JPH0416106B2 - - Google Patents

Info

Publication number
JPH0416106B2
JPH0416106B2 JP60015949A JP1594985A JPH0416106B2 JP H0416106 B2 JPH0416106 B2 JP H0416106B2 JP 60015949 A JP60015949 A JP 60015949A JP 1594985 A JP1594985 A JP 1594985A JP H0416106 B2 JPH0416106 B2 JP H0416106B2
Authority
JP
Japan
Prior art keywords
organic film
resist
water
pattern
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60015949A
Other languages
Japanese (ja)
Other versions
JPS61179535A (en
Inventor
Masaru Sasako
Masataka Endo
Kenichi Takeyama
Noboru Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60015949A priority Critical patent/JPS61179535A/en
Publication of JPS61179535A publication Critical patent/JPS61179535A/en
Publication of JPH0416106B2 publication Critical patent/JPH0416106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は放射線たとえば紫外線に対して漂白
作用を付加させ完全に漂白した後の透過率が高く
なる〔横軸露光エネルギ(X)、縦軸透過率(Y)
とした特性式、Y=AX+Bとした場合Aが大
で、Bが小なる傾向〕性質を有し、更に水溶性で
あるパターン形成有機膜を用いて、従来の露光方
法による解像度の向上を改善する微細パターン形
成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention adds a bleaching action to radiation, such as ultraviolet rays, and increases the transmittance after complete bleaching [horizontal axis: exposure energy (X), vertical axis: transmittance] (Y)
Using the characteristic formula, Y = AX + B, A tends to be large and B tends to be small], and by using a pattern-forming organic film that is water-soluble, the improvement in resolution achieved by conventional exposure methods has been improved. This relates to the formation of fine patterns.

従来の技術 集積回路の高集積化、高密度化は従来のリソグ
ラフイ技術の進歩により増大してきた。その最小
線幅も1μm前後となつてきており、この加工線
幅を達成するためには、高開口レンズ(高NA)
を有した縮小投影法により紫外線露光する方法、
基板上に直線描画する電子ビーム露光法、X線を
用いたプロキシミテイ露光法があげられる。しか
し、スループツトを犠牲にすることなくパターン
形成するには前者の縮小投影法により紫外線露光
する方法が最良である。しかし紫外線露光の解像
度Rは、次式のレーレス則で示される。
BACKGROUND OF THE INVENTION The increasing integration and density of integrated circuits has increased due to advances in conventional lithography techniques. The minimum line width has become around 1μm, and in order to achieve this processing line width, a high aperture lens (high NA) is required.
A method of exposing to ultraviolet light by a reduction projection method having
Examples include an electron beam exposure method that draws a straight line on a substrate, and a proximity exposure method that uses X-rays. However, in order to form a pattern without sacrificing throughput, the former method of ultraviolet exposure using a reduction projection method is best. However, the resolution R of ultraviolet exposure is expressed by the following Rayles law.

R=0.6×λ/N.A×(1+1/m) ……(1) λ;波長 N.A;レンズ開口度 m;倍率 解像度を向上するには、短波長化、高N.A化が
考えられるが、現在可能な光学系の性能は例え
ば、波長λが356nm(i−ライン)、N.Aが0.4と
すると解像度Rは0.6μmとなり、電子ビーム露光
法、X線露光の解像度より劣るとされている。
R=0.6×λ/NA×(1+1/m)...(1) λ; Wavelength NA; Lens aperture m; Magnification To improve resolution, shortening the wavelength and increasing NA can be considered, but currently this is not possible. For example, when the wavelength λ is 356 nm (i-line) and the NA is 0.4, the resolution R is 0.6 μm, which is said to be inferior to the resolution of electron beam exposure and X-ray exposure.

しかし、1983年、米国GE社のB.F.Griffingら
はパターン形成用のレジスト上に光強度プロフア
イルのコントラストを促進させるコントラスト・
エンハンスド層を積層することにより、解像度及
びパターン形状の改善を図る方法を発表した
(Contrast Enhancecl Photolithography、B.F.
Griffing et al、IEEE−ED、VOL.EDL−4、No.
1、Jan.1983)。彼らによると通常の縮小撮影法
(λ;436nm、N.A;0.32)で0.4μmまでの解像
が可能と報告している。
However, in 1983, BFGriffing et al. of GE in the United States developed a contrast film that promotes the contrast of the light intensity profile on the resist for pattern formation.
We announced a method to improve resolution and pattern shape by stacking enhanced layers (Contrast Enhancecl Photolithography, BF
Griffing et al, IEEE-ED, VOL.EDL-4, No.
1, Jan. 1983). They report that it is possible to resolve down to 0.4 μm using the normal reduction imaging method (λ: 436 nm, NA: 0.32).

