JPS61176888A - Pre-treatment method of light water reactor spent nuclear-fuel - Google Patents

Pre-treatment method of light water reactor spent nuclear-fuel

Info

Publication number
JPS61176888A
JPS61176888A JP60017283A JP1728385A JPS61176888A JP S61176888 A JPS61176888 A JP S61176888A JP 60017283 A JP60017283 A JP 60017283A JP 1728385 A JP1728385 A JP 1728385A JP S61176888 A JPS61176888 A JP S61176888A
Authority
JP
Japan
Prior art keywords
fuel
spent nuclear
water reactor
light water
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60017283A
Other languages
Japanese (ja)
Other versions
JPH0535837B2 (en
Inventor
大塚 勝幸
海老原 彦恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP60017283A priority Critical patent/JPS61176888A/en
Publication of JPS61176888A publication Critical patent/JPS61176888A/en
Publication of JPH0535837B2 publication Critical patent/JPH0535837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽水炉使用済核燃料を燃料被覆管と燃料ペレ
ットとに分離する前処理方法に関し、更に詳しくは、使
用済核燃料を酸素存在下で加熱して燃料被覆管を酸化さ
せ、機械力によって畑檀1I1114蕾圏ψア鮨hn旧
右辻?r明ナスt /7’lアある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pretreatment method for separating spent nuclear fuel from a light water reactor into fuel cladding tubes and fuel pellets. The fuel cladding is heated to oxidize, and mechanical force is used to generate the buds. r light eggplant t /7'l a is there.

[従来の技術] 使用済核燃料の再処理においては、未燃焼の分裂性物質
や新しく生成した分裂性物質を分離回収する主工程に先
立ち、まず脱被覆して燃料被覆管とその内部に収容され
ている燃料ペレットとを分離する必要がある。使用済核
燃料の燃料被覆管の脱被覆方法としては、従来、機械的
方法と化学的方法が用いられている。
[Prior art] In the reprocessing of spent nuclear fuel, prior to the main process of separating and recovering unburned fissile materials and newly generated fissile materials, they are first decladded and stored in the fuel cladding tube and its interior. It is necessary to separate the fuel pellets that are Conventionally, mechanical methods and chemical methods have been used to de-clad the fuel cladding of spent nuclear fuel.

機械的脱被覆法としては、使用済核燃料を被覆のまま数
師の長さに切断し、核燃料のみを硝酸中に浸出溶解させ
る所謂「剪断リーチ法」があり、広く用いられている。
As a mechanical decoating method, there is a so-called "shear leach method" in which spent nuclear fuel is cut into several lengths while still being coated, and only the nuclear fuel is leached and dissolved in nitric acid, and this method is widely used.

それに対して化学的脱被覆法は、使用済核燃料全体を溶
解液中に浸漬してそのすべてを溶解させた後、分離する
方法である。
On the other hand, the chemical decoating method is a method in which the entire spent nuclear fuel is immersed in a solution to dissolve it all, and then separated.

[発明が解決しようとする問題点] 化学的脱被覆法においては、前記のように原則として使
用済核燃料の全部を溶解液中に溶解させるため、燃料被
覆管の成分が多量に含まれてしまうから、溶解した後に
被覆管の成分のみを分離しなければならず、非常に煩瑣
であるという欠点があった。
[Problems to be solved by the invention] In the chemical decladding method, in principle, all of the spent nuclear fuel is dissolved in the solution as described above, so a large amount of fuel cladding components are included. Therefore, only the components of the cladding tube must be separated after melting, which is very cumbersome.

これに対して機械的脱被覆法は、前記化学的脱被覆法に
比べて核燃料の損失や廃液発生量が少なく経済的にも優
れているという利点がある。
On the other hand, the mechanical decoating method has the advantage that it reduces loss of nuclear fuel and generates less waste liquid than the chemical decoating method and is economically superior.

