JPS6117797B2 - - Google Patents

Info

Publication number
JPS6117797B2
JPS6117797B2 JP58024907A JP2490783A JPS6117797B2 JP S6117797 B2 JPS6117797 B2 JP S6117797B2 JP 58024907 A JP58024907 A JP 58024907A JP 2490783 A JP2490783 A JP 2490783A JP S6117797 B2 JPS6117797 B2 JP S6117797B2
Authority
JP
Japan
Prior art keywords
epitaxial layer
substrate
lattice
matched
ingaasp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58024907A
Other languages
Japanese (ja)
Other versions
JPS58208195A (en
Inventor
Resurii Muun Ronarudo
Ee Anteipasu Jooji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of JPS58208195A publication Critical patent/JPS58208195A/en
Publication of JPS6117797B2 publication Critical patent/JPS6117797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Description

【発明の詳細な説明】 本発明はInGaAsPの格子整合ヘテロ整合を基
板上に成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing lattice-matched heteromatched InGaAsP on a substrate.

これまで、AGaAsPの−族四元合金は
基板とエピタキシヤル層との両方のAs/Pの比
を一定に保ちながら、Gaの代りにAを置換す
ることによつてGaAgPの三元合金の上に格子整
合エピタキシヤル層として成長されてきた。その
結果、エピタキシヤル層の禁止帯の幅エネルギー
だけが基板の禁止帯幅エネルギーに対して変つ
た。そのような格子整合エピタキシヤル層は1970
年出版の応用物理(Applied Physics Letters)
第17巻、第455頁の論文中に、バーンハム
(Burnham)、アール・デイー(R・D)、エヌ・
ホロニアツク・ジユニア(N・Holonyak,Jr)
およびデイー・アール・シフレス(D・R・
Scifres)によつて開示されている。基板上のこ
のような格子整合エピタキシヤル層は、0.8〜0.5
ミクロンすなわち5000〜7800オングストロームの
範囲内に入る波長の可視帯においてのみ室温パル
ス化レーザーとして特に有効な低損失ヘテロ接合
を作ることができる。
Until now, - group quaternary alloys of AGaAsP have been developed on ternary alloys of GaAgP by substituting A for Ga while keeping the As/P ratio of both substrate and epitaxial layer constant. has been grown as a lattice-matched epitaxial layer. As a result, only the bandgap width energy of the epitaxial layer varied with respect to the bandgap energy of the substrate. Such a lattice-matched epitaxial layer was developed in 1970
Applied Physics Letters published in 2015
In the paper in Volume 17, page 455, Burnham, R.D., N.
N. Holonyak, Jr.
and D.R.
Scifres). Such a lattice-matched epitaxial layer on the substrate is 0.8-0.5
Low-loss heterojunctions can be made that are particularly effective as room temperature pulsed lasers only in the visible band of wavelengths that fall within the micron or 5000-7800 angstrom range.

このような従来の可視範囲内の波長に対応する
禁止帯幅エネルギーをもつ格子整合エピタキシヤ
ル層は有用ではあるが、さらに改良してその動作
波長範囲を赤外線、特に約1.06ミクロンの波長の
如き赤外線内のある波長に及ばしめるようにする
ことが望まれる。この波長は、パルス化動作に対
して103ワツトのオーダーで平均電力出力を発生
することのできる高出力Nd;YAGレーザーの波
長に対応する。大気窓(Atmospheric window)
もこの波長で生ずる。しかし、従来の−族四
元合金では、その禁止帯幅エネルギーの範囲が可
視波長に相当し赤外線までは及ばないという事実
の故に、この波長範囲では動作することができな
かつたという問題がある。
Although such lattice-matched epitaxial layers with bandgap energies corresponding to wavelengths within the conventional visible range are useful, further refinements extend their operating wavelength range to infrared wavelengths, such as wavelengths of approximately 1.06 microns. It is desirable to make the light reach a certain wavelength within the range. This wavelength corresponds to that of high power Nd;YAG lasers that can generate average power outputs on the order of 10 3 watts for pulsed operation. Atmospheric window
also occurs at this wavelength. However, the problem with conventional - group quaternary alloys is that they cannot operate in this wavelength range due to the fact that their bandgap energy range corresponds to visible wavelengths and does not extend into the infrared.

従つて本発明の目的は、上記のような問題を解
決することのできるInGaAsPの格子整合ヘテロ
接合エピタキシヤル層を形成させるための方法を
提供することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for forming a lattice-matched heterojunction epitaxial layer of InGaAsP that can solve the above-mentioned problems.

本発明の方法により形成されるInGaAsPのエ
ピタキシヤル層の成分はそれぞれ5.65〜6.1オン
グストロームまたは5.45〜6.05オングストローム
の範囲内に入る格子定数をもつた基板または隣接
層に対する格子整合を得るような割合とされてお
り、それによつて、その−族合金のある限度
内においてエピタキシヤル層の格子定数および禁
止帯幅エネルギー(動作波長)にわたつて独立し
た制御ができる。
The composition of the InGaAsP epitaxial layer formed by the method of the present invention is proportioned to provide lattice matching to the substrate or adjacent layer with a lattice constant within the range of 5.65 to 6.1 angstroms or 5.45 to 6.05 angstroms, respectively. This allows independent control over the lattice constant and bandgap energy (operating wavelength) of the epitaxial layer within certain limits of the -group alloy.