発明者らの研究の結果、コントラストをエンハ
ンスするためのパターン形成有機膜の特性は次の
ようでなければならないことが判明した。
As a result of research by the inventors, it has been found that the characteristics of a patterned organic film to enhance contrast must be as follows.

第3図にて、まず、光による露光たとえば一般
的に縮小投影法における問題点につい述べる。縮
小投影露光法における出力の光強度プロフアイル
は、その光学レンズ系により加工される。説明す
るとレチクル5を通し露光4した場合〔第3図
A〕、回折のない理想的な入力光強度プロフアイ
ルは完全な矩形波といえ、そのコントラストCは
次式で C=Inax−Inio/Inax+Inio×100(%) ……(2) 示される。その時、コントラストCは100%とあ
る〔第3図B〕。その入力波形は光学レンズを通
過することで、その光学レンズ系の伝達関数によ
つて〔第3図C〕、フーリエ変換された後、出力
波形として余弦波の形状に近くなりコントラスト
Cも劣化する。このコントラストの劣化はパター
ン形状、例えば解像度及びパターン形状に大きく
影響する。ちなみにレジストパターン解像に要す
るコントラストは、レジスト自身の特性により60
%以上とされ、コントラストC値が60%以下とな
りパターン形成が不能となる。
Referring to FIG. 3, we will first discuss the problems associated with light exposure, such as the reduction projection method in general. The output light intensity profile in the reduction projection exposure method is processed by the optical lens system. To explain, in the case of exposure 4 through reticle 5 [Figure 3A], the ideal input light intensity profile without diffraction can be said to be a perfect rectangular wave, and its contrast C is given by the following formula: C = I nax - I nio /I nax +I nio ×100 (%) ...(2) Shown. At that time, the contrast C is 100% [Figure 3B]. When the input waveform passes through an optical lens, it is Fourier transformed by the transfer function of the optical lens system [Figure 3C], and the output waveform becomes close to the shape of a cosine wave, and the contrast C also deteriorates. . This deterioration of contrast greatly affects pattern shape, such as resolution and pattern shape. By the way, the contrast required for resist pattern resolution is 60% due to the characteristics of the resist itself.
% or more, the contrast C value becomes less than 60%, and pattern formation becomes impossible.

そこで、第4図に示す特性曲線、つまり露光時
間(露光エネルギー)の小なる領域では紫外線に
対する透過率が小さく(Inioの増加が少ない)、露
光エネルギーの大なる領域では紫外線に対する透
過率が大きい(Inaxの増加が多い)傾向のレジス
ト膜を用い、この膜に前述の第3図Dに示す出力
波形を通過させることによりコントラストC値が
増大する傾向が発見される。これを更に定量的に
説明するため、米国IBM者のF.H.Dillらの報告
(Characterization of Positive Phctcresist、F.
H.Dill et al、IEEE−ED、VOL.ED−22、No.7、
July.1975)の中でポジレジストの露光吸収項A
にあらわされるパラメータを使用する。一般的に
Aは A=1/dln〔T(∝)/T(o)〕……(3
) 示され、コントラストエンハンスにはA値が大な
る傾向が望ましい。Aを大なる傾向にするにはd
(膜厚)を薄く、T(o)(初期透過率)T(∝)
(最終透過率)の比が大になることが必要である。
Therefore, in the characteristic curve shown in Figure 4, in the region where the exposure time (exposure energy) is small, the transmittance to ultraviolet rays is small (increase in I nio is small), and in the region where the exposure energy is large, the transmittance to ultraviolet rays is large. By using a resist film that tends to increase I nax and passing the output waveform shown in FIG. 3D above through this film, it is discovered that the contrast C value tends to increase. To further explain this quantitatively, a report by FHDill et al. from IBM (USA) (Characterization of Positive Phctcresist, F.
H. Dill et al, IEEE-ED, VOL.ED-22, No.7,
Exposure absorption term A of positive resist in July.1975)
Use the parameters shown in . Generally, A is A=1/dln[T(∝)/T(o)]...(3
), and it is desirable for contrast enhancement to have a large A value. To make A a great tendency, d
(film thickness), T(o) (initial transmittance) T(∝)
It is necessary that the ratio of (final transmittance) be large.