しかしながら切断後の燃料を直接化学的に溶解するため
、揮発性核種が溶解槽中で溶解し、それに起因する種々
の問題が生じる。また溶解槽から発生するガスは酸を同
伴するから、トリチウム、クリプトン、キセノン回収等
の排ガス処理が困難となる。更に溶解残渣である被覆管
の処理を別工程で行わなければならない。
However, since the cut fuel is directly chemically dissolved, volatile nuclides are dissolved in the dissolution tank, resulting in various problems. Furthermore, since the gas generated from the dissolution tank is accompanied by acid, it becomes difficult to treat the exhaust gas such as recovering tritium, krypton, and xenon. Furthermore, the cladding tube, which is a dissolution residue, must be treated in a separate process.

このように従来の技術は使用済核燃料の脱被覆、被覆管
処理、排ガス回収等困難な問題を包蔵しており、それら
を解決し、かつ主工程における化学溶解を容易にするた
めの新しい技術の開発が強く望まれているのが現状であ
る。
As described above, conventional technology involves difficult problems such as spent nuclear fuel decladding, cladding treatment, exhaust gas recovery, etc., and new technology is needed to solve these problems and facilitate chemical dissolution in the main process. At present, development is strongly desired.

本発明の目的は、上記のような従来技術の欠点を解消し
、使用済核燃料の脱被覆、被覆管処理、排ガス回収等を
乾式状態で容易に行うことができ、その後の再処理主工
程を効率よ〈実施可能であり、しかもその際に主工程で
用いる装置の寿命を長く保つことができるような軽水炉
使用済核燃料の前処理方法を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to easily perform decladding of spent nuclear fuel, cladding treatment, exhaust gas recovery, etc. in a dry state, and to improve the subsequent main reprocessing process. The object of the present invention is to provide a method for preprocessing spent nuclear fuel in a light water reactor that is efficient and practicable, and that can prolong the life of the equipment used in the main process.

[問題点を解決するための手段] 上記のような目的を達成することのできる発明は、軽水
炉使用済核燃料を酸素存在下、例えば空気中で加熱して
燃料被覆管を酸化させた後、機械力を与えて該燃料被覆
管を破壊し、内部の燃料ペレットと分離する前処理方法
である。
[Means for Solving the Problems] The invention that can achieve the above-mentioned purpose is to heat light water reactor spent nuclear fuel in the presence of oxygen, for example, in air to oxidize the fuel cladding, and then This is a pretreatment method in which force is applied to destroy the fuel cladding tube and separate it from the fuel pellets inside.

軽水炉燃料では燃料被覆管はジルカロイ(ジルコニウム
合金)で作られている。ジルコニウムは熱中性子吸収断
面積が小さく原子炉材料として好適であるが、高温純水
中で腐食する傾向があり空気中の窒素との反応性が大き
い。そこで窒素の害を除くために少量の錫を添加したの
がジルカロイである。ジルカロイはその大部分がZr 
(ジルコニウム〕であるから、酸素存在下で加熱すると
ZrO3となる。特に空気中あるいは酸素富化ガス雰囲
気中で数回、昇温・降温の熱サイクルを繰り返すと容易
に酸化される。
In light water reactor fuel, the fuel cladding is made of Zircaloy (zirconium alloy). Zirconium has a small thermal neutron absorption cross section and is suitable as a nuclear reactor material, but it tends to corrode in high-temperature pure water and is highly reactive with nitrogen in the air. Zircaloy was created by adding a small amount of tin to remove the harmful effects of nitrogen. Most of Zircaloy is Zr.
(zirconium), it becomes ZrO3 when heated in the presence of oxygen.In particular, it is easily oxidized by repeating a thermal cycle of increasing and decreasing the temperature several times in air or in an oxygen-enriched gas atmosphere.

実験の結果、このようにして得られた酸化物は、純ジル
コニア(酸化ジルコニウム)に似た熱膨張的挙動を呈す
ることが判明した。
As a result of experiments, it was found that the oxide thus obtained exhibited thermal expansion behavior similar to pure zirconia (zirconium oxide).