本発明の方法により形成されるInGaAsPの
−族四元合金の成分は、もう1つの特徴とし
て、InPの基板に対する格子整合を得、かつ1.7〜
1.0ミクロンの範囲内に入る波長に対応する0.7〜
1.3電子ボルトの範囲内に入る禁止帯幅エネルギ
ーを得るような割合とされている。
Another feature of the - group quaternary alloy composition of InGaAsP formed by the method of the present invention is that it obtains a lattice match to the InP substrate and
0.7~ corresponding to wavelengths falling within the range of 1.0 microns
The ratio is such that the forbidden band energy is within the range of 1.3 electron volts.

本発明により基板上に成長させられた格子整合
InGaAsPのエピタキシヤル層は透明なモードの
光電陰極に採用され得、そのエピタキシヤル層の
禁止帯幅は基板の禁止帯幅より小さく、それによ
つて特に赤外線領域において改良されている。
Lattice matching grown on a substrate according to the present invention
An epitaxial layer of InGaAsP can be employed in a transparent mode photocathode, the bandgap of the epitaxial layer being smaller than that of the substrate, thereby improving the bandgap, especially in the infrared region.

本発明により適当な半導電性基板、例えばInP
上に成長させられたInGaAsPの格子整合エピタ
キシヤル層は固体レーザーに応用することがで
き、特に赤外線領域においてコヒーレントな出力
放射線を発生する。
According to the invention, suitable semiconducting substrates, such as InP
A lattice-matched epitaxial layer of InGaAsP grown thereon can be applied in solid-state lasers, producing coherent output radiation, especially in the infrared region.

本発明の方法を説明するに先立ち、本発明の方
法により形成され得る格子整合ヘテロ整合エピタ
キシヤル層について、まず図面を参照する。
Before describing the method of the present invention, reference will first be made to the drawings for a lattice-matched heteromatched epitaxial layer that can be formed by the method of the present invention.

第1図を参照すると、GaInAspの−族四
元合金に対する禁止帯幅エネルギー対格子定数の
線図が示され、第1図のプロツトの斜めハツチ部
分はGaInP,InAsP,GaInAsおよびGaAsPの三
元合金によつて境されている。第1図のプロツト
からわかるように、この−族四元合金は0.35
〜2.23電子ボルトの禁止帯幅エネルギーを与え、
格子定数は5.45〜6.05オングストロームの範囲内
に入る。しかし、格子整合ヘテロ接合の成長は、
整合すべき与えられた格子定数基板に対して
As/Pの比を一定に保持しつつGaの代りにA
が用いられるGaInAspの従来技術の四元素と対
比して、基板の格子定数の関数として固体中の
Ga/InとAs/Pとの両比を同時に変えることの
みによつて達成することができる。
Referring to Figure 1, a diagram of bandgap energy versus lattice constant is shown for - group quaternary alloys of GaInAsp, and the diagonal hatched portion of the plot in Figure 1 is for ternary alloys of GaInP, InAsP, GaInAs, and GaAsP. is bounded by. As can be seen from the plot in Figure 1, this - group quaternary alloy has a 0.35
giving a forbidden band energy of ~2.23 electron volts,
The lattice constant falls within the range of 5.45-6.05 angstroms. However, the growth of lattice-matched heterojunctions
For a given lattice constant substrate to be matched
A instead of Ga while keeping the As/P ratio constant.
in the solid state as a function of the lattice constant of the substrate.
This can only be achieved by changing both the Ga/In and As/P ratios simultaneously.

第2図を参照すると、InGaAsP−族合金
系の禁止帯幅Egのグラフ表示が示され、4つの
三元素化合物により境界されている。間接的な禁
止帯幅領域は平面によつて概略的に表わされ、直
接の領域は曲面102によつて表わされ、格子定
数面103は平面によつて表わされている。
Referring to FIG. 2, a graphical representation of the forbidden band width Eg of the InGaAsP-group alloy system is shown, bounded by four ternary compounds. The indirect bandgap region is represented schematically by a plane, the direct region by a curved surface 102 and the lattice constant surface 103 by a plane.

エピタキシヤル層は、好ましくは液相エピタキ
シヤル層によつて、5.45〜6.05オングストローム
の範囲内の格子定数をもつ基板上に成長され
る。。エピタキシヤル層を成長させるのに使用さ
れる本発明の方法は、Gaの量を増し、次にその
液をPで飽和させた一連のIn−Ga−As溶液を準
備することである。つぎに、平衡したところで、
融成物を(111)B方向に配向されたInP物質の
如き単結晶基板と接触させ、この点で成長させる
べきエピタキシヤル層の厚さに応じて20〜50℃の
間で制御された冷却サイクルが始められる。冷却
速度はエピタキシヤル層の表面構造が冷却速度に
は見掛け上影響しないようにして毎分2.0℃〜0.1
℃の間で変えてもよい。
The epitaxial layer is preferably grown by a liquid phase epitaxial layer on a substrate with a lattice constant in the range of 5.45 to 6.05 angstroms. . The method of the present invention used to grow the epitaxial layer is to prepare a series of In-Ga-As solutions with increasing amounts of Ga and then saturating the solution with P. Next, at equilibrium,
The melt is brought into contact with a single crystal substrate such as InP material oriented in the (111)B direction, at which point it is cooled in a controlled manner between 20 and 50 °C depending on the thickness of the epitaxial layer to be grown. The cycle can begin. The cooling rate is set at 2.0°C to 0.1°C per minute so that the surface structure of the epitaxial layer has no apparent effect on the cooling rate.
It may be changed between ℃.

