JPS58208195A - Manufacture of in ga as p lattice arranged hetero- bonding device - Google Patents

Manufacture of in ga as p lattice arranged hetero- bonding device

Info

Publication number
JPS58208195A
JPS58208195A JP2490783A JP2490783A JPS58208195A JP S58208195 A JPS58208195 A JP S58208195A JP 2490783 A JP2490783 A JP 2490783A JP 2490783 A JP2490783 A JP 2490783A JP S58208195 A JPS58208195 A JP S58208195A
Authority
JP
Japan
Prior art keywords
lattice
substrate
epitaxial layer
bandgap
matched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2490783A
Other languages
Japanese (ja)
Other versions
JPS6117797B2 (en
Inventor
ロナルド・レスリ−・ム−ン
ジヨ−ジ・エ−・アンテイパス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of JPS58208195A publication Critical patent/JPS58208195A/en
Publication of JPS6117797B2 publication Critical patent/JPS6117797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Light Receiving Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はI nGaAsPの格子整合へテロ接合を基板
上に成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing lattice matched heterojunctions of InGaAsP on a substrate.

これまで、AtGaAsPの■−v族四元合金は基板と
エピタキシャル層との両方のA s/Pの比を一定に保
ちながら、Ga0代りにAtを置換することKよってG
aAsPの三元合金の上に格子整合エピタキシャル層と
して成゛長されてきた。その結果、エピタキシャル層の
禁止帯の幅エネルギーだけが基板の禁止帯幅エネルギー
に対して変った。そのような格子整合エピタキシャル層
は1970年出版0応用物理(Applied Phy
sica Letters )第17巻、第455頁の
論文中に、パーン/%ム(Burnham)、アール・
ディー(R−D)、エヌ・ホロニアツク・ジュニア(N
 ・Ho1onyak、 Jr )およびディー・アー
ル・シフレス(DIIR@Sc+fres)によって開
示されている。基板上のこのような格子整合エピタキシ
ャル層&り、0.8〜0.5ミクロンすなわち5000
〜7800オングストロームの範囲内に入る波長の可視
帯においてのみ室温・ぞルス化レーザーとして特に有用
な低損失へテロ接合を作ることができる2゜ このような従来の可視範囲内の波長に対応する禁止帯幅
エネルギーをもつ格子整合エピタキシャル層は有用では
あるが、さらに改良してその動作波長範囲を赤外線、特
に約1.06ミクロンの波長の如き赤外線内のある波長
に及ばしめるようにすることか望まれる。この波長は、
ノeルス化動作に対して10sワツトのオーダーで平均
電力出力を発生することのできる高出力Nd:YAGレ
ーザーの波長に対応する。大気窓(Atmo*pber
ie window)もこの波長で生ずる。し、かじ、
従来の■−■族四元合金では、その禁止帯幅エネルギー
の範囲が可視波長に相当し赤外線までは及はないという
事実の故に、この波長範囲では動作することができなか
ったという問題がある。
Up to now, the ■-v group quaternary alloy of AtGaAsP has been developed by substituting At for Ga0 while keeping the A s/P ratio of both the substrate and the epitaxial layer constant.
It has been grown as a lattice matched epitaxial layer on a ternary alloy of aAsP. As a result, only the bandgap width energy of the epitaxial layer changed with respect to the bandgap width energy of the substrate. Such a lattice-matched epitaxial layer was described in Applied Phys.
sica Letters) Volume 17, page 455, Burnham, R.
Dee (R-D), N. Horoniatsk Jr. (N
-Holonyak, Jr.) and DIIR@Sc+fres. Such a lattice matched epitaxial layer on the substrate < 0.8-0.5 micron i.e. 5000
Only in the visible band of wavelengths that fall within the range of ~7,800 angstroms can a low-loss heterojunction be made, which is particularly useful as a room temperature laser. Although lattice-matched epitaxial layers with band-width energies are useful, it would be desirable to further improve their operating wavelength range to extend into the infrared, particularly certain wavelengths within the infrared, such as wavelengths of about 1.06 microns. It will be done. This wavelength is
This corresponds to the wavelength of a high power Nd:YAG laser that can generate an average power output on the order of 10 s Watts for normalized operation. Atmo*pber
ie window) also occurs at this wavelength. Shi, rudder,
Conventional ■-■ group quaternary alloys have the problem of not being able to operate in this wavelength range due to the fact that their bandgap energy range corresponds to visible wavelengths and does not extend into the infrared. .

従って本発明の目的は、上記のような問題を解決するこ
とのできるI nGaAsPの格子整合へテロ接合エピ
タキシャル層を形成させるための方法を提供することで
ある。
It is therefore an object of the present invention to provide a method for forming a lattice-matched heterojunction epitaxial layer of InGaAsP that can solve the above-mentioned problems.

本発明の方法により形成されるInGaAsPのエピタ
キシャル層の成分はそれぞれ5.65〜6.1オングス
トロームまたは545〜6.05オングストロームの範
囲内に入る格子定数をもった基板または隣接層に対する
格子整合を得るような割合とでれており、それによって
、その■−V族合金合金る限度内に)・いてエピタキシ
ャル層の格子定数および禁止帯幅エネルギー(動作波長
)にわたって独立した制御ができる1、 不発明の方法により形成されるInGaAsPのm−■
金回元合金の成分は、もう1つの%徴とし2て、InP
の基板に対する格子整合を得、かつ1.7〜1.0ミク
ロンの範囲内に入る波長に対応する0、7〜1.3電子
ボルトの範囲内に入る禁止帯幅エネルギーを得るような
割合とされている。
The components of the InGaAsP epitaxial layer formed by the method of the invention obtain lattice matching to the substrate or adjacent layer with a lattice constant falling within the range of 5.65 to 6.1 angstroms or 545 to 6.05 angstroms, respectively. 1. Non-inventive m-■ of InGaAsP formed by the method of
The composition of the gold regeneration alloy is InP as another percentage sign.
to obtain a lattice match to the substrate of has been done.