純ジルコニアの熱膨張率は、第1図に示すように、約1
200℃で不規則性が現われ、膨張が止まり収縮に移る
。約1100℃で熱膨張が零となり、そのまま常温まで
冷却すると熱膨張率は約0.2%となる。このように熱
膨張率に大きな違いが生じるということは亀裂が入り砕
は易くなることを意味している。このことは、再び加熱
すると膨翠するが再現性は得られなくなることからも判
る。
The coefficient of thermal expansion of pure zirconia is approximately 1, as shown in Figure 1.
Irregularities appear at 200°C, expansion stops and contraction begins. Thermal expansion becomes zero at about 1100°C, and when cooled to room temperature, the coefficient of thermal expansion becomes about 0.2%. Such a large difference in coefficient of thermal expansion means that cracks occur and fracture becomes easy. This can be seen from the fact that when it is heated again, it expands, but reproducibility cannot be obtained.

酸化によって燃料被覆管には細かい多数の亀裂が入り非
常に脆くなり、僅かな機械力を作用させることによって
容易に燃料ペレットと被覆管材料とを分離できる。
The oxidation causes many fine cracks in the fuel cladding, making it very brittle, and the fuel pellets and cladding material can be easily separated by applying a small amount of mechanical force.

[作用] 本発明によれば、前述のように、化学的に溶解すること
なしに燃料被覆管材料と燃料ペレットとを容易に分離で
きる。本発明は加熱する工程を含むから、それによって
燃料中のガスが解放されるから、排ガスの回収を脱被覆
と同時に行うことができる。
[Operation] According to the present invention, as described above, the fuel cladding material and the fuel pellets can be easily separated without being chemically dissolved. Because the present invention includes a heating step, which liberates the gases in the fuel, exhaust gas recovery can occur simultaneously with stripping.

脱被覆した後、再処理工程のために酸溶解する前に加熱
焙焼すれば、使用済核燃料中に含まれる主として核分裂
に起因する揮発性物質やガス等を完全に分離回収するこ
とができるため、主工程での装置の腐食が少なくなる。
If the spent nuclear fuel is heated and roasted after decoating and before being dissolved in acid for the reprocessing process, volatile substances and gases mainly caused by nuclear fission contained in the spent nuclear fuel can be completely separated and recovered. , corrosion of equipment in the main process is reduced.

またこの排ガス分離回収処理は乾式であるから容易に行
える。得られた燃料ペレットを更に粉砕すれば、主工程
における化学溶解を容易かつ迅速に行うことも可能とな
る。
Moreover, this exhaust gas separation and recovery process is a dry process, so it can be easily performed. By further crushing the obtained fuel pellets, chemical dissolution in the main process can be carried out easily and quickly.

[実施例] 以下、本発明について更に詳しく説明する。[Example] The present invention will be explained in more detail below.

前述のように本発明は、軽水炉使用済核燃料を冨り虞咄
テ→−で−輌^轟 1  町P 、紬昏會8 愉目鯵 
九 菖自 lし 毎 ↓知 ト後、機械力を与えて燃料
被覆管のみ破壊する点に大きな特徴を有するものである
。軽水炉燃料では、通常、燃料被覆管はジルカロイから
なり、溶融温度まで加熱しなくても、例えば空気中で7
00〜1200℃の昇温・降温の熱サイクル処理を行う
と容易に酸化し材質が極端に変化してしまう。酸化した
ジルカロイは非常に脆くなり、僅かな機械的な力を加え
るだけで容易に粉砕でき、それによって燃料ペレットか
ら分離することができる。
As mentioned above, the present invention has the potential to accumulate spent nuclear fuel in a light water reactor.
The major feature of this method is that after the fuel injection, mechanical force is applied to destroy only the fuel cladding. In light water reactor fuels, the fuel cladding is typically made of Zircaloy, which can be heated to melting temperature, e.g.
If a thermal cycle treatment of heating and cooling from 00 to 1200°C is performed, it will easily oxidize and the material will change drastically. The oxidized Zircaloy becomes very brittle and can be easily crushed and separated from the fuel pellets with the application of slight mechanical force.