ところで、前記GE社の発表ではコントラスト
エンハンスド層の材料に関しては未だ公表はされ
ていない。第2図を用いて従来のGE社の
Griffingらのコントラストエンハンスドリソグラ
フイー(略、CEL)を用いたパターン形成プロ
セスについて説明する。基板1上にレジスト2を
回転塗布する〔第2図A〕。次にレジスト2上に
コントラストエンハンスドレイヤー(CEL)3
を回転塗布する〔第2図B〕。そして、縮小投影
法により選択的に紫外線露光4する〔第2図c〕。
このとき、レジスト2の一部も選択露光される。
そして、CEL3全体を除去する〔第2図D〕。そ
して最後に通常の現像処理を施こしレジスト2の
パター形成を行なう〔第2図E〕。なおGE社の出
願にかかる特開昭59−104642号に記載された
CEL工程においても、CEL膜をトリクロロエチ
レンで全面除去したのちその下のレジストの露光
部分を除去するという複雑な工程が示されてい
る。以上のような方法ではCELの具備すべき条
件は、コントラストエンハンスする特性ともに下
層であるパターン形成用のレジスト2との溶解を
防止することと、CEL3を除去する際の除去液
がレジスト2の特性を劣化させないことがあげら
れる。この具備すべき条件によつて材料構成に多
大なる別約をうける。さらに、CELの除去工程
というプロセス的観点よりみて、複雑かつ危険な
工程が存在する。
By the way, in the above-mentioned announcement by GE, the material of the contrast enhanced layer has not yet been disclosed. Using Figure 2, the conventional GE company
We will explain the pattern formation process using contrast-enhanced lithography (abbreviated as CEL) by Griffing et al. A resist 2 is spin-coated onto the substrate 1 (FIG. 2A). Next, contrast enhanced layer (CEL) 3 is applied on resist 2.
Rotate and apply [Fig. 2B]. Then, it is selectively exposed to ultraviolet light 4 using a reduction projection method (FIG. 2c).
At this time, a part of the resist 2 is also selectively exposed.
Then, the entire CEL3 is removed [Fig. 2D]. Finally, a normal development process is performed to form a pattern of resist 2 (FIG. 2E). In addition, it was described in Japanese Patent Application Laid-open No. 104642/1989 filed by GE.
The CEL process also involves a complicated process in which the entire CEL film is removed with trichlorethylene and then the exposed portion of the resist underneath is removed. In the above method, the conditions that CEL must have are that it has contrast-enhancing characteristics and that it prevents dissolution with the underlying pattern forming resist 2, and that the removal liquid used to remove CEL 3 has the characteristics of resist 2. One example is that it does not cause deterioration. This condition that must be met imposes significant restrictions on the material composition. Furthermore, from a process point of view, the CEL removal process is complicated and dangerous.

発明が解決しようとする問題点 本発明は、下層のパターン形成用レジスト(感
光性樹脂)とのマツチングを考慮し、コントラス
トエンハンスド層とレジストとの溶解及び除去の
際の除去液による影響を排除し、複雑な除去工程
を省略することを目的とする。
Problems to be Solved by the Invention The present invention considers matching with the underlying pattern forming resist (photosensitive resin) and eliminates the influence of the removal liquid when dissolving and removing the contrast enhanced layer and the resist. , the purpose is to omit the complicated removal process.

問題点を解決するための手段 本発明は前記問題点を解決するために、基板に
感光性樹脂を塗布する工程、前記感光性樹脂上に
退色性あるいは漂白性を有した化合物を含む水溶
性有機膜を、前記樹脂と溶解することなく積層形
成する工程、前記感光性樹脂と前記退色性あるい
は漂白性を有した化合物を含む水溶性有機膜を選
択的に露光する工程、前記選択的に露光した感光
性樹脂およびこの上の水溶性有機膜の積層構造を
前記感光性樹脂の水溶液系現像液にて現像するこ
とにより、前記退色性あるいは漂白性を有した化
合物を含む水溶性有機膜全体を溶解させるととも
に前記感光性樹脂の露光部を除去することを特徴
とするパターン形成方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention includes a step of coating a photosensitive resin on a substrate, and a water-soluble organic compound containing a compound having discoloration or bleaching properties on the photosensitive resin. a step of laminating a film with the resin without dissolving it; a step of selectively exposing the water-soluble organic film containing the photosensitive resin and the compound having fading or bleaching properties; By developing the laminated structure of the photosensitive resin and the water-soluble organic film thereon with an aqueous developer of the photosensitive resin, the entire water-soluble organic film containing the compound having discoloration or bleaching properties is dissolved. The present invention provides a pattern forming method characterized in that the exposed portions of the photosensitive resin are removed at the same time.