本発明により基板上に成長させられた格子整合I nG
aAsPのエピタキシャル層は透明なモードの光電陰極
に採用され得、そのエピタキシャル層の禁止帯幅は基板
の禁止帯幅iり小さく、それによって特に赤外線領域に
おいて改良されている。
Lattice-matched InG grown on a substrate according to the present invention
An epitaxial layer of aAsP can be employed in a transparent mode photocathode, the bandgap of the epitaxial layer being smaller than the bandgap of the substrate, thereby improving especially in the infrared region.

本発明により適当な半導電性基板、例えばInP上に成
長させらnたInGaAsPの格子整合エピタキシャル
層は固体レーザーに応用することができ。
A lattice-matched epitaxial layer of InGaAsP grown on a suitable semiconducting substrate, such as InP, according to the invention can be applied in solid-state lasers.

特に赤外線領域においてコヒーレントな出力放射線を発
生する。
It produces coherent output radiation, especially in the infrared region.

本発明の詳細な説明するに先立ち、本発明の方法によ多
形成され得る格子整合へテロ接合エピタキシャル層につ
いて、まず図面を参照して説明する。
Before explaining the present invention in detail, a lattice-matched heterojunction epitaxial layer that can be formed by the method of the present invention will first be explained with reference to the drawings.

第1図を参照すると、Ga1nAsPのm−v金回元合
金に対する禁止帯幅エネルギ一対格子定数の線図が示さ
れ、第1図のプロットの斜めハツチ部分はGa1nP 
、  InAsP 、 Ga1nAsおよびGaAsP
の三元合金によって境されている。第1図のプロットか
られかるように、この■−v族四元合金は0.35〜2
.23を子ぎルトの禁止帯幅エネルギーを与え、S予定
数は5.45〜605方ングストロームの範囲内に入る
。し力、シ、朴子整合へテロ接合の成長は、整合すべき
与λられた格子定数基板に対してA s /Pの比を一
定に保持しつつGaの代りにAtが用いられるGaAt
AsPの従来技術の四元素と対比しで、基板の格子定数
の関数として固体中のGa/InとAs/Pとの両比を
同時に変えることのみによって達成することができる。
Referring to FIG. 1, a diagram of the band gap energy versus lattice constant for the m-v gold dilution alloy of Ga1nAsP is shown, and the diagonal hatched portion of the plot in FIG.
, InAsP, Ga1nAs and GaAsP
is bounded by a ternary alloy of As can be seen from the plot in Figure 1, this ■-v group quaternary alloy is 0.35 to 2
.. 23 is given as the child bandgap energy, and the expected number of S falls within the range of 5.45 to 605 angstroms. The growth of matched heterojunctions is based on GaAt, where At is substituted for Ga while keeping the ratio of A s /P constant for a given lattice constant substrate to be matched.
In contrast to the prior art four elements of AsP, this can only be achieved by simultaneously varying both the Ga/In and As/P ratios in the solid as a function of the lattice constant of the substrate.

。 第2図を参照すると、InGaAsP m −V族合金
系の禁止帯幅EPのグラフ表示が示され、4つの三元素
化合物により境界されている。間接的な禁止帯幅領域は
平面によって概略的に表わされ、直接の領域は曲面10
2によって表わされ、格子定数面103は平面によって
表わされている。
. Referring to FIG. 2, a graphical representation of the bandgap EP for the InGaAsP m -V group alloy system is shown, bounded by four ternary compounds. The indirect forbidden width region is represented schematically by a plane, and the direct region is represented by a curved surface 10
2, and the lattice constant plane 103 is represented by a plane.

エピタキシャル層は、好ましくは液相エピタキシによっ
て、5.45〜6.05オングストロームの範囲内の格
子定数をもつ基板上に成長される。エピタキシャル層を
成長させるのに使用される本発明の方法に、GaO量を
増し、次にその液をPで飽和させた一連のIn−Ga−
As  溶液を準備することである。つきに5平衡した
ところで、融成物を(111) B方向に配向さtした
InP物質の如き単結晶基板と接触させ、この点で成長
させるへきエピタキシャル層の厚さに応じて20〜50
℃の間で制御された冷却サイクルか始められる。冷却速
度はエピタキシャル層の表面構造が冷却速度には見掛は
上影会しないようにして毎分2.0℃〜01℃の間で変
えてもよい、。
The epitaxial layer is preferably grown by liquid phase epitaxy on a substrate with a lattice constant in the range of 5.45 to 6.05 angstroms. The method of the present invention used to grow epitaxial layers includes a series of In-Ga-
The first step is to prepare an As solution. Once equilibrated, the melt is brought into contact with a single crystal substrate, such as an InP material oriented in the (111) B direction, and at this point the melt is cleaved at 20 to 50 nm depending on the thickness of the epitaxial layer to be grown.
A controlled cooling cycle can be initiated between The cooling rate may be varied between 2.0° C. and 0.1° C. per minute so that the surface structure of the epitaxial layer does not affect the apparent cooling rate.