第2図は本発明に係る軽水炉使用済核燃料の前処理工程
の一例を示す工程説明図である。軽水炉使用済燃料集合
体10は切断工程に送られ、必要に応じて燃料ピン以外
の上部・下部タイプレート等のステンレス製部材12を
除去するとともに、次の熱脱被覆工程で処理しやすい寸
法に細断される。得られた細断片14は、熱脱被覆工程
において空気中で700〜1200℃の昇温・降温の熱
サイクル処理を受ける。それによって燃料被覆管を構成
するジルカロイは酸化し、酸化ジルコニウム(ジルコニ
ア)に変わる。加熱・冷却の熱サイクルは複数回加える
のが望ましい。酸化した燃料被覆管には多数の細がい亀
裂が入り、非常に脆くなり、僅かの機械力を与えること
により容易に燃料ペレットから剥離し、粉体化する。粉
体化したジルコニア(ジルコニアサンド)の粒度は、被
処理物に加えた熱サイクルの条件により異なるが、粉末
状から5〜6mm程度までの範囲内で分布している。従
って上記のように熱脱被覆工程により取り出された処理
済産物16は、主として二酸化ウランからなるペレット
とジルコニアサンドの混合物である。
FIG. 2 is a process explanatory diagram showing an example of a pretreatment process for spent nuclear fuel in a light water reactor according to the present invention. The light water reactor spent fuel assembly 10 is sent to a cutting process, where stainless steel members 12 such as the upper and lower tie plates other than the fuel pins are removed as necessary, and the assembly is cut to a size that is easy to handle in the next thermal decladding process. Shredded. The obtained fragments 14 are subjected to a thermal cycle treatment in which the temperature is raised and lowered from 700 to 1200° C. in the air in a thermal decoating step. As a result, the zircaloy that makes up the fuel cladding tube oxidizes and turns into zirconium oxide (zirconia). It is desirable to apply the heating/cooling thermal cycle multiple times. The oxidized fuel cladding tube has many thin cracks and becomes very brittle, and easily peels off from the fuel pellet and becomes powder when a small amount of mechanical force is applied. The particle size of powdered zirconia (zirconia sand) varies depending on the thermal cycle conditions applied to the object to be processed, but is distributed within a range from powder to about 5 to 6 mm. The treated product 16 removed by the thermal decoating process as described above is therefore a mixture of pellets consisting primarily of uranium dioxide and zirconia sand.

処理済産物16は次の分離工程に送られる。なお分離す
る前に必要に応じて焙焼・粉砕処理を行うこともできる
The processed product 16 is sent to the next separation step. Note that before separation, roasting and pulverization treatments can be performed as necessary.

上記処理済産物16をジルコニアサンド18と燃料ペレ
ット20とに分離するには、比重選別法や篩別法を用い
ることができる。二酸化ウラン燃料ペレットの場合その
比重は10〜11であるのに対して、ジルコニアの比重
は5.68〜6.27と大きな差があるので、その中間
の比重の溶液中に前記処理済産物16を投入すれば、軽
いジルコニアが浮遊し、重い燃料ペレットが沈むからそ
れによって分離することができる。
In order to separate the treated product 16 into the zirconia sand 18 and the fuel pellets 20, a specific gravity separation method or a sieving method can be used. In the case of uranium dioxide fuel pellets, the specific gravity is 10 to 11, whereas the specific gravity of zirconia is 5.68 to 6.27, which is a large difference. If zirconia is added, the lighter zirconia will float and the heavier fuel pellets will sink, allowing them to be separated.