エピタキシヤル層の格子定数は、たとえば、
Cu−Ka放射線のX線回折によつて測定される。
比較的薄いエピタキシヤル層でX線回折を用いる
と、そのエピタキシヤル層と基板との両方の格子
定数は容易に確められる。エピタキシヤル層の禁
止帯幅エネルギーは、望むならば室温とそれより
低い温度で、フオト・ルミネセンス技術によつて
測定される。この禁止帯幅を測定するための代表
的装置は、0.5ワツト・アルゴンイオンレーザー
ビームの如き単色光源でその材料を照らし、その
反射光をドライアイス冷却のS−1ホトマルチプ
ライアーを用いたパーキン・エルマー(Perkin
Elmer)301分光光度計の如き分光光度計で観測
する。
The lattice constant of the epitaxial layer is, for example,
Measured by X-ray diffraction of Cu-Ka radiation.
Using X-ray diffraction on relatively thin epitaxial layers, the lattice constants of both the epitaxial layer and the substrate can be readily determined. The bandgap energy of the epitaxial layer is measured by photoluminescence techniques at room temperature and lower temperatures if desired. A typical device for measuring this bandgap is to illuminate the material with a monochromatic light source, such as a 0.5 Watt argon ion laser beam, and then convert the reflected light into a Perkin test using a dry ice-cooled S-1 photomultiplier. Elmer (Perkin)
Observe with a spectrophotometer such as the Elmer 301 spectrophotometer.

さて第3図を参照すると、適当な基板上にエピ
タキシヤル的に成長したInGaAsPの多数の−
族四元合金に対するオングストロームで示した
格子定数対電子ボルトで示した禁止帯幅エネルギ
ーのプロツトが示されている。さらに詳細にいえ
ば、各一連の測定に対して、最初の層が零Gaで
成長され、破線104で示すInAsP境界を確立し
た。その後Gaの量を増すと、曲線群105によ
り示されるように、もつと大きい禁止帯幅および
もつと小さい格子定数のエピタキシヤル層が成長
される。
Referring now to Figure 3, a large number of -
A plot of the lattice constant in angstroms versus the bandgap energy in electron volts for a group of quaternary alloys is shown. More specifically, for each series of measurements, a first layer was grown with zero Ga to establish an InAsP boundary, indicated by dashed line 104. As the amount of Ga is subsequently increased, an epitaxial layer with a larger bandgap and smaller lattice constant is grown, as shown by curve family 105.

このプロツトから、禁止帯幅エネルギーが1.12
〜1.41電子ボルトの間で変化する多数の四元合金
が、曲線105を通りかつ二元合金107と交差
する水平線106の交点によつて表わされるよう
に、InP基板に格子整合成長されることがわか
る。第3図に表わされた合金の他に−族四元
合金の範囲は、5.4〜6.05の格子定数および0.35〜
2.23eVの禁止帯幅エネルギーの全範囲にわたつ
て広げることができる。
From this plot, we can see that the forbidden band energy is 1.12
A number of quaternary alloys varying between ~1.41 electron volts can be lattice matched grown on an InP substrate, as represented by the intersection of horizontal line 106 passing through curve 105 and intersecting binary alloy 107. Recognize. In addition to the alloys represented in Figure 3, the -group quaternary alloys range from 5.4 to 6.05 and from 0.35 to
The band gap of 2.23 eV can be extended over the entire range of energies.

第4図を参照すると、族副格子で表わした
Geの増加モル分数対族副格子で表わしたAsの
増加モル分数のプロツトが示されている。第4図
のプロツトから、プロツトされた範囲内でのある
与えられた禁止帯幅と格子定数に対する組成は、
組成平面上に重ね置いた格子定数と禁止帯幅表面
を示す第4図の輪郭図から決定することができ
る。これらの輪郭は、第2図での表面を水平に切
りその切断縁を組成平面上に投影することによつ
て作られた。横軸はAs含有量の増加を族副格
子で表わし、縦軸はGaの増加を族副格子で表
わす。組成は、禁止帯幅と格子定数とを選択しそ
の点を組成平面内に探すことによつて決定され
る。
Referring to Figure 4, we can see that
A plot of the increasing mole fraction of As expressed in the group sublattice versus the increasing mole fraction of Ge is shown. From the plot in Figure 4, the composition for a given bandgap and lattice constant within the plotted range is:
It can be determined from the contour diagram in FIG. 4, which shows the lattice constant and band gap surface superimposed on the composition plane. These contours were created by cutting the surface in FIG. 2 horizontally and projecting the cut edges onto the composition plane. The horizontal axis represents the increase in As content using the group sublattice, and the vertical axis represents the increase in Ga content using the group sublattice. The composition is determined by choosing the band gap and lattice constant and locating that point in the composition plane.

第4図のプロツトは、四元合金の組成平面の比
較的小さい部分に限られているが、第4図のプロ
ツトの禁止帯幅と格子定数のそれぞれの値は四元
素の四角全体をカバーするように容易に広げられ
る。さらに詳細にいえば、四角の辺に沿つて等し
い格子定数値を直線で結ぶ、即ち第4図に表わさ
れたように、GaP,GaAs,InAsおよびInPによ
つて四隅を決定する。
Although the plot in Figure 4 is limited to a relatively small portion of the compositional plane of the quaternary alloy, the respective values of bandgap and lattice constant in the plot in Figure 4 cover the entire square of the four elements. as easily expanded. More specifically, equal lattice constant values are connected along the sides of the square with straight lines, that is, the four corners are determined by GaP, GaAs, InAs, and InP, as shown in FIG.