エピタキシャル層の格子定数は、たとえば、Cu−に&
放射線のX線回折によって測定される。比較的薄いエピ
タキシャル層でX線回折を片いると、そのエピタキシャ
ル層と基板との両方の格子定数は容易に確められる。、
エピタキシャル層の禁止帯幅エイ・ルギーは、望むなら
ば室温とそれより低い温度で、フォト・ルミネセンス技
術によって測定される。この禁止帯幅を測定するだめの
代表的装置1−1.0.5ワット番アルゴンイオンレー
ザ−ビームの如き単色光源でその材料を照らし、その反
射光をドライアイス冷却のS−1ホトマルチグライア−
を用いたノe−キン・エル?  (Perkin El
mer)301分光光度計の如き分光光度計で観沖、す
る、さて第3図を参照すると、連当な基板上にエピタキ
シャル層に成長した1nGaAsPの多数の■−v族四
元合金に対するオンジ2トロームで示した格子定数対電
子ぎルトで示した禁止帯幅エネルギーのプロットが示さ
れている。さらに詳細にいえば、各一連の測定に対して
、年初の層が零Gaで成長され、破線104で示すl 
nAsP境界を確立したーその後Gaの量を増すと、曲
線群105により示されるように、もつと大きい禁止帯
幅およびもつと小さい格子定数のエピタキシャル層が成
長される。
The lattice constant of the epitaxial layer is, for example, Cu-&
Measured by X-ray diffraction of radiation. By performing X-ray diffraction on a relatively thin epitaxial layer, the lattice constants of both the epitaxial layer and the substrate can be easily determined. ,
The bandgap energy of the epitaxial layer is measured by photoluminescence techniques at room temperature and lower temperatures if desired. Typical Apparatus for Measuring this Bandgap 1-1. Illuminate the material with a monochromatic light source, such as a 0.5 Watt argon ion laser beam, and transfer the reflected light to a dry ice-cooled S-1 photomultiglazer. −
No e-kin el using? (Perkin El
mer) 301 spectrophotometer.Now, referring to Figure 3, we can see that the ondi2 A plot of the lattice constant in Trohm versus bandgap energy in electron Girth is shown. More specifically, for each series of measurements, the first layer of the year was grown with zero Ga and l
Having established the nAsP boundary - then increasing the amount of Ga, an epitaxial layer with a larger bandgap and a smaller lattice constant is grown, as shown by curve family 105.

このプロットから、禁止帯幅エネルギーが1.12〜1
.41電子がルトの間で変化する多数の四元合金が、曲
i 10−5を通りかつ二元合金107と交差する水平
@106の交点によって表わされるように、InP基板
に格子整合成長されることかわかる。第3図に表t・さ
れた合金の他に■−■族四元合金の範囲は、5.4〜6
05の格子定数および0.35〜2.23 eVの禁止
帯幅エネルギーの全範囲にわたって広げることができる
From this plot, we can see that the forbidden band energy is 1.12~1
.. A number of quaternary alloys in which the 41 electrons vary between lattice-matched growth on an InP substrate as represented by the intersection of the horizontal @ 106 passing through the curve i 10-5 and intersecting the binary alloy 107. I understand that. In addition to the alloys listed in Figure 3, the range of ■-■ group quaternary alloys is 5.4 to 6.
can be extended over the entire range of lattice constants of 0.05 and bandgap energies of 0.35 to 2.23 eV.

第4図を参照すると、■原則格子で表わしたGeの増加
モル分数対V族副格子で表わしたAsの増加モル分数の
プロットが示されている。第4図のプロットから、プロ
ットされた範囲内でのある与えられた禁止帯幅と格子定
数に対する組成は、組成平面上に重ね置いた格子定数と
禁止帯幅表面を示す第4図の輪郭図から決定することが
できる。これらの輪郭は、第2図での表面を水平に切り
その切断縁を組成平面上に投影することによって作らね
た。横軸はAll含有量の増加をV金側格子で表わし、
縦軸けGaの増加を■原則格子で表わす。組成は、禁止
帯幅と格子定数とを選択しその点を組成平面内に探すこ
とによって決定される一第4図のプロットは、四元合金
の組成平面の比較的小きい部分に限られているが、第4
図のプロットの禁止帯幅と格子定数のそれぞれの値は四
元素の四角全体をカバーするように容易に広けられる6
、さらに詳細にいえば、四角の辺に沿って等しい格子定
数イーを直線で結ぶ、即ち第4図に表オリされたように
、GaP %GaAs %InAsおよびlnPによっ
て四隅を決定する。
Referring to FIG. 4, there is shown a plot of the increasing mole fraction of Ge expressed in the principle lattice versus the increasing mole fraction of As expressed in the Group V sublattice. From the plot in Figure 4, the composition for a given bandgap and lattice constant within the plotted range is determined by the contour diagram in Figure 4 showing the lattice constant and bandgap surface superimposed on the composition plane. It can be determined from These contours were created by cutting the surface in FIG. 2 horizontally and projecting the cut edges onto the composition plane. The horizontal axis represents the increase in All content in the V gold side lattice,
■The increase in vertical axis Ga is represented by a lattice in principle. The composition is determined by choosing the band gap and lattice constant and locating that point in the composition plane.The plot in Figure 4 is limited to a relatively small portion of the composition plane of the quaternary alloy. There is, but the fourth
The respective values of the forbidden band width and lattice constant in the plot of the figure can be easily expanded to cover the entire square of the four elements6.
More specifically, the four corners are determined by connecting equal lattice constants E along the sides of the square with straight lines, ie, as shown in FIG. 4, by GaP%GaAs%InAs and InP.

組成に伴なう禁止帯幅の変化(r′J、一定のGa組成
の種々の合金に対して禁止帯幅対As組成がプロットさ
れているグラフによって得られる。各一定のGac!!
分に対して、禁止帯幅の末端点の値はそれぞれGa y
 I n 、−y PおよびGay I n 1−yA
s三元素データから決定される、一定の08における直
線性からの最大のずれは、1nAsyP14およびGa
 A S z P 、−1三元素に対して見られるずれ
の間の直線内挿法によって決定される。幾つかの異なる
Ga#E度に対して禁止帯幅対As組成が一旦決定され
ると、等禁止帯幅線が組成四角上に引かれる。
The variation of bandgap width with composition (r'J) is obtained by a graph in which bandgap width versus As composition is plotted for various alloys of constant Ga composition. For each constant Gac!!
, the value of the end point of the forbidden band is Ga y
I n , -y P and Gay I n 1-yA
The maximum deviation from linearity at a constant 08 determined from the s ternary data is 1nAsyP14 and Ga
A S z P , determined by linear interpolation between the deviations found for the −1 three elements. Once the bandgap versus As composition is determined for several different Ga#E degrees, equal bandgap lines are drawn on the composition squares.