また燃料ピンに使用されたロッド内スプリング等のステ
ンレス製部材や膨張スプリング等のインコネル製部材等
もジルコニア側に分離可能である。
Further, stainless steel members such as a rod inner spring and Inconel members such as an expansion spring used in the fuel pin can also be separated to the zirconia side.

また前述のように酸化した燃料被覆管はかなり細かく破
砕されるのに対して、燃料ペレットは強固であり該燃料
被覆管が酸化されるような条件では粉砕されず原形を保
つ。それ故、処理済産物16を篩分けすれば、主として
粉末状のジルコニアサンド18は通過し、篩上には主と
して燃料ペレット20が残ることになる。
Further, as mentioned above, the oxidized fuel cladding tube is crushed quite finely, whereas the fuel pellets are strong and do not get crushed under conditions where the fuel cladding tube is oxidized, but maintain their original shape. Therefore, when the treated product 16 is sieved, mainly the powdered zirconia sand 18 passes through, leaving mainly the fuel pellets 20 on the sieve.

分離されたジルコニアサンド18は次に廃棄物処理工程
へ送られ、燃料ペレット20は溶解精製工程へ送られる
The separated zirconia sand 18 is then sent to a waste treatment process, and the fuel pellets 20 are sent to a melting and refining process.

第3図は熱脱被覆装置の一例を示す概念図でふスーーj
−跋署P土 士b)ブ佃昶栢十階QQt。
Figure 3 is a conceptual diagram showing an example of thermal decoating equipment.
-Bai Station P Satshi b) Bu Tsukuda 昶欢 10th floor QQt.

その加熱コイル24と、炉内温度を計測する温度センサ
26と、該温度センサ26からの温度情報と予め設定さ
れている温度プログラムに応じて加熱コイル24の動作
を制御する制御装置28を備えている。更に加熱炉本体
22には、送気通@30と排ガス通路32とが設けられ
る。
It includes the heating coil 24, a temperature sensor 26 that measures the temperature inside the furnace, and a control device 28 that controls the operation of the heating coil 24 according to the temperature information from the temperature sensor 26 and a preset temperature program. There is. Further, the heating furnace body 22 is provided with an air supply vent @30 and an exhaust gas passage 32.

使用済核燃料ピンやその細断片等の被処理物34は、加
熱炉本体22内に収められる。加熱炉本体22内は加熱
コイル24により加熱され、炉内温度は温度センサ26
により検出され、その温度情報は制御装置28に送られ
る。制御装置28は前記温度情報と予め設定されている
温度プログラムに応じて加熱コイル24への通電量を制
御し、必要な昇温・降温制御を行う。例えば、700℃
から1200℃までの温度範囲にわたって数回昇温・降
温を繰り返すような動作が行われる。この間、送気通#
30からは、加熱炉本体22内に収められている被処理
物34を酸化するために必要な酸素が空気もしくは空気
中に酸素を富化したガスとして送り込まれる。
Objects 34 to be processed, such as spent nuclear fuel pins and their fragments, are housed within the heating furnace body 22. The inside of the heating furnace body 22 is heated by a heating coil 24, and the temperature inside the furnace is measured by a temperature sensor 26.
The temperature information is sent to the control device 28. The control device 28 controls the amount of electricity supplied to the heating coil 24 according to the temperature information and a preset temperature program, and performs necessary temperature increase/decrease control. For example, 700℃
An operation is performed in which the temperature is repeatedly raised and lowered several times over a temperature range from 1200°C to 1200°C. During this time, air supply #
From the heating furnace body 22, oxygen necessary for oxidizing the workpiece 34 contained in the heating furnace body 22 is sent as air or oxygen-enriched gas into the air.

加熱により被処理物34から放出される揮発性核種やト
リチウム等を含むガスは、排ガス通路32を通って排ガ
ス処理系に送られろことになる。
Gas containing volatile nuclides, tritium, etc. released from the object to be treated 34 by heating is sent to the exhaust gas treatment system through the exhaust gas passage 32.

