JP4487031B2 - Method for dry reprocessing of spent oxide fuel - Google Patents

Method for dry reprocessing of spent oxide fuel Download PDF

Info

Publication number
JP4487031B2
JP4487031B2 JP2006131830A JP2006131830A JP4487031B2 JP 4487031 B2 JP4487031 B2 JP 4487031B2 JP 2006131830 A JP2006131830 A JP 2006131830A JP 2006131830 A JP2006131830 A JP 2006131830A JP 4487031 B2 JP4487031 B2 JP 4487031B2
Authority
JP
Japan
Prior art keywords
fuel
solvent
dissolution
spent
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131830A
Other languages
Japanese (ja)
Other versions
JP2007303932A (en
Inventor
浩司 水口
峰夫 福嶋
宗孝 明珍
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2006131830A priority Critical patent/JP4487031B2/en
Publication of JP2007303932A publication Critical patent/JP2007303932A/en
Application granted granted Critical
Publication of JP4487031B2 publication Critical patent/JP4487031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、原子炉で生成する使用済酸化物燃料からウラン及びプルトニウムを酸化物として回収する方法に関し、更に詳しく述べると、燃料ピン破砕片を溶媒であるモリブデン酸溶融塩もしくはタングステン酸溶融塩に投入し、不活性ガス雰囲気下で燃料成分の溶解を行うことにより、予め脱被覆処理を行うことなく、ハル(被覆管片など)分離と燃料溶解を同時に行うようにした使用済酸化物燃料の乾式再処理方法に関するものである。   The present invention relates to a method for recovering uranium and plutonium as oxides from spent oxide fuel produced in a nuclear reactor. More specifically, the fuel pin fragment is converted into a molybdic acid molten salt or a tungstic acid molten salt as a solvent. The spent oxide fuel that was separated into the hull (cladding tube piece, etc.) and dissolved in the fuel at the same time without de-coating in advance by charging and dissolving the fuel component in an inert gas atmosphere The present invention relates to a dry reprocessing method.

現在、商業用原子炉では酸化物燃料が使用されているために、使用済核燃料の再処理方法としては、酸化物燃料が処理でき且つウラン及びプルトニウムを混合酸化物として回収できる方法が必要とされている。この目的のために、酸化物電解による乾式再処理法が開発されている。   Since oxide fuel is currently used in commercial nuclear reactors, a method for reprocessing spent nuclear fuel that can treat oxide fuel and recover uranium and plutonium as a mixed oxide is required. ing. For this purpose, dry reprocessing methods using oxide electrolysis have been developed.

従来方法では、使用済酸化物燃料を溶解させる溶媒としてNaCl−2CsClの組成を有する塩を使用している。この塩を650℃程度に加熱して溶融させ、そこに使用済酸化物燃料を供給して溶解させ、電解によってウラン及びプルトニウムの混合酸化物を回収する。ここで、使用済酸化物燃料をNaCl−2CsCl溶融塩に溶解させる際には、塩素ガスを用いている。   In the conventional method, a salt having a composition of NaCl-2CsCl is used as a solvent for dissolving the spent oxide fuel. This salt is heated to about 650 ° C. and melted, and spent oxide fuel is supplied and dissolved therein, and a mixed oxide of uranium and plutonium is recovered by electrolysis. Here, when the spent oxide fuel is dissolved in the NaCl-2CsCl molten salt, chlorine gas is used.

例えば非特許文献1には、「塩サイクル法」として、「酸化物燃料はCl2 −HClガスが吹き込まれている塩化物混合溶融塩中に溶解され、溶解したウランとプルトニウムは500ないし700℃における陰極電着により酸化物として回収される。」と記述されている。 For example, in Non-Patent Document 1, as a “salt cycle method”, “Oxide fuel is dissolved in a chloride mixed molten salt into which Cl 2 —HCl gas is blown, and dissolved uranium and plutonium are 500 to 700 ° C. It is recovered as an oxide by cathodic electrodeposition ".

しかし、この溶解反応は、気体である塩素ガスと固体の使用済酸化物燃料との間で生じる気固反応であるため、溶解が遅く溶解に長時間を要し(溶解に4〜6時間かかる)経済性が悪い欠点がある。また、腐食性の高い塩素ガスを用いるため、処理装置の構成材料が腐食される問題もある。   However, since this dissolution reaction is a gas-solid reaction that occurs between gaseous chlorine gas and solid spent oxide fuel, the dissolution is slow and requires a long time for dissolution (dissolution takes 4 to 6 hours). ) There is a disadvantage that is not economical. In addition, since corrosive chlorine gas is used, there is a problem that the constituent materials of the processing apparatus are corroded.