≧て家1図及び第4図にn、およそ1.17%E子ボル
ト(1,06ミクロンの波長)および5.862の格子
定数の禁止帯幅エネルギーに相当するドツト108によ
って表わされるGa1nAsPの特定な組成が示されて
ふ一す、これiq、InP基板に格子整合している。こ
の特定の組成は、1.17電子デルトの禁止帯幅エネル
ギーかNd:YAGのレーザー線おまひ大気窓に相当す
る力、ら、特に有用である。基板即ちlnPの禁止帯幅
エネルギー以下の禁止帯幅エネルギー蜂もったエピタキ
シャル層のこの特定の組合せは、第6図によって表tさ
rするように、透明な基板モードで動作される光電陰極
111において特に有用であるっ 具体的に、第6図の光電陰極111は例えば赤外線像増
強管112に応用さj得る。光寛陰罹111は1017
 〜1018原子/dまでト; −f 1.たlnPで
、付表的例では0.0508セ/チメートル〜500ミ
クロンの厚さのn−ドープ基板113を含む。酸化シリ
コンの様な波長整合層(無反射被fi)114が基板1
13の前面上に付着される。
In Figures 1 and 4, n, the Ga1nAsP is represented by dot 108, which corresponds to a bandgap energy of approximately 1.17% E volts (wavelength of 1,06 microns) and a lattice constant of 5.862. Given the specific composition, it is lattice matched to the InP substrate. This particular composition is particularly useful as it has a bandgap energy of 1.17 electron delts or a power corresponding to the laser line paralytic atmospheric window of Nd:YAG. This particular combination of epitaxial layers with a bandgap energy below the bandgap energy of the substrate, i.e., lnP, is advantageous in the photocathode 111 operated in the transparent substrate mode, as shown in FIG. In particular, the photocathode 111 of FIG. 6 may be particularly useful, for example, in an infrared image intensifier tube 112. Kokanin disease 111 is 1017
~1018 atoms/d; -f 1. The illustrative example includes an n-doped substrate 113 with a thickness of 0.0508 cm/cm to 500 microns. A wavelength matching layer (non-reflective coating) 114 such as silicon oxide is formed on the substrate 1.
13 is attached on the front side.

InGaAsPのm−v金回元合金の格子整合エピタキ
シャル層115か、好ましくは液相エピタキシによって
、基板113の背面上に例えは4ミクロンの厚−a−t
で成長される。これは、層115の基板113との界面
に格子整合へテロ接合を与える。
A lattice-matched epitaxial layer 115 of a m-v gold diffraction alloy of InGaAsP, preferably by liquid phase epitaxy, is deposited on the back side of the substrate 113 with a thickness of, for example, 4 microns.
is grown in This provides a lattice matched heterojunction at the interface of layer 115 with substrate 113.

低い仕事関数表面を形成する酸化セシウム116の単一
層かエピタキシャル層115の内面に付着される。光電
陰極111が赤外線透過性石英のような放射線透過面1
18をもった真空容器117内に取付けられている。曲
径か徐々に減少する一連7の円筒状静電集束電極119
か、容器117内で、ガラスの容器117の光学的に透
明な端壁123の内面に付着された普通の陰極ルミネセ
ント螢光層122からなる螢光スクリーン121と、光
電陰極111との間に配置されている。nドーグ基板1
13にはオーム接点が作られる。
A single layer of cesium oxide 116 is deposited on the inner surface of epitaxial layer 115 to form a low work function surface. The photocathode 111 has a radiation transparent surface 1 such as infrared transparent quartz.
It is installed in a vacuum vessel 117 with 18. A series of seven cylindrical electrostatic focusing electrodes 119 whose curvature gradually decreases.
or within container 117 between photocathode 111 and a fluorescent screen 121 consisting of a conventional cathodoluminescent fluorescent layer 122 deposited on the inner surface of optically transparent end wall 123 of glass container 117. It is located. n-dog board 1
An ohmic contact is made at 13.

動作に当っては、1.06ミクロンの波長の赤外線放射
線で照射さねた対象物から反射された赤外線像の如き増
強すべき赤外線像が透過窓118を通って真空の像増強
管112に入る。赤外線放射線は無反射核種114およ
び基板113を通過し、エピタキシャル層115と基板
113とのへテロ接合界面で吸収され、電子と正孔の対
を発生する。
In operation, an infrared image to be intensified, such as an infrared image reflected from an object illuminated with 1.06 micron wavelength infrared radiation, enters the vacuum image intensifier tube 112 through the transmission window 118. . The infrared radiation passes through non-reflective nuclide 114 and substrate 113 and is absorbed at the heterojunction interface of epitaxial layer 115 and substrate 113, generating electron-hole pairs.

この界面で発生きれた電子はエピタキシャル層115の
セシエートされた面(酸素とセシウムが電子放射面の仕
事関数を下けるようにダ1理さf+た面)に拡散してい
き、光電陰極放出として真空容器117内に放出される
。ついで電子像は加速され、螢光スクリーン121上に
勢束し観測きれるべき赤外線像が増強された光字倖を生
する。
The electrons generated at this interface diffuse into the cesiated surface of the epitaxial layer 115 (the surface where oxygen and cesium are fused so that the work function of the electron emitting surface is lowered), and are emitted as photocathode emission. It is discharged into the vacuum container 117. The electron image is then accelerated and focused on the fluorescent screen 121 to produce a light beam in which the infrared image to be observed is enhanced.