このように本発明では乾燥状態で極めて容易に脱被覆さ
せることができる。それ故、得られた核燃料ペレットを
抽出分離等の主工程に送り込む前に加熱焙焼すれば、含
有されている主として核分裂に起因する揮発性物質やガ
ス等を乾式で完全に分離回収でき、排ガス処理が容易と
なるばかりでなく、事前にそれら排ガス等を除去できる
ため、主工程における装置の腐食は少なくなる。また脱
被覆された燃料ペレットを予め細かく粉砕すれば、主工
程における化学溶解も容易かつ迅速に行えるようになる
As described above, in the present invention, it is possible to remove the coating very easily in a dry state. Therefore, if the obtained nuclear fuel pellets are heated and roasted before being sent to the main process such as extraction and separation, the volatile substances and gases contained therein, mainly caused by nuclear fission, can be completely separated and recovered in a dry process, and the exhaust gas Not only is the treatment easier, but the exhaust gases can be removed in advance, which reduces corrosion of equipment during the main process. Furthermore, if the decoated fuel pellets are finely pulverized in advance, chemical dissolution in the main process can be carried out easily and quickly.

U発明の効果J 本発明は上記のように構成した使用済核燃料の前処理方
法であり、燃料を化学的に溶解させるものではなく加熱
酸化して機械的に破壊して取り除くものであるから、脱
被覆を容易に行うことができる17燃料被覆管の処理も
容易となるという優れた効果を奏しうる。
Effects of the Invention J The present invention is a method for pre-processing spent nuclear fuel configured as described above, in which the fuel is removed by heating, oxidizing and mechanically destroying it, rather than by chemically dissolving the fuel. An excellent effect can be achieved in that the treatment of the 17 fuel cladding tube, which can be easily stripped, is also facilitated.

本発明は、揮発性成分を含む排ガスの回収を中性の、か
つ乾燥した状態で行えるために排ガス処理が比較的容易
に行えるという効果もある。
The present invention also has the effect that exhaust gas treatment can be performed relatively easily because exhaust gas containing volatile components can be recovered in a neutral and dry state.

つまり従来の剪断リーチ法あるいは化学的脱被覆法等の
ように化学薬品を用いて溶解する所謂湿式法とif異な
るから、廃棄物発生量が少な(前処理コストを大幅に下
げることができる効果もある。
In other words, since it is different from the so-called wet method that uses chemicals to dissolve, such as the conventional shear leach method or chemical uncoating method, it generates less waste (it also has the effect of significantly reducing pretreatment costs). be.

また脱被覆された燃料ペレットは、固体状態であるから
、その後に焙焼処理して揮発性成分やガス等を分離する
こともでき、あるいは適度の粒度まで粉砕することによ
って再処理の主工程における化学溶解も容易になるなど
、本発明は数々の利点を有するものである。
In addition, since the decoated fuel pellets are in a solid state, they can be roasted to separate volatile components and gases, or they can be crushed to an appropriate particle size and used in the main reprocessing process. The present invention has a number of advantages, including ease of chemical dissolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は純ジルカロイの#i膨張の挙動を示す説明図、
第2図は本発明に係る前処理工程の一例を示す工程説明
図、第3図はそれに用いるに好適な#l脱被覆装置の一
例を示す概念図である。 22 加熱炉本体、24・・加熱コイル、26澗度セン
サ、28・・制御装置、34・・・被処理物。
Figure 1 is an explanatory diagram showing the behavior of #i expansion of pure Zircaloy,
FIG. 2 is a process explanatory diagram showing an example of the pretreatment process according to the present invention, and FIG. 3 is a conceptual diagram showing an example of a #l decoating apparatus suitable for use therein. 22 heating furnace main body, 24... heating coil, 26 degree sensor, 28... control device, 34... processed object.