作 用 本発明に用いるパターン形成用有機膜では下層
の感光性樹脂の現像液あるいはリンス液に易溶性
である水溶性の性質を有しなければならない。そ
こでたとえば通常用いられるノボラツク系キノン ンジアジドポジレジストの紫外線の透過率はセン
シタイザーであるナフトキノンジアジドスルホニ
ルクロライドのノボラツク樹脂に対する重量パー
セントで制限されるといえる。本発明者らはパタ
ーン形成有機膜自身はパターンとして残存させな
くてもかまわないため、ナフトキノンジアジドス
ルホニルクロライドの重量パーセント増加するこ
とは可能であり、アルカリ水溶液に対しても溶解
速度も増すという結果となるとを見い出した。
Function The organic film for pattern formation used in the present invention must have water-soluble properties that are easily soluble in the developer or rinse solution of the underlying photosensitive resin. For example, commonly used novolak quinones It can be said that the ultraviolet transmittance of a diazide positive resist is limited by the weight percentage of naphthoquinonediazide sulfonyl chloride, which is a sensitizer, to the novolak resin. The present inventors found that since the pattern-forming organic film itself does not need to remain as a pattern, it is possible to increase the weight percentage of naphthoquinonediazide sulfonyl chloride, and as a result, the dissolution rate also increases in an alkaline aqueous solution. I found out that.

更に別の方法として、ベースポリマーとして水
溶性ポリマーを使用しその溶液に紫外線に対して
退色性あるいは漂白作用を有した化合物例えば退
色性染料を含ませることによる有機膜により、コ
ントラストエンハンス及び水溶性の性質を付加さ
せることができる。
Yet another method is to use a water-soluble polymer as a base polymer, and to add contrast enhancement and water-soluble Properties can be added.

本発明に用いる水溶性でかつ漂白あるいは退色
作用を有したパターン形成有機膜の材料構成は、
本発明の実施例のかぎりではない。
The material composition of the pattern-forming organic film that is water-soluble and has a bleaching or fading effect used in the present invention is as follows:
This is not limited to the embodiments of the present invention.

実施例 (その1) ベースポリマーとしての水溶性ポリマーには、
例えば多糖体、たんぱく質、ポリビニルピロリド
ン、ポニビニルアルコールなどがあげられるが、
本実施例では、多糖体であるプルラン(林原生物
化学研究所製)を脱イオン水100c.c.に10g溶解さ
せたものを用いる。更に436nmから36nmの波長
域に対して漂白作用を有したジアゾ化合物を0.2
g程度溶解した。この際の水溶液はゲル状あるい
は不溶物で沈殿物はなく非常にクリーンなもので
あつた。この水溶液を、通常のレジストを1.5μm
に塗布形成した上に0.5μm塗布積層した2層構造
とした。
Example (Part 1) The water-soluble polymer as the base polymer includes:
Examples include polysaccharides, proteins, polyvinylpyrrolidone, ponyvinyl alcohol, etc.
In this example, 10 g of pullulan (manufactured by Hayashibara Biochemical Research Institute), a polysaccharide, dissolved in 100 c.c. of deionized water is used. Furthermore, 0.2% of a diazo compound that has a bleaching effect in the wavelength range from 436nm to 36nm is added.
About g was dissolved. The aqueous solution at this time was gel-like or insoluble, with no precipitates and was very clean. Apply this aqueous solution to a normal resist with a thickness of 1.5 μm.
A two-layer structure was obtained by coating and laminating the layer with a thickness of 0.5 μm.

なお、塗布膜とした有機膜のA値は5と高い値
を示した。この値はジアゾ化合物の添加により10
以上まで可能であつた。漂白あるいは退色作用を
発揮させる物質としてジアゾ化合物を用いると、
光の吸収効率が良く、水に対する溶解性が高く反
応速度も早い。また、プルランとの相溶性が特に
すぐれている。
Note that the A value of the organic film used as a coating film was as high as 5. This value increases by adding diazo compound to 10
The above was possible. When a diazo compound is used as a substance that exhibits a bleaching or fading effect,
It has good light absorption efficiency, high solubility in water, and fast reaction rate. In addition, it has particularly good compatibility with pullulan.