与λられた物質の禁止帯幅エネルギーよりも高い禁止帯
幅エネルギーに相当する波長の放射線は七の物質に吸収
されるが、物質C2禁止帝幅エネルギーより低い禁止帯
幅エネルギーに相当する波長のエネルギーは実質的な吸
収なしにその物質を通過する。それ故に、エピタキシャ
ル層115の禁止帯幅は基板113の禁止帯幅エイ・ル
ギー以下に選ばれている。このように、基板の禁止帯幅
とエピタキシャル層115の禁止帯幅との間に入る波長
に相当する放射線の帯域は基板を通運し層115に吸収
される1、 層115は、好ましくは、その中の電−子の拡散長さに
相当する岸さをもっている。更にエピタキシャル層11
5は、基板との界面における欠陥を除去するために、好
捷しくは、基板への完全々格子整合を持つべきである。
Radiation with a wavelength corresponding to a bandgap energy higher than the bandgap energy of a given substance is absorbed by the substance C2, but radiation with a wavelength corresponding to a bandgap energy lower than the bandgap energy of substance C2 is absorbed by the substance C2. Energy passes through the material without substantial absorption. Therefore, the bandgap width of the epitaxial layer 115 is selected to be less than or equal to the bandgap width of the substrate 113. Thus, a band of radiation corresponding to wavelengths that fall between the bandgap of the substrate and the bandgap of the epitaxial layer 115 is transmitted through the substrate and absorbed by the layer 115. It has a stiffness corresponding to the diffusion length of the electrons inside. Furthermore, epitaxial layer 11
5 should preferably have a perfect lattice match to the substrate to eliminate defects at the interface with the substrate.

このような欠陥は電子を捕獲するための捕獲中心として
l1FIき、その結果光電陰W!111の変換効率を減
少する。
Such a defect acts as a capture center for capturing electrons, resulting in a photocathode W! 111 conversion efficiency.

InP基板113に格子整合されかつ1.17電子ぎル
ト(1,06ミクロンの波長に相当する)の禁止帯幅エ
ネルギーをもつGa1nAsPのエピタキシャル層11
5を採用した光電陰極111は、第5図に示したように
、セシエートされた面からの1.06ミクロン放射線で
照射されかつ一90℃にまで冷却されたとき、7.55
チの電子量子収量をを与えた。これは、この鉄長におい
て知られだ光電陰極からの最も高い量子収量の値に相当
する。これまでに得られた最高の量子収量はInP上の
InAsPの三元合金によって達成され、正面配置で作
動した、と@5.5%の量子効率を生じたにすきない。
An epitaxial layer 11 of Ga1nAsP is lattice matched to the InP substrate 113 and has a bandgap energy of 1.17 electrons (corresponding to a wavelength of 1.06 microns).
A photocathode 111 employing a temperature of 7.55 when irradiated with 1.06 micron radiation from the sesiated surface and cooled to -90°C, as shown in FIG.
gave the electron quantum yield of Q. This corresponds to the highest quantum yield value from a photocathode known at this iron length. The highest quantum yield obtained so far was achieved by a ternary alloy of InAsP on InP, which when operated in a face-on configuration produced a quantum efficiency of @5.5%.

これは?nGaAgP充電陰極が優れたものである事を
示すものである。
this is? This shows that the nGaAgP charged cathode is excellent.

本発明の方法において代表的な例で(1、エピタキシャ
ル層115は液相エピタキシによってInP単結晶材料
の(111) 8面上に成長さねる1、融成物は650
℃で1n中に1011以下のAsを溶かすことによって
製造されるっ次に、この溶液にGaが加えられる。代表
的な融成物でhs、s62の格子定数と1、17 eV
の禁止帯幅をもった格子整合エピタキシャル層を得る六
d)(lイニ、0.0047グラムのGaが、In5.
20グラムとInAs 0.120グラムとを一緒に溶
融することによって作らね・たIn中のAsの溶液に訓
えられた。次に、この溶液は650℃で、その融成物を
InPと接触させ平衡を得るために2時間InPを融成
物と接触させたままにしておくことによって、InPで
飽和された。InPの装入量の重量を融成物との接触前
および後に測定することによって、溶解される1nPの
量が決められる。溶解されたInPOモル比はその融成
物を餠和するのに採用されるPの実際の重量を与える。
In a typical example of the method of the present invention (1, epitaxial layer 115 is grown on the (111) 8 plane of InP single crystal material by liquid phase epitaxy, 1, the melt is 650
Ga is then added to this solution, which is prepared by dissolving up to 1011 As in 1N at °C. A representative melt with a lattice constant of hs, s62 and 1,17 eV
Obtaining a lattice-matched epitaxial layer with a bandgap of In5.
A solution of As in InAs was prepared by melting together 20 grams of InAs and 0.120 grams of InAs. This solution was then saturated with InP at 650° C. by contacting the melt with InP and leaving the InP in contact with the melt for 2 hours to obtain equilibrium. By measuring the weight of the InP charge before and after contact with the melt, the amount of InP dissolved is determined. The dissolved InPO molar ratio gives the actual weight of P employed to formulate the melt.

融成物がPで飽和された彼、融成物は650℃でネよそ
各時間1nPの単結晶の(111) B配向面(P露出
)と接触ぜらt″する。次に、冷却サイクルが開始すれ
、エピタキシャル層115の所望の厚さに応じて625
℃または600℃の温度に下ける8厚さか4ミクロンの
層の場合、冷却サイクルは625℃で糾了し、融成物は
InP結晶との接触から除ズノーれる。
Once the melt is saturated with P, the melt is brought into contact with the (111) B-oriented plane (P exposed) of a 1 nP single crystal for every hour at 650 °C. Then, a cooling cycle is performed. 625 depending on the desired thickness of the epitaxial layer 115.
For a layer of 8 or 4 microns thick down to a temperature of 600°C or 600°C, the cooling cycle is completed at 625°C and the melt is removed from contact with the InP crystal.