Claims (1)

【特許請求の範囲】 1、軽水炉使用済核燃料を酸素存在下で加熱して燃料被
覆管を酸化させた後、機械的に該燃料被覆管を破壊し、
内部の燃料ペレットと分離することを特徴とする軽水炉
使用済核燃料の前処理方法。 2、燃料被覆管がジルカロイからなり、燃料ペレットが
ウラン酸化物またはウラン・プルトニウム混合酸化物か
らなる特許請求の範囲第1項記載の前処理方法。
[Claims] 1. After heating the light water reactor spent nuclear fuel in the presence of oxygen to oxidize the fuel cladding, mechanically destroying the fuel cladding,
A method for preprocessing spent nuclear fuel in a light water reactor, which is characterized by separating it from internal fuel pellets. 2. The pretreatment method according to claim 1, wherein the fuel cladding tube is made of Zircaloy and the fuel pellets are made of uranium oxide or uranium-plutonium mixed oxide.
JP60017283A 1985-01-31 1985-01-31 Pre-treatment method of light water reactor spent nuclear-fuel Granted JPS61176888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017283A JPS61176888A (en) 1985-01-31 1985-01-31 Pre-treatment method of light water reactor spent nuclear-fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017283A JPS61176888A (en) 1985-01-31 1985-01-31 Pre-treatment method of light water reactor spent nuclear-fuel

Publications (2)

Publication Number Publication Date
JPS61176888A true JPS61176888A (en) 1986-08-08
JPH0535837B2 JPH0535837B2 (en) 1993-05-27

Family

ID=11939650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017283A Granted JPS61176888A (en) 1985-01-31 1985-01-31 Pre-treatment method of light water reactor spent nuclear-fuel

Country Status (1)

Country Link
JP (1) JPS61176888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167699U (en) * 1988-05-18 1989-11-24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123796A (en) * 1977-04-01 1978-10-28 Ishikawajima Harima Heavy Ind Co Ltd Processing method of nuclear fuel and processing apparatus used for said method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123796A (en) * 1977-04-01 1978-10-28 Ishikawajima Harima Heavy Ind Co Ltd Processing method of nuclear fuel and processing apparatus used for said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167699U (en) * 1988-05-18 1989-11-24

Also Published As

Publication number Publication date
JPH0535837B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
McFarlane et al. The IFR fuel cycle demonstration
US7172741B2 (en) Method for reprocessing spent nuclear fuel
JPH03123896A (en) Recovery of actinides
JP4487031B2 (en) Method for dry reprocessing of spent oxide fuel
Masson et al. Block-type HTGR spent fuel processing: CEA investigation program and initial results
JP2014029319A (en) Method of processing damaged or molten nuclear fuel
Burris et al. The melt refining of irradiated uranium: application to EBR-II fast reactor fuel. I. Introduction
JPS61176888A (en) Pre-treatment method of light water reactor spent nuclear-fuel
JPH11231091A (en) Reprocessing method for spent nuclear fuel
RU2707562C1 (en) Method of processing fuel elements
US4296074A (en) Method of decladding
RU2376667C1 (en) Method of breaking down zirconium cladding of fuel rods of fuel assembly
JPS5977392A (en) Method of processing nuclear fuel rod
Gue et al. French experience in MOX fuel dissolution
Cadieux et al. Voloxidation and dissolution of irradiated plutonium recycle fuels
JPH0332039B2 (en)
Burch et al. Developments in reprocessing technology for high-temperature and fast breeder fuels
JPS61250586A (en) Method of processing spent nuclear fuel element
JP2002071882A (en) Melting method of spent fuel rod, and apparatus thereof
JP3088850B2 (en) Method and apparatus for removing radioactive iodine from irradiated nuclear fuel
JPH0552479B2 (en)
Welch et al. Immobilization of Three-Mile Island core debris
JPH058400B2 (en)
Gray et al. Recovery of plutonium from sodium fluoride and alumina traps loaded with plutonium tetrafluoride
Nicholson et al. Recent developments in thorium fuel processing