このような問題を解決できる方法として、本発明者らは先に、溶媒として加熱溶融したモリブデン酸塩又はタングステン酸塩を用い、該溶媒に溶融助剤を添加すると共に酸素含有ガスを吹き込みながら使用済酸化物燃料を溶解させ、電解によってウラン・プルトニウム混合酸化物を回収する方法を開発した(特願2005−200590参照)。そのフローを図3に示す。   As a method for solving such a problem, the present inventors first used a molybdate or tungstate that has been heated and melted as a solvent, added a melting aid to the solvent, and used it while blowing an oxygen-containing gas. A method has been developed in which spent oxide fuel is dissolved and uranium / plutonium mixed oxide is recovered by electrolysis (see Japanese Patent Application No. 2005-200590). The flow is shown in FIG.

この方法は、前記のような従来技術の欠点を解消できるものの、解決すべき幾つかの問題が残っている。その一つは、燃料溶解に先立って、予め被覆管から使用済酸化物燃料を取り出す脱被覆工程が必要なことである。商業用原子炉で使用されている燃料ピンは、ステンレス鋼やジルカロイなどからなる被覆管内に酸化物燃料を充填した構造であり、そのため燃料溶解に先立って燃料ピンを機械的に破砕(例えば、せん断)し、被覆管片から酸化物燃料を分離する(脱被覆する)必要がある。しかし、現在の脱被覆技術では、被覆管に燃料成分が多く残留・付着するため、高い燃料回収率を得るためにはハル洗浄工程等を追加する必要があり、工程の複雑化とコスト増大を招いている。   Although this method can eliminate the drawbacks of the prior art as described above, there are still some problems to be solved. One of them is that a decoating step for removing the spent oxide fuel from the cladding tube in advance is necessary prior to the dissolution of the fuel. Fuel pins used in commercial reactors have a structure in which a cladding tube made of stainless steel, Zircaloy, or the like is filled with oxide fuel, so that the fuel pins are mechanically crushed (for example, sheared) prior to fuel dissolution. And the oxide fuel needs to be separated (decoated) from the cladding tube piece. However, with the current decoating technology, many fuel components remain and adhere to the cladding tube, so it is necessary to add a hull cleaning process, etc. to obtain a high fuel recovery rate, which complicates the process and increases costs. Invited.

また、この方法は、燃料溶解の際に、反応の遅い酸化反応を伴うため、溶解速度が比較的遅くなる問題がある。更に、使用済酸化物燃料に含まれている高発熱体で高レベル廃棄物の要因であるCsが溶媒(溶融塩)に溶け込むため、大量の溶媒が高レベル廃棄物となる問題もある。
「燃料再処理と放射性廃棄物管理の化学工学」原子力化学工学第4分冊 Manson Benedict 他著、清瀬量平訳、昭和58年12月、日刊工業新聞社発行、p.16
In addition, this method has a problem that the dissolution rate is relatively slow because it involves an oxidation reaction with a slow reaction when the fuel is dissolved. Furthermore, since Cs, which is a high heating element included in the spent oxide fuel and is a factor of high level waste, dissolves in the solvent (molten salt), there is a problem that a large amount of solvent becomes high level waste.
"Chemical Engineering of Fuel Reprocessing and Radioactive Waste Management" Nuclear Chemical Engineering Volume 4 Manson Benedict et al., Translated by Kiyose Kyohei, December 1983, published by Nikkan Kogyo Shimbun, p.16

本発明が解決しようとする課題は、使用済酸化物燃料の溶解反応に腐食性の高い有害ガスを使用せずに済むようにし、しかも燃料溶解に先立って予め脱被覆を行う必要が無く、工程を簡素化でき、また溶解速度が速く、高レベル廃棄物発生量を大幅に削減できるようにすることである。   The problem to be solved by the present invention is to eliminate the use of highly corrosive harmful gas in the dissolution reaction of spent oxide fuel, and it is not necessary to perform decoating in advance prior to the dissolution of the fuel. In addition, the dissolution rate is fast, and the amount of high-level waste generated can be greatly reduced.