結晶基板および融成物は約1気圧の清浄化した水素雰囲
気に接触さね、エピタキシャル層の望ましくない汚染を
避ける。上記禁止帯幅および格子定数に対する格子整合
エピタキシャル層1151は次の如き組成をもつ。
The crystal substrate and melt are not exposed to a clean hydrogen atmosphere of approximately 1 atmosphere, avoiding undesirable contamination of the epitaxial layers. The lattice matching epitaxial layer 1151 with respect to the bandgap width and lattice constant described above has the following composition.

In      Ga               
PO1440,060,1150,385工ピタキシヤ
ル層115はP原子が露出した(111’)B面上に成
長されたが、エピタキシャル層は■族元素が露出し7た
(11.1)A面またFi(100)固止に成長させて
もよいから、これは要件でにない。
InGa
The epitaxial layer 115 of PO1440,060,1150,385 was grown on the (111') B-plane with exposed P atoms, but the epitaxial layer 115 was grown on the (11.1) A-plane with exposed P atoms or on the (11.1) A-plane with exposed P atoms. (100) This is not a requirement since it may be grown to a fixed state.

さて第7図には、本発明により製造はれる格子整合へテ
ロ接合エピタキシャル層を取り入れた二重へテロ接合レ
ーザー125が示されている。さらに詳細にいえは、固
体へテロ接合レーザー125は、200ミクロンの厚さ
でTeの如きn型ドーグ剤を立方センチメートル当り1
018原子虜でドーグしたInP基板126を含む。厚
寧が5ミクロンのInPOn型エピタキシャル層127
は、基板126上に成長され、Sn、 Ts、 Seの
如きn型ドーグ剤を立方センナメートル寧り例えば3X
1018原子の濃度までドープする。エピタキシャル基
板127と格子整合すべき組成の四元合金InGaAs
Pのpドープされ大エピタキシャル層がエビタキャル鳩
127上に1〜2ミクロンの厚さに成長され、 1nP
のnドーグされた層127と格子整合されたヘテロ接合
を形成する。pドープされた1nPの第4の層(1、二
重へテロ接合構体の他の側として四元層128上にエピ
タキシャル的に成長される。
Turning now to FIG. 7, there is shown a double heterojunction laser 125 incorporating a lattice matched heterojunction epitaxial layer fabricated in accordance with the present invention. More specifically, the solid state heterojunction laser 125 is capable of depositing an n-type agent such as Te in a 200 micron thickness at a rate of 1 per cubic centimeter.
It includes an InP substrate 126 doped with 018 atoms. InPOn type epitaxial layer 127 with a thickness of 5 microns
is grown on the substrate 126, and an n-type dog agent such as Sn, Ts, Se is grown on the substrate 126, e.g.
Dope to a concentration of 1018 atoms. Quaternary alloy InGaAs whose composition should be lattice matched to the epitaxial substrate 127
A large p-doped epitaxial layer of P is grown on the Evitakal pigeon 127 to a thickness of 1-2 microns, with 1nP
A lattice-matched heterojunction is formed with the n-doped layer 127. A fourth layer of p-doped 1nP (1) is grown epitaxially on the quaternary layer 128 as the other side of the double heterojunction structure.

半導電性サンドイツ、チの両面には、電流を装置に流す
た゛め、オーム接A13’2’および133が付着され
る。結晶を切り、両側面134および135が鋳面仕上
けされ、一方の側面135にあるミラーは動作波長にお
いて100チ以下の反射率をもち、レーザー空胴のW1
カミラーを形成する 残りの2つの側面136および1
37は、コヒーレント放射&が1 nGaAsPのp型
領域に隣接し7たInPの仙域内に保持されるように、
光学的に拡散されている。ヘテロ接合レーザーについて
は、IEEEス及クトムクトル72年3月)、第9巻、
第3号、第26頁〜第47頁の「レーザーの概説」と題
する論夕に開示されており、特にその第38負を番照畑
tL7Iil:V、、1 第7図のレーザー125およびl nGaAsPのm−
v金回元合金の格子整合へテロ接合を第11用した他の
型式のレーザーの長P9Tti、四元素故に禁止帯幅お
よび格子定数を独立して変えることができ、それによっ
て所定の禁止帯幅のへテロ接合に対して基板に対する枠
子定数の整合か伸られ、そネVζよって奄・作動率を実
質的に増加し、室温での動作を可能にする。禁止帯幅エ
ネルギーを独自に変えられること(でより、レーザー1
25に対しその動作波長を赤外線範囲を含む相当大幅の
範囲とすることかできる。。
Ohmic contacts A13'2' and 133 are attached to both sides of the semi-conducting wire to conduct current through the device. The crystal is cut and both sides 134 and 135 are cast-finished, and the mirror on one side 135 has a reflectance of less than 100 degrees at the operating wavelength, and the W1 of the laser cavity is
The remaining two sides 136 and 1 form the camilla
37 such that the coherent radiation & is kept within the sacrum region of 7 InP adjacent to the p-type region of 1 nGaAsP.
optically diffused. Regarding heterojunction lasers, see IEEE S&C (March 1972), Volume 9,
No. 3, pages 26 to 47, in an essay entitled "Overview of Lasers", and in particular, the 38th negative is Banshobata tL7Iil:V,, 1 Laser 125 and l in Figure 7. nGaAsP m-
Other types of lasers using lattice-matched heterojunctions of v-gold alloys with the length P9Tti, because of the four elements, can change the forbidden band width and lattice constant independently, thereby achieving a given bandgap width. The matching of the frame constant to the substrate for the heterojunction is extended, thereby substantially increasing the operating efficiency and allowing operation at room temperature. Being able to independently change the forbidden band energy (by laser 1
25, its operating wavelength can be extended over a fairly wide range, including the infrared range. .