組成に伴なう禁止帯幅の変化は、一定のGa組
成の種々の合金に対して禁止帯幅対As組成がプ
ロツトされているグラフによつて得られる。各一
定のGa区分に対して、禁止帯幅の末端点の値は
それぞれGayIn1-yPおよびGayIn1-yAs三元素デー
タから決定される。一定のGaにおける直線性か
らの最大のずれは、InAsxP1-xおよびGaAsxP1-x
三元素に対して見られるずれの間の直線内挿法に
よつて決定される。幾つかの異なるGa濃度に対
して禁止帯幅対As組成が一旦決定されると、等
禁止帯幅線が組成四角上に引かれる。
The variation of the bandgap with composition is obtained by a graph in which bandgap versus As composition is plotted for various alloys of constant Ga composition. For each fixed Ga section, the values of the endpoints of the forbidden band width are determined from the GayIn 1-y P and GayIn 1-y As ternary data, respectively. The maximum deviation from linearity at constant Ga is InAsxP 1-x and GaAsxP 1-x
It is determined by linear interpolation between the deviations found for the three elements. Once the bandgap versus As composition is determined for several different Ga concentrations, equal bandgap lines are drawn on the composition squares.

さて第1図及び第4図には、および1.17電子ボ
ルト(1.06ミクロンの波長)および5.862の格子
定数の禁止帯幅エネルギーに相当するドツト10
8によつて表わされるGaInAspの特定な組成が
示されており、これはInP基板に格子整合してい
る。この特定の組成は、1.17電子ボルトの禁止帯
幅エネルギーがNd:YAGのレーザー線および大
気窓に相当するから、特に有用である。基板即ち
InPの禁止帯幅エネルギー以下の禁止帯幅エネル
ギーをもつたエピタキシヤル層のこの特定の組合
せは、第6図によつて表わされるように、透明な
基板モードで動作される光電陰極111において
特に有用である。
Now, in Figures 1 and 4, there is a dot 10 corresponding to the bandgap energy of 1.17 electron volts (wavelength of 1.06 microns) and a lattice constant of 5.862.
A specific composition of GaInAsp, designated by 8, is shown, which is lattice matched to the InP substrate. This particular composition is particularly useful because the bandgap energy of 1.17 electron volts corresponds to the laser line and atmospheric window of Nd:YAG. substrate i.e.
This particular combination of epitaxial layers with bandgap energies less than or equal to that of InP is particularly useful in photocathode 111 operated in transparent substrate mode, as represented by FIG. It is.

具体的に、第6図の光電陰極111は例えば赤
外線像増強管112に応用され得る。光電陰極1
11は1017〜1014原子/cm3までドープしたInP
で、代表的例では0.0508センチメートル〜500ミ
クロンの厚さn−ドープ基板113を含む。酸化
シリコンの様な波長整合層(無反射被覆)114
が基板113の前面上に付着される。InGaAsP
の−族四元合金の格子整合エピタキシヤル層
115が、好ましくは液相エピタキシヤル層によ
つて、基板113の背面上に例えば4ミクロンの
厚さまで成長される。これは、層115の基板1
13との界面に格子整合ヘテロ接合を与える。低
い仕事関数表面を形成する酸化セシウム116の
単一層がエピタキシヤル層115の内面に付着さ
れる。光電陰極111が赤外線透過性石英のよう
な放射線透過面18をもつた真空容器117内に
取付けられている。直径が徐々に減少する一連の
円筒状静電集束電極119が、容器117内で、
ガラスの容器117の光学的に透明な端壁123
の内面に付着された普通の陰極ルミネセント螢光
層122からなる螢光スクリーン121と、光電
陰極111との間に配置されている。nドープ基
板113にはオーム接点が作られる。
Specifically, the photocathode 111 shown in FIG. 6 can be applied to, for example, an infrared image intensifier tube 112. Photocathode 1
11 is InP doped to 10 17 to 10 14 atoms/cm 3
In a typical example, the n-doped substrate 113 has a thickness of 0.0508 cm to 500 microns. Wavelength matching layer (non-reflection coating) 114 such as silicon oxide
is deposited on the front side of substrate 113. InGaAsP
A lattice matched epitaxial layer 115 of a -group quaternary alloy is grown on the back side of substrate 113 to a thickness of, for example, 4 microns, preferably by a liquid phase epitaxial layer. This is the substrate 1 of layer 115.
A lattice-matched heterojunction is provided at the interface with 13. A single layer of cesium oxide 116 forming a low work function surface is deposited on the inner surface of epitaxial layer 115. A photocathode 111 is mounted within a vacuum vessel 117 with a radiation transparent surface 18, such as infrared transparent quartz. A series of cylindrical electrostatic focusing electrodes 119 of progressively decreasing diameter are located within the container 117.
Optically transparent end wall 123 of glass container 117
The photocathode 111 is disposed between a fluorescent screen 121 consisting of a conventional cathodoluminescent fluorescent layer 122 deposited on the inner surface of the photocathode 111 . Ohmic contacts are made on the n-doped substrate 113.

