status (1)

Country Link
JP (1) JPS61179440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335238A (en) * 1989-06-30 1991-02-15 Matsushita Electric Ind Co Ltd Method for verifying mask pattern
JP2009105218A (en) * 2007-10-23 2009-05-14 Toshiba Corp Pattern forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955019A (en) * 1982-09-24 1984-03-29 Oki Electric Ind Co Ltd Formation of minute pattern
JPS59168637A (en) * 1983-03-15 1984-09-22 Nec Corp Forming method of minute pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955019A (en) * 1982-09-24 1984-03-29 Oki Electric Ind Co Ltd Formation of minute pattern
JPS59168637A (en) * 1983-03-15 1984-09-22 Nec Corp Forming method of minute pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335238A (en) * 1989-06-30 1991-02-15 Matsushita Electric Ind Co Ltd Method for verifying mask pattern
JP2009105218A (en) * 2007-10-23 2009-05-14 Toshiba Corp Pattern forming method

Also Published As

Publication number Publication date
JPH0245325B2 (en) 1990-10-09

Similar Documents

Publication Publication Date Title
US5178989A (en) Pattern forming and transferring processes
US4745042A (en) Water-soluble photopolymer and method of forming pattern by use of the same
US4211834A (en) Method of using a o-quinone diazide sensitized phenol-formaldehyde resist as a deep ultraviolet light exposure mask
KR100798969B1 (en) A photomask, the manufacturing method, a patterning method, and a semiconductor device manufacturing method
JPS6358367B2 (en)
TW511149B (en) Photomask and method for manufacturing the same
US5554489A (en) Method of forming a fine resist pattern using an alkaline film covered photoresist
JPS60223121A (en) Pattern forming method
JPH0241741B2 (en)
JPS61179440A (en) Pattern forming organic film and formation of pattern
JPS60203941A (en) Treatment of multilayer photoresist
JPH0446346A (en) Manufacture of semiconductor device
KR920003315B1 (en) Pattern forming method
JPH06242596A (en) Substrate with light shielding film and its production
JPH07325382A (en) Production of phase shift mask
JPH0376744B2 (en)
JP2653072B2 (en) Pattern formation method
JPH0376740B2 (en)
JP2674058B2 (en) Pattern formation method
JPS6186745A (en) Pattern-forming organic film
JPH0416106B2 (en)
JPS62269946A (en) Resist pattern forming method
JP3179127B2 (en) Pattern formation method
JP2005202180A (en) Method for manufacturing semiconductor device
JPH0385544A (en) Resist pattern forming method