不明細喪で用いた「格子整合」とに、0.5チ以内に格
子整合されたことを意味するものとして定義される。ま
た、この明細書で用いた「基板」とは、基板部材とその
上に形成された層とを意味するものとして定N F ′
I”lる。更にこの明細書で用い九r ]nGaAsP
のm−v金回元合金」とに、式I nzGa 1−yC
Asy P 1−y  に従って元素が割当てられてい
ることを意味する。。
It is defined as "lattice matching" used in Unidentified Momo to mean lattice matching within 0.5 inches. In addition, the term "substrate" used in this specification means a substrate member and a layer formed thereon, and the term "substrate" is defined as a constant N F '
Furthermore, as used in this specification, ]nGaAsP
m-v gold regeneration alloy of formula I nzGa 1-yC
It means that the elements are assigned according to Asy P 1-y. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々のm−v族生導電性合金に対する電子ボ
ルトで表わした禁止帯幅エネルギ一対オン。ゲストロー
ムで表わした格子定数のプロットで、その斜於ハツチを
流した領域にGa1nAsPの■−v族四元合金を示し
ており、 第2図は、InGaAsP四元素の禁止帯幅エネルギー
(上図)ネよび格子定数表面(下図)の定性図で、組成
平面は両図の基面となってkす、第3図(寸、いくつか
の異なるエピタキシャル層に対するオングストロームで
表わした格子定数対電子ボルトで表わした禁止帯幅のプ
ロットで、I nAaPの三元素境界でGa零から始め
Gaの量を漸増したもの、 第4図は、四元素1nGaAsP層に対する組成の関数
としての電子ボルトで表わした禁止帯幅とオングストロ
ームで表わし7た格子定数のプロットであり、 第5図け、l nGaAsP光電陰極に対する投射した
光子轟りの電子の量子収量対電子ボルトで表わした光子
エネルギーのプロットで、室泥動作および一90℃動作
に対する曲線を表わし、 第6図番1、本発明忙より形成される格子整合エピタキ
シャル層を光電陰極に用いた赤外線像増強管の概略縦断
面図、そして 第7図は、本発明によシ形成される格子整合エピタキシ
ャル層を取り入ねた固体レーナーの概略斜視図である。 111・・・光電陰極、112・・・赤外線像増強管。 113・・・基体、115・・・] nGaAsPの格
子整合エピタキシャル層、125・・・固体へテロ接合
レーザー、126・・・基板、127・・・エピタキシ
ャル層、129・・・ヘテロ接合層、132,133・
・・金属オーム接点。 特許出願人   ヴアリアン・アソシェーツ復代理人 
弁理士竹内澄夫 同   同 富田修自 862 格技数i 本2図 LP     ”’−1nAS 5 革、5図 光与工亨A/〜゛−(電李ホ゛ルト) 手続補正書鴎側 昭 h+5B++−7月  ♀   口特許庁長官  
若 杉 和 夫殿 1、事件の表示 昭和58年持鼾−ロ490フ号3、補
正をする者 ・If i’lとの関係 特許出願人 CJ 所(届所) 氏 名(名称)  ヴアリアンQアソシエーツ4、後代
  理  人 (111Ii  東十都、伐lX、西新僑11’1−1
6番21弓入釦銀lj虎の門ビルテ゛イ、グ 電話(503) 5461〜3 氏呂π理l:(6989) t’r内澄ノ、0第1
FIG. 1 shows a pair of bandgap energies in electron volts for various m-v group bioconducting alloys. In the plot of the lattice constant expressed as a guest strom, the ■-v group quaternary alloy of Ga1nAsP is shown in the region where the oblique hatch was flowed. Figure 3 (dimensions, lattice constant vs. electron volt in angstroms for several different epitaxial layers), with the compositional plane being the base plane of both figures. Figure 4 is a plot of the forbidden band width in electron volts as a function of composition for a four-element 1nGaAsP layer, starting from zero Ga and increasing the amount of Ga at the three-element boundary of InAaP. Figure 5 is a plot of the electron quantum yield of a projected photon for a nGaAsP photocathode versus the photon energy in electron volts; FIG. 6 No. 1 is a schematic vertical cross-sectional view of an infrared image intensifier tube using a lattice-matched epitaxial layer formed according to the present invention as a photocathode, and FIG. 1 is a schematic perspective view of a solid state laser incorporating a lattice matched epitaxial layer formed according to the invention. 111... photocathode, 112... infrared image intensifier tube. 113... substrate, 115... ] Lattice matched epitaxial layer of nGaAsP, 125... Solid-state heterojunction laser, 126... Substrate, 127... Epitaxial layer, 129... Heterojunction layer, 132, 133.
...Metal ohmic contact. Patent Applicant Varian Associates Sub-Agent
Patent attorney Sumio Takeuchi Same same Shuji Tomita 862 Number of techniques i Book 2 drawings LP ”'-1nAS 5 Leather, 5 drawings Hikari Yokoyo A/~゛- (Denri Holt) Procedural amendment letter Kamio side Akira h+5B++-July ♀ Commissioner of the Patent Office
Mr. Kazuo Wakasugi 1, Indication of the case 1981 Mochi-Snoring-Ro 490 F No. 3, Relationship with the person making the amendment/If I'l Patent applicant CJ Office (notification office) Name Varian Q Associates 4, Toshihito (111Ii Higashijuto, Geki1X, Nishishinkyo 11'1-1)
No. 6 21 Yumiri Button Gin lj Toranomon Building, Telephone (503) 5461~3 Ujiro Pi Ri: (6989) t'r Uchisumi no, 0 1st