動作に当つては、1.06ミクロンの波長の赤外線
放射線で照射された対象物から反射された赤外線
像の如き増強すべき赤外線像が透過窓118を通
つて真空の像増強管112に入る。赤外線放射線
は無反射被覆114および基板113を通過し、
エピタキシヤル層115と基板113とのヘテロ
接合界面で吸収され、電子と正孔の対を発生す
る。この界面で発生された電子はエピタキシヤル
層115のセシエートされた面(酸素とセシウム
が電子放射面の仕事関数を下げるように処理され
た面)に拡散していき、光電陰極放出として真空
容器117内に放出される。ついで電子像は加速
され、螢光スクリーン121上に集束し観測され
るべき赤外線像が増強された光学像を生ずる。
In operation, an infrared image to be intensified, such as an infrared image reflected from an object illuminated with 1.06 micron wavelength infrared radiation, enters the vacuum image intensifier tube 112 through the transmission window 118. The infrared radiation passes through the anti-reflective coating 114 and the substrate 113;
It is absorbed at the heterojunction interface between the epitaxial layer 115 and the substrate 113, generating pairs of electrons and holes. Electrons generated at this interface diffuse to the cesiated surface of the epitaxial layer 115 (a surface treated with oxygen and cesium to lower the work function of the electron emitting surface), and are emitted from the vacuum vessel 117 as photocathode emission. released within. The electron image is then accelerated and focused onto the fluorescent screen 121 to produce an infrared enhanced optical image to be observed.

与えられた物質の禁止帯幅エネルギーよりも高
い禁止帯幅エネルギーに相当する波長の放射線は
その物質に吸収されるが、物質の禁止帯幅エネル
ギーより低い禁止帯幅エネルギーに相当する波長
のエネルギーは実質的な吸収なしにその物質を通
過する。それ故に、エピタキシヤル層115の禁
止帯幅は基板113の禁止帯幅エネルギー以下に
選ばれている。このように、基板の禁止帯幅とエ
ピタキシヤル層115の禁止帯幅との間に入る波
長に相当する放射線の帯域は基板を通過し層11
5に吸収される。
Radiation at a wavelength corresponding to a bandgap energy higher than the bandgap energy of a given material is absorbed by that material, whereas radiation at a wavelength corresponding to a bandgap energy lower than the bandgap energy of the material is absorbed by that material. Passes through the substance without substantial absorption. Therefore, the bandgap width of epitaxial layer 115 is selected to be less than or equal to the bandgap energy of substrate 113. In this way, a band of radiation corresponding to wavelengths that fall between the bandgap of the substrate and the bandgap of epitaxial layer 115 passes through the substrate and reaches layer 11.
Absorbed by 5.

層115は、好ましくは、その中の電子の拡散
長さに相当する厚さをもつている。更にエピタキ
シヤル層115は、基板との界面における欠陥を
除去するために、好ましくは、基板への完全な格
子整合を持つべきである。このような欠陥は電子
を捕獲するための捕獲中心として働き、その結果
光電陰極111の変換効率を減少する。
Layer 115 preferably has a thickness corresponding to the diffusion length of electrons therein. Additionally, epitaxial layer 115 should preferably have a perfect lattice match to the substrate to eliminate defects at the interface with the substrate. Such defects act as trapping centers for trapping electrons, thereby reducing the conversion efficiency of the photocathode 111.

InP基板113に格子整合されかつ1.17電子ボ
ルト(1.06ミクロンの波長に相当する)の禁止帯
幅エネルギーをもつGaInAspのエピタキシヤル
層115を採用した光電陰極111は、第5図に
示したように、セシエートされた面からの1.06ミ
クロン放射線で照射されかつ−90℃にまで冷却さ
れたとき、7.55%の電子量分収量をを与えた。こ
れは、この波長において知られた光電陰極からの
最も高い量子収量の値に相当する。これまでに得
られた最高の量子収量はInP上のIaAsPの三元合
金によつて達成され、正面配置で作動したとき
5.5%の量子効率が生じたにすぎない。それは
InGaAsP光電陰極が優れたものである事を示す
ものである。
As shown in FIG. 5, the photocathode 111 employs an epitaxial layer 115 of GaInAsp that is lattice-matched to an InP substrate 113 and has a bandgap energy of 1.17 eV (corresponding to a wavelength of 1.06 microns). When irradiated with 1.06 micron radiation from the sesiated surface and cooled to -90°C, it gave an electron yield of 7.55%. This corresponds to the highest quantum yield value from a photocathode known at this wavelength. The highest quantum yield obtained to date was achieved by a ternary alloy of IaAsP on InP, when operated in a frontal configuration.
A quantum efficiency of only 5.5% occurred. it is
This shows that the InGaAsP photocathode is excellent.

本発明の方法において代表的な例では、エピタ
キシヤル層115は液相エピタキシヤルによつて
InP単結晶材料の(111)B面上に成長される。
融成物は650℃でIn中に10%以下のAsを溶かすこ
とによつて製造される。次に、この溶液にGaが
加えられる。代表的な融成物では5.862の格子定
数と1.17eVの禁止帯幅をもつた格子整合エピタ
キシヤル層を得るために、0.0047グラムのGa
が、In5.20グラムとInAs0.120グラムとを一緒に
溶融することによつて作られたIn中のAsの溶液
に加えられた。次に、この溶液は650℃で、その
融成物をInPと接触させ平衡を得るために2時間
InPを融成物と接触させたままにしておくことに
よつて、InPで飽和された。InPの装入量の重量
を融成物との接触前および後に測定することによ
つて、溶解されるInPの量が決められる。溶解さ
れたInPのモル比はその融成物を飽和するのに採
用されるPの実際の重量を与える。
In a typical example of the method of the present invention, epitaxial layer 115 is formed by liquid phase epitaxy.
It is grown on the (111)B plane of InP single crystal material.
The melt is produced by dissolving up to 10% As in In at 650°C. Next, Ga is added to this solution. In a typical melt, 0.0047 g of Ga was added to obtain a lattice-matched epitaxial layer with a lattice constant of 5.862 and a band gap of 1.17 eV.
was added to a solution of As in In made by melting together 5.20 grams of In and 0.120 grams of InAs. This solution was then heated to 650°C for 2 hours to contact the melt with InP to achieve equilibrium.
The InP was saturated with InP by leaving it in contact with the melt. By measuring the weight of the InP charge before and after contact with the melt, the amount of InP dissolved is determined. The molar ratio of dissolved InP gives the actual weight of P employed to saturate the melt.