さらに、ベースポリマーとしてプルランを用い
ると、冷水に溶けやすく、安定で塗布も容易であ
り、半導体フオトリソ工程に極めて有効である。
Furthermore, when pullulan is used as a base polymer, it is easily soluble in cold water, stable, and easy to apply, making it extremely effective in semiconductor photolithography processes.

次に前述の作製したパターン形成有機膜を使用
したパターン形成方法を第1図を用いて説明す
る。
Next, a pattern forming method using the pattern-forming organic film prepared above will be explained with reference to FIG.

半導体等の基板1上にレジスト2を1.0〜2.0μ
m厚に塗布形成する〔第1図A〕。次にレジス2
上に前に説明した水溶性で放射線に対し漂白作用
あるいは退色作用を付加したパターン形成有機膜
5を積層する〔第1図B〕。この際下層であるレ
ジスト2と上層のパターン形成有機膜5との溶解
はまつたく観察されなかつた。次に紫外線による
縮小投影露光法4により選択的に露光を施こす
〔第1図C〕。この時、第3図に説明したように入
射光はフーリエ変換されコントラスト値Cは劣化
し、例えば436nmのN.A(ニユーメリカルアパー
チヤ)0.32であると、0.6μmラインアンドスペー
スのマスクを通過したあとコントラストC値は50
%であり、通常解像はしない。しかしパターン形
成有機膜5のAパラメータを5とした場合、パタ
ーン形成有機膜5を通過したコントラスト50%の
入射光はコントラスト70%にエンハンスされ、下
層のレジスト層2に入る結果となつた。その後、
レジスト2の現像液例えばアルカリ現像液により
現像する際にパターン形成有機膜5全体に瞬間時
に溶解した。そして前記現像を引きつづき行う
と、通常のコントラストをエンハンスした入射光
により感光したレジスト2の一部を現像除去する
〔第1図D〕。この結果0.5μmのラインアンドスペ
ースを鮮明に解像することが出来た。
Resist 2 with a thickness of 1.0 to 2.0μ on substrate 1 of semiconductor etc.
Coat it to a thickness of m (Fig. 1A). Next, Regis 2
The pattern-forming organic film 5 which is water-soluble and has a bleaching or fading action against radiation as described above is laminated (FIG. 1B). At this time, no dissolution of the resist 2 as the lower layer and the pattern-forming organic film 5 as the upper layer was observed. Next, selective exposure is performed using ultraviolet rays using a reduction projection exposure method 4 (FIG. 1C). At this time, as explained in Figure 3, the incident light undergoes Fourier transformation and the contrast value C deteriorates.For example, if the NA (numerical aperture) of 436 nm is 0.32, it will pass through a 0.6 μm line-and-space mask. Also, the contrast C value is 50.
% and usually does not resolve. However, when the A parameter of the pattern-forming organic film 5 was set to 5, the incident light having a contrast of 50% that passed through the pattern-forming organic film 5 was enhanced to a contrast of 70% and entered the resist layer 2 below. after that,
When developing the resist 2 with a developer such as an alkaline developer, it was instantly dissolved in the entire pattern-forming organic film 5. When the development is continued, a portion of the resist 2 exposed to the normal contrast-enhanced incident light is developed and removed (FIG. 1D). As a result, we were able to clearly resolve lines and spaces of 0.5 μm.

なお、露光波長に関して、有機膜の漂白作用あ
るいは退色作用のマツチングを行なうことにより
任意に設定することは本発明のかぎりでない。
Note that the present invention does not limit the exposure wavelength to be arbitrarily set by matching the bleaching action or fading action of the organic film.