Claims (1)

【特許請求の範囲】[Claims] I nGaAsPの格子整合エピタキシャル層を基板上
に成長させる方法であって、InGaAsPの融成物を
上昇温度で基板と接触させ、然して、前記融成物の成分
は、格子整合エピタキシャル層を基板上に成長させるよ
うな割合に々っており、そして1 nGaAsPの格子
整合■−V族エピタキシャル層を基板上に成長させるた
めに毎分0.1〜2.0℃の速度で融成物と基板とを冷
却することからなる方法。
A method for growing a lattice-matched epitaxial layer of InGaAsP on a substrate, the method comprising: contacting a melt of InGaAsP with the substrate at an elevated temperature, such that components of the melt grow a lattice-matched epitaxial layer on the substrate; the melt and the substrate at a rate of 0.1-2.0°C per minute to grow a lattice-matched ■-V epitaxial layer of 1 nGaAsP on the substrate. A method consisting of cooling.
JP2490783A 1972-09-22 1983-02-18 Manufacture of in ga as p lattice arranged hetero- bonding device Granted JPS58208195A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29145772A 1972-09-22 1972-09-22
US291462 1988-12-28
US291457 1988-12-29

Publications (2)

Publication Number Publication Date
JPS58208195A true JPS58208195A (en) 1983-12-03
JPS6117797B2 JPS6117797B2 (en) 1986-05-09

Family

ID=23120368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2490783A Granted JPS58208195A (en) 1972-09-22 1983-02-18 Manufacture of in ga as p lattice arranged hetero- bonding device

Country Status (2)

Country Link
JP (1) JPS58208195A (en)
GB (1) GB1427209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261292A (en) * 1985-05-16 1986-11-19 Tohoku Metal Ind Ltd Method of liquid-phase epitaxial growth

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418970A1 (en) * 1978-03-03 1979-09-28 Thomson Csf LASER DIODE WITH DISTRIBUTED RESONATOR
DE3232115A1 (en) * 1982-08-28 1984-03-01 Standard Elektrik Lorenz Ag, 7000 Stuttgart METHOD FOR PRODUCING GAINASP LAYERS FOR PHOTODETECTORS
US4929867A (en) * 1988-06-03 1990-05-29 Varian Associates, Inc. Two stage light converting vacuum tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218205A (en) * 1962-07-13 1965-11-16 Monsanto Co Use of hydrogen halide and hydrogen in separate streams as carrier gases in vapor deposition of iii-v compounds
US3447976A (en) * 1966-06-17 1969-06-03 Westinghouse Electric Corp Formation of heterojunction devices by epitaxial growth from solution
GB1278349A (en) * 1969-07-23 1972-06-21 Hitachi Ltd Solid state electronic device using quaternary compound semiconductor material consisting of galium, indium, phosphorus and arsenic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218205A (en) * 1962-07-13 1965-11-16 Monsanto Co Use of hydrogen halide and hydrogen in separate streams as carrier gases in vapor deposition of iii-v compounds
US3447976A (en) * 1966-06-17 1969-06-03 Westinghouse Electric Corp Formation of heterojunction devices by epitaxial growth from solution
GB1278349A (en) * 1969-07-23 1972-06-21 Hitachi Ltd Solid state electronic device using quaternary compound semiconductor material consisting of galium, indium, phosphorus and arsenic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261292A (en) * 1985-05-16 1986-11-19 Tohoku Metal Ind Ltd Method of liquid-phase epitaxial growth

Also Published As

Publication number Publication date
GB1427209A (en) 1976-03-10
JPS6117797B2 (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US3982261A (en) Epitaxial indium-gallium-arsenide phosphide layer on lattice-matched indium-phosphide substrate and devices
JP3753605B2 (en) Solar cell and method for manufacturing the same
JP3183296B2 (en) Inverted transparent substrate optoelectronic device and its manufacture
US3958143A (en) Long-wavelength photoemission cathode
CA1189941A (en) Semiconductor laser crt target
JPH0652807B2 (en) Quaternary II-VI group materials for photon devices
US4695332A (en) Method of making a semiconductor laser CRT
US20110062466A1 (en) AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs
Escher et al. High‐quantum‐efficiency photoemission from an InGaAsP photocathode
Hurwitz EFFICIENT VISIBLE LASERS OF CdSxSe1− x BY ELECTRON‐BEAM EXCITATION
Ettenberg et al. Metallurgical amd electroluminescence characteristics of vapor-phase and liquid-phase epitaxial junction structures of In x Ga 1− x As
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JPS58208195A (en) Manufacture of in ga as p lattice arranged hetero- bonding device
JP5279070B2 (en) Semiconductor element
Burnham et al. Double heterojunction AlGaAsP quaternary lasers
Nuese et al. cw laser diodes and high‐power arrays of In x Ga1− x As for 1.06‐μm emission
CN107895681A (en) A kind of photocathode and preparation method thereof
Su et al. The fabrication of single heterojunction AlGaAs/InGaP electroluminescent diodes
Mobarhan et al. High power, 0.98 μm, Ga0. 8In0. 2As/GaAs/Ga0. 51In0. 49P multiple quantum well laser
Susaki et al. Threshold current density in solution-grown GaAs laser diodes
US3978360A (en) III-V photocathode with nitrogen doping for increased quantum efficiency
EP0461766A2 (en) Silicon-doped In y Ga 1-y As laser
JPH0521892A (en) Semiconductor laser
Shih et al. Al x Ga1− x As Grown‐Diffused Electroluminescent Planar Monolithic Diodes
JPH0669593A (en) Semiconductor laser