融成物がPで飽和された後、融成物は650℃で
およそ1/2時間InPの単結晶の(111)B配向面
(P露出)と接触せられる。次に、冷却サイクル
が開始され、エピタキシヤル層115の所望の厚
さに応じて625℃または600℃の温度に下げる。厚
さが4ミクロンの層の場合、冷却サイクルは625
℃で終了し、融成物はInP結晶との接触から除か
れる。
After the melt is saturated with P, the melt is contacted with the (111)B oriented plane (P exposed) of a single crystal of InP at 650° C. for approximately 1/2 hour. A cooling cycle is then initiated to reduce the temperature to 625°C or 600°C depending on the desired thickness of epitaxial layer 115. For a layer 4 microns thick, the cooling cycle is 625
℃ and the melt is removed from contact with the InP crystal.

結晶基板および融成物は約1気圧の清浄化した
水素雰囲気に接触され、エピタキシヤル層の望ま
しくない汚染を避ける。上記禁止帯幅および格子
定数に対する格子整合エピタキシヤル層115は
次の如き組成をもつ。
The crystal substrate and melt are contacted with a clean hydrogen atmosphere of about 1 atmosphere to avoid undesirable contamination of the epitaxial layers. The lattice matching epitaxial layer 115 with respect to the band gap and lattice constant described above has the following composition.

In10.44Ga0.06As0.115P0.385 エピタキシヤル層115はP原子が露出した
(111)B面上に成長されたが、エピタキシヤル層
は族元素が露出した(111)A面または(100)
面上に成長させてもよいから、これは要件ではな
い。
In 10 . 44 Ga 0 . 06 As 0 . 115 P 0 . 385 The epitaxial layer 115 was grown on the (111) B plane with exposed P atoms, but the epitaxial layer had exposed (111) group elements. A side or (100)
This is not a requirement as it may be grown on a surface.

さて第7図には、本発明により製造される格子
整合ヘテロ接合エピタキシヤル層を取り入れた二
重ヘテロ接合レーザー125が示されている。さ
らに詳細にいえば、固体ヘテロ接合レーザー12
5は、200ミクロンの厚さでTeの如きn型ドープ
剤を立方センチメートル当り1018原子までドープ
したInP基板126を含む。厚さが5ミクロンの
InPのn型エピタキシヤル層127は、基板12
6上に成長され、Sn,Ts,Seの如きn型ドープ
剤を立方センチメートル当り例えば3×1018原子
の濃度までドープする。エピタキシヤル基板12
7と格子整合すべき組成の四元合金InGaAsPの
pドープされたエピタキシヤル層がエピタキシヤ
ル層127上に1〜2ミクロンの厚さに成長さ
れ、InPのnドープされた層127と格子整合さ
れたヘテロ接合を形成する。pドープされたInP
の第4の層は、二重ヘテロ接合構体の他の側とし
て四元層128上にエピタキシヤル的に成長され
る。
Turning now to FIG. 7, there is shown a double heterojunction laser 125 incorporating a lattice matched heterojunction epitaxial layer made in accordance with the present invention. More specifically, the solid state heterojunction laser 12
5 includes an InP substrate 126 200 microns thick and doped with an n-type dopant such as Te to 10 18 atoms per cubic centimeter. 5 micron thick
An n-type epitaxial layer 127 of InP is formed on the substrate 12.
6 and doped with n-type dopants such as Sn, Ts, Se to a concentration of, for example, 3×10 18 atoms per cubic centimeter. Epitaxial substrate 12
A p-doped epitaxial layer of the quaternary alloy InGaAsP with a composition to be lattice matched to InP is grown to a thickness of 1-2 microns on the epitaxial layer 127 and lattice matched to the n-doped layer 127 of InP. form a heterojunction. p-doped InP
A fourth layer of is grown epitaxially on the quaternary layer 128 as the other side of the double heterojunction structure.

半導電性サンドイツチの両面には、電流を装置
に流すため、オーム接点132および133が付
着される。結晶を切り、両側面134および13
5が鏡面仕上げされ、一方の側面135にあるミ
ラーは動作波長において100%以下の反射率をも
ち、レーザー空胴の出力ミラーを形成する。残り
の2つの側面136および137は、コヒーレン
ト放射線がInGaAsPのp型領域に隣接したInPの
領域内に保持されるように、光学的に拡散されて
いる。ヘテロ接合レーザーについては、IEEEス
ペクトル(1972年3月)、第9巻、第3号、第26
頁〜第47頁の「レーザーの概説」と題する論文に
開示されており、特にその第38頁を参照された
い。
Ohmic contacts 132 and 133 are attached to both sides of the semiconducting sander trench for passing current through the device. Cut the crystal and cut both sides 134 and 13
5 is mirror-finished and the mirror on one side 135 has less than 100% reflectivity at the operating wavelength and forms the output mirror of the laser cavity. The remaining two sides 136 and 137 are optically diffused so that the coherent radiation is kept within the region of InP adjacent to the p-type region of InGaAsP. For heterojunction lasers, see IEEE Spectrum (March 1972), Volume 9, No. 3, 26
47, in the article entitled "Overview of Lasers," with particular reference to page 38 thereof.