以上のように、本発明の方法によれば感光性樹
脂であるレジスト2上に直接退色性あいは漂白性
を有する有機膜5を積層するに際し、この有機膜
5が水溶液に溶解する水溶性であるため、通常使
用される有機溶媒系の感光性樹脂であるレジスト
2とは互いに溶解しない。すなわち、レジスト2
と水溶性含機膜5との溶解は生じないため、レジ
スト2上への水溶性有機膜5の塗布の実現が可能
となり、単にレジスト2上に有機膜5を塗布する
ので漂白又は退色性を有する有機膜とレジストの
積層体の確実な形成が可能となる。
As described above, according to the method of the present invention, when the organic film 5 having discoloration or bleaching properties is directly laminated on the resist 2 which is a photosensitive resin, the organic film 5 is a water-soluble film that dissolves in an aqueous solution. Therefore, it does not dissolve in the resist 2, which is a commonly used organic solvent-based photosensitive resin. That is, resist 2
Since no dissolution occurs between the water-soluble organic film 5 and the water-soluble organic film 5, it is possible to apply the water-soluble organic film 5 on the resist 2. Since the organic film 5 is simply applied on the resist 2, there is no possibility of bleaching or fading. It becomes possible to reliably form a laminate of the organic film and the resist.

さらに、有機膜5は水溶性であるため、レジス
トの露光部の現像除去に使用されるアルカリ水溶
液等の水溶液系の現像液にて有機膜5は溶解す
る。したがつて、通常のレジスト2の現像工程に
て役割の終わつた有機膜5を溶解することがで
き、現像工程は何ら複雑化しない。
Further, since the organic film 5 is water-soluble, the organic film 5 is dissolved in an aqueous developer such as an alkaline aqueous solution used to develop and remove the exposed portion of the resist. Therefore, the organic film 5 whose role has been completed can be dissolved in the normal developing process of the resist 2, and the developing process is not complicated at all.

このように、本発明の方法では、単に水溶性有
機膜5の塗布工程を追加するのみで、コントラス
トエンハンス効果を使用して微細レジストパター
ンを形成することが可能となり、半導体装置等の
製造において大切なプロセスの容易性、スループ
ツトの向上を確保することができ、通常の露光、
現像を用いて安定かつ微細なパターンを形成する
ことができる。
As described above, in the method of the present invention, by simply adding the step of coating the water-soluble organic film 5, it is possible to form a fine resist pattern using the contrast enhancement effect, which is important in the manufacture of semiconductor devices, etc. Normal exposure, which can ensure process ease and throughput improvement
A stable and fine pattern can be formed using development.

なお、本発明の実施に際し、レジスト2は、露
光部が水あるいはアルカリなどの水溶液系の現像
液にて現像除去される性質のものを使用すればよ
く、例えば通常使用するジアゾ系のボジ形レジス
トが代表的なものである。
In carrying out the present invention, the resist 2 may be one in which the exposed portion is developed and removed by an aqueous developer such as water or an alkali, such as a commonly used diazo positive resist. is a typical example.

発明の効果 以上のように、本発明は、従来の縮小投影法の
光学系で制限されていた解像度の劣化によるパタ
ーン形状の劣化を、コントラストエンハンスする
ことで改善し、工程が少なくてすみかつレジスト
との溶解が生じない水溶性の性質を有する有機膜
を用いることで、容易に微細なレジストパターン
を形成できるとともに、紫外線露光の微細化への
道つまり寿命を延ばすことができる。そしてま
た、高価なEB露光機、X線露光機の導入の必要
性をへらすことができ、半導体装置の微細化等に
すぐれた工業的価値を発揮することができる。
Effects of the Invention As described above, the present invention improves the deterioration of the pattern shape due to the deterioration of resolution, which was limited by the optical system of the conventional reduction projection method, by enhancing the contrast. By using an organic film that is water-soluble and does not dissolve in water, it is possible to easily form a fine resist pattern, and it is also possible to make ultraviolet ray exposure finer, thereby extending the life of the resist. Furthermore, it is possible to reduce the need for introducing expensive EB exposure machines and X-ray exposure machines, and it is possible to exhibit excellent industrial value in miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Dは本発明の一実施例のパターン形
成工程断面図、第2図A〜Eは従来のコントラス
トエンハンスプロセスフロー断面図、第3図A〜
Dは縮小投影法の光学プロフアイルの変換説明
図、第4図は本発明のパターン形成有機膜の透過
特性図である。 1……基板、2……レジスト(感光性樹脂)、
5,7……パターン形成有機膜。
1A to 1D are sectional views of a pattern forming process according to an embodiment of the present invention, 2A to 2E are sectional views of a conventional contrast enhancement process flow, and 3A to 3D are sectional views of a conventional contrast enhancement process flow.
D is an explanatory diagram of conversion of the optical profile by the reduction projection method, and FIG. 4 is a transmission characteristic diagram of the patterned organic film of the present invention. 1...Substrate, 2...Resist (photosensitive resin),
5, 7... Pattern-forming organic film.