本発明は、使用済酸化物燃料を溶媒に溶解させ、電解によってウラン・プルトニウム混合酸化物を析出・回収する使用済酸化物燃料の乾式再処理方法において、金属被覆管内に酸化物燃料が充填されている使用済燃料ピンを機械的に破砕する破砕工程と、燃料ピンの破砕片を、溶媒として用いるモリブデン酸溶融塩もしくはタングステン酸溶融塩に投入して不活性ガス雰囲気下で燃料成分の溶解を行うことにより、燃料溶解と同時にハル分離を行うハル分離・燃料溶解工程と、前記溶媒に溶解した燃料成分に酸化処理を施す酸化工程と、酸化処理後の溶媒に電解処理を施すことによってウラン・プルトニウム混合酸化物を陰極上に析出・回収する電解工程とを備えていることを特徴とする使用済酸化物燃料の乾式再処理方法である。   The present invention relates to a dry reprocessing method of spent oxide fuel in which spent oxide fuel is dissolved in a solvent and uranium / plutonium mixed oxide is precipitated and recovered by electrolysis. A crushing process for mechanically crushing used fuel pins, and a fuel pin fragment into a molybdic acid molten salt or tungstic acid molten salt used as a solvent to dissolve fuel components in an inert gas atmosphere By performing a hull separation / fuel dissolution process for performing hull separation simultaneously with fuel dissolution, an oxidation process for oxidizing the fuel component dissolved in the solvent, and an electrolytic process for the solvent after the oxidation process. An electrolysis process for depositing and collecting plutonium mixed oxide on a cathode, and a dry reprocessing method for spent oxide fuel.

本発明に係る使用済酸化物燃料の乾式再処理方法によれば、燃料溶解に先立って予め別工程で脱被覆処理を行う必要が無く、燃料成分溶解とハル分離を同時に処理できるので、従来の脱被覆工程における低い燃料回収率の問題を解決できるし、工程も簡素化される。また、溶融塩への溶解では、反応の遅い酸化反応を伴わないため、溶解速度が速くなり、極めて短時間で溶解が終了し、プロセスの操業時間を大幅に短縮できる。更に、本発明方法は、不活性ガス雰囲気下で溶解させるので、溶媒のモリブデン酸溶融塩もしくはタングステン酸溶融塩には貴金属FP及び高発熱体で高レベル廃棄物の要因であるCs等が溶け込まないことから、それらをハルと共に分離することで、大量の溶媒が高レベル廃棄物になるのを避けることができる。なお、溶解反応において腐食性の高いガスを必要としないので、処理装置構成材料の腐食が生じず、処理装置の寿命を大幅に延伸できることは言うまでもない。   According to the dry reprocessing method of spent oxide fuel according to the present invention, it is not necessary to perform a decoating process in advance in a separate process prior to fuel dissolution, and fuel component dissolution and hull separation can be processed simultaneously. The problem of low fuel recovery rate in the decoating process can be solved, and the process is simplified. In addition, since dissolution in molten salt does not involve an oxidation reaction that is slow in reaction, the dissolution rate is increased, and the dissolution is completed in an extremely short time, thereby greatly shortening the operation time of the process. Further, since the method of the present invention is dissolved in an inert gas atmosphere, the noble metal FP and the high heat generating element such as Cs that is a cause of high-level waste are not dissolved in the molybdate or tungstic acid molten salt of the solvent. Thus, separating them with the hull can avoid a large amount of solvent becoming a high level waste. In addition, since a highly corrosive gas is not required in the dissolution reaction, it goes without saying that corrosion of the processing apparatus constituent material does not occur and the life of the processing apparatus can be greatly extended.

本発明に係る使用済酸化物燃料の乾式再処理方法のフローチャートを図1に示す。商業用原子炉で使用する燃料ピンは、被覆管の内部に酸化物燃料を充填した構造である。被覆管は、例えばステンレス鋼やジルカロイなどの金属材料からなる。まず、従来同様、使用済の燃料ピンを機械的に破砕する。具体的には、2軸せん断機などを用いてせん断処理する(せん断工程)のが好ましい。   FIG. 1 shows a flowchart of a method for dry reprocessing of spent oxide fuel according to the present invention. A fuel pin used in a commercial nuclear reactor has a structure in which an oxide fuel is filled inside a cladding tube. A cladding tube consists of metal materials, such as stainless steel and Zircaloy, for example. First, the spent fuel pin is mechanically crushed as in the prior art. Specifically, it is preferable to perform a shearing process (shearing process) using a biaxial shearing machine or the like.

従来の乾式再処理方法では、次の溶解工程に進む前に、燃料ピンせん断片を予め脱被覆処理するのであるが、本発明方法では直接溶解工程に進む。即ち、燃料ピンせん断片を、溶媒として用いるモリブデン酸溶融塩もしくはタングステン酸溶融塩にそのまま投入し、溶媒に不活性ガスを通じながら溶解を行うことにより、燃料