第7図のレーザー125およびInGaAsPの
−族四元合金の格子整合ヘテロ接合を利用した
他の型式のレーザーの長所は、四元素故に禁止帯
幅および格子定数を独立して変えることができ、
それによつて所定の禁止帯幅のヘテロ接合に対し
て基板に対する格子定数の整合が得られ、それに
よつて動作効率を実質的に増加し、室温での動作
を可能にする。禁止帯幅エネルギーを独自に変え
られることにより、レーザー125に対しその動
作波長を赤外線範囲を含む相当大幅の範囲とする
ことができる。
The advantage of the laser 125 in FIG. 7 and other types of lasers that utilize lattice-matched heterojunctions of - group quaternary alloys of InGaAsP is that because of the four elements, the forbidden band width and lattice constant can be varied independently;
This provides a lattice constant match to the substrate for a given bandgap heterojunction, thereby substantially increasing operating efficiency and allowing operation at room temperature. The ability to independently vary the bandgap energy allows the laser 125 to have a fairly wide range of operating wavelengths, including the infrared range.

本明細書で用いた「格子整合」とは、0.5%以
内に格子整合されたことを意味するものとして定
義される。また、この明細書で用いた「基板」と
は、基板部材とその上に形成された層とを意味す
るものとして定義される。更にこの明細書で用い
た「InGaAsPの−族四元合金」とは、式
InxGa1-xAsyP1-yに従つて元素が割当てられてい
ることを意味する。
As used herein, "lattice matched" is defined to mean lattice matched to within 0.5%. Furthermore, the term "substrate" used in this specification is defined to mean a substrate member and a layer formed thereon. Furthermore, the "- group quaternary alloy of InGaAsP" used in this specification is defined by the formula
This means that the elements are assigned according to InxGa 1-x AsyP 1-y .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々の−族半導電性合金に対す
る電子ボルトで表わした禁止帯幅エネルギー対オ
ングストロームで表わした格子定数のプロツト
で、その斜めハツチを施した領域にGaInAsPの
−族四元合金を示しており、第2図は、
InGaAsP四元素の禁止帯幅エネルギー(上図)
および格子定数表面(下面)の定性図で、組成平
面は両図の基面となつており、第3図は、いくつ
かの異なるエピタキシヤル層に対するオングスト
ロームで表わした格子定数対電子ボルトで表わし
た禁止帯幅のプロツトで、InGaAsPの三元素境
界でGa零から始めGaの量を漸増したもの、第4
図は、四元素InGaAsP層に対する組成の関数と
しての電子ボルトで表わした禁止帯幅とオングス
トロームで表わした格子定数のプロツトであり、
第5図は、InGaAsP光電陰極に対する投射した
光子当りの電子の量子収量対電子ボルトで表わし
た光子エネルギーのプロツトで、室温動作および
−90℃動作に対する曲線を表わし、第6図は、本
発明により形成される格子整合エピタキシヤル層
を光電陰極に用いた赤外線像増強管の概略縦断面
図、そして第7図は、本発明により形成される格
子整合エピタキシヤル層を取り入れた固体レーザ
ーの概略斜視図である。 111…光電陰極、112…赤外線像増強管、
113…基体、115…InGaAsPの格子整合エ
ピタキシヤル層、125…固体ヘテロ接合レーザ
ー、126…基板、127…エピタキシヤル層、
129…ヘテロ接合層、132,133…金属オ
ーム接点。
Figure 1 is a plot of the bandgap energy in electron volts versus the lattice constant in angstroms for various -group semiconducting alloys. Figure 2 shows:
Forbidden band energy of InGaAsP four elements (above figure)
and qualitative diagrams of the lattice constant surface (bottom surface), with the compositional plane being the base plane of both diagrams, and Figure 3 shows the lattice constant in angstroms versus electron volts for several different epitaxial layers. The forbidden band width plot starts from zero Ga and gradually increases the amount of Ga at the three-element boundary of InGaAsP.
The figure is a plot of the forbidden band width in electron volts and the lattice constant in angstroms as a function of composition for a four-element InGaAsP layer,
FIG. 5 is a plot of the quantum yield of electrons per projected photon versus photon energy in electron volts for an InGaAsP photocathode, representing the curves for room temperature and -90°C operation; FIG. 7 is a schematic longitudinal cross-sectional view of an infrared image intensifier using the formed lattice-matched epitaxial layer as a photocathode, and FIG. 7 is a schematic perspective view of a solid-state laser incorporating the lattice-matched epitaxial layer formed according to the present invention. It is. 111...Photocathode, 112...Infrared image intensifier tube,
113... Substrate, 115... InGaAsP lattice matched epitaxial layer, 125... Solid state heterojunction laser, 126... Substrate, 127... Epitaxial layer,
129... Heterojunction layer, 132, 133... Metal ohmic contact.