Claims (1)

【特許請求の範囲】[Claims] 1 基板に感光性樹脂を塗布する工程、前記感光
性樹脂上に退色性あるいは漂白性を有した化合物
を含む水溶性有機膜を、前記樹脂と溶解すること
なく積層形成する工程、前記感光性樹脂と前記退
色性あるいは漂白性を有した化合物を含む水溶性
有機膜に選択的に露光する工程、前記選択的に露
光した感光性樹脂およびこの上の水溶性有機膜の
積層構造を前記感光性樹脂の水溶液系現像液にて
現像することにより、前記退色性あるいは漂白性
を有した化合物を含む水溶性有機膜全体を溶解さ
せるとともに前記感光性樹脂の露光部を除去する
ことを特徴とするパターン形成方法。
1. A step of applying a photosensitive resin to a substrate, a step of laminating a water-soluble organic film containing a compound with fading or bleaching properties on the photosensitive resin without dissolving it with the resin, and the photosensitive resin. and a step of selectively exposing the water-soluble organic film containing the compound having discoloration or bleaching properties to light, and forming a layered structure of the selectively exposed photosensitive resin and the water-soluble organic film thereon to Pattern formation characterized in that the entire water-soluble organic film containing the compound having discoloration or bleaching properties is dissolved and the exposed portion of the photosensitive resin is removed by developing with an aqueous developer. Method.
JP60015949A 1985-01-30 1985-01-30 Layered structure resist and pattern forming method applying it Granted JPS61179535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015949A JPS61179535A (en) 1985-01-30 1985-01-30 Layered structure resist and pattern forming method applying it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015949A JPS61179535A (en) 1985-01-30 1985-01-30 Layered structure resist and pattern forming method applying it

Publications (2)

Publication Number Publication Date
JPS61179535A JPS61179535A (en) 1986-08-12
JPH0416106B2 true JPH0416106B2 (en) 1992-03-23

Family

ID=11903007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015949A Granted JPS61179535A (en) 1985-01-30 1985-01-30 Layered structure resist and pattern forming method applying it

Country Status (1)

Country Link
JP (1) JPS61179535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133444A (en) * 1985-12-04 1987-06-16 Matsushita Electric Ind Co Ltd Pattern-forming organic material
JPH06255016A (en) * 1993-03-01 1994-09-13 Afuiniteii Kk Autonomously answering laminate, its production and window used therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238829A (en) * 1984-05-14 1985-11-27 Toshiba Corp Formation of pattern
JPS6184644A (en) * 1984-09-04 1986-04-30 マイクロサイ,インコーポレイテッド Photoengraving and combination containing barrier layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238829A (en) * 1984-05-14 1985-11-27 Toshiba Corp Formation of pattern
JPS6184644A (en) * 1984-09-04 1986-04-30 マイクロサイ,インコーポレイテッド Photoengraving and combination containing barrier layer

Also Published As

Publication number Publication date
JPS61179535A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
JPH05501164A (en) Pattern formation method and transfer method
JPS6249614B2 (en)
US20030113638A1 (en) Lithographic template and method of formation and use
JP4429903B2 (en) Method for forming lithographic template having repaired gap defect and device manufacturing method using the same
KR100298609B1 (en) Method for manufacturing photo mask having phase shift layer
JP2002131883A (en) Method for manufacturing photomask, and photomask
JP3373147B2 (en) Photoresist film and pattern forming method thereof
TWI270929B (en) Photoresist topcoat for deep ultraviolet (DUV) direct write laser mask fabrication
JP2002202585A5 (en)
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
US20130330672A1 (en) Method for enhancing lithographic imaging of isolated and semi-isolated features
JPH0416106B2 (en)
KR920003315B1 (en) Pattern forming method
JPS60223121A (en) Pattern forming method
JPH0376744B2 (en)
JP2002006478A (en) Mask for exposure and method for producing the same
JPH06267890A (en) Lithography for manufacturing small mask aperture part and its product
JPS61173245A (en) Formation of photoresist pattern
JPS61241745A (en) Negative type photoresist composition and formation of resist pattern
JPS61212020A (en) Pattern forming method
JPS62269946A (en) Resist pattern forming method
JPS63109435A (en) Contrast enhanced material for pattern formation
JPH06140300A (en) Light exposure method
JPS62133444A (en) Pattern-forming organic material
JPS63214742A (en) Resist pattern forming method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term