Claims (1)

【特許請求の範囲】[Claims] 1 InGaAsPの格子整合エピタキシヤル層を基
板上に成長させる方法であつて、InGaAsPの融
成物を上昇温度においてInPの基板と接触させ、
その際、前記融成物の成分は格子定数が0.5%以
内に整合されているInGaAsPのエピタキシヤル
層をInP基板上に成長させる割合になつており、
かつ、前記融成物と前記基板とを毎分0.1〜2.0℃
の速さで冷却して上記値に格子整合された
InGaAsPのエピタキシヤル層をInP基板上に成長
させることから成る方法。
1. A method for growing a lattice-matched epitaxial layer of InGaAsP on a substrate, the method comprising: contacting an InGaAsP melt with an InP substrate at an elevated temperature;
At that time, the composition of the melt is such that an epitaxial layer of InGaAsP whose lattice constant is matched within 0.5% is grown on the InP substrate,
and heating the melt and the substrate at 0.1 to 2.0°C per minute.
The lattice was matched to the above value by cooling at a rate of
A method consisting of growing an epitaxial layer of InGaAsP on an InP substrate.
JP2490783A 1972-09-22 1983-02-18 Manufacture of in ga as p lattice arranged hetero- bonding device Granted JPS58208195A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29145772A 1972-09-22 1972-09-22
US291462 1988-12-28
US291457 1988-12-29

Publications (2)

Publication Number Publication Date
JPS58208195A JPS58208195A (en) 1983-12-03
JPS6117797B2 true JPS6117797B2 (en) 1986-05-09

Family

ID=23120368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2490783A Granted JPS58208195A (en) 1972-09-22 1983-02-18 Manufacture of in ga as p lattice arranged hetero- bonding device

Country Status (2)

Country Link
JP (1) JPS58208195A (en)
GB (1) GB1427209A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418970A1 (en) * 1978-03-03 1979-09-28 Thomson Csf LASER DIODE WITH DISTRIBUTED RESONATOR
DE3232115A1 (en) * 1982-08-28 1984-03-01 Standard Elektrik Lorenz Ag, 7000 Stuttgart METHOD FOR PRODUCING GAINASP LAYERS FOR PHOTODETECTORS
JPH068239B2 (en) * 1985-05-16 1994-02-02 株式会社トーキン Liquid phase epitaxial growth method
US4929867A (en) * 1988-06-03 1990-05-29 Varian Associates, Inc. Two stage light converting vacuum tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218205A (en) * 1962-07-13 1965-11-16 Monsanto Co Use of hydrogen halide and hydrogen in separate streams as carrier gases in vapor deposition of iii-v compounds
US3447976A (en) * 1966-06-17 1969-06-03 Westinghouse Electric Corp Formation of heterojunction devices by epitaxial growth from solution
GB1278349A (en) * 1969-07-23 1972-06-21 Hitachi Ltd Solid state electronic device using quaternary compound semiconductor material consisting of galium, indium, phosphorus and arsenic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218205A (en) * 1962-07-13 1965-11-16 Monsanto Co Use of hydrogen halide and hydrogen in separate streams as carrier gases in vapor deposition of iii-v compounds
US3447976A (en) * 1966-06-17 1969-06-03 Westinghouse Electric Corp Formation of heterojunction devices by epitaxial growth from solution
GB1278349A (en) * 1969-07-23 1972-06-21 Hitachi Ltd Solid state electronic device using quaternary compound semiconductor material consisting of galium, indium, phosphorus and arsenic

Also Published As

Publication number Publication date
GB1427209A (en) 1976-03-10
JPS58208195A (en) 1983-12-03

Similar Documents

Publication Publication Date Title
US3982261A (en) Epitaxial indium-gallium-arsenide phosphide layer on lattice-matched indium-phosphide substrate and devices
US3821777A (en) Avalanche photodiode
CA1189941A (en) Semiconductor laser crt target
US3958143A (en) Long-wavelength photoemission cathode
JPH02106982A (en) Inverted transparent substrate optoelectronic device and its manufacture
US4695332A (en) Method of making a semiconductor laser CRT
US4318752A (en) Heterojunction semiconductor laser fabrication utilizing laser radiation
JPH0652807B2 (en) Quaternary II-VI group materials for photon devices
Law et al. The GaAlAsSb quaternary and GaAlSb ternary alloys and their application to infrared detectors
US3644770A (en) Photoemitter having a p-type semiconductive substrate overlaid with cesium and n-type cesium oxide layers
André et al. GaAs photocathodes for low light level imaging
James et al. LONG‐WAVELENGTH THRESHOLD OF Cs2O‐COATED PHOTOEMITTERS
Hurwitz EFFICIENT VISIBLE LASERS OF CdSxSe1− x BY ELECTRON‐BEAM EXCITATION
JPS6117797B2 (en)
JPH0896705A (en) Semiconductor photoelectric cathode and photoelectric tube
US3900865A (en) Group III-V compound photoemitters having a high quantum efficiency and long wavelength response
GB1248288A (en) Apparatus for producing electromagnetic radiation
US4196402A (en) Higher power semiconductor radiating mirror laser
GB1513573A (en) Electrically pumpable feedback solid-state diode laser
Alferov et al. Preparation and Investigation of Epitaxial Layers of AlxGa1‐xAs solid Solutions and of Heterojunctions in the AlAs‐GaAs system
Susaki et al. Threshold current density in solution-grown GaAs laser diodes
US3978360A (en) III-V photocathode with nitrogen doping for increased quantum efficiency
Syms Gallium arsenide thin-film photocathodes
EP0461766A2 (en) Silicon-doped In y Ga 1-y As laser
Saletes et al. GaAlAs/GaAs solar cells grown by molecular beam epitaxy: Material properties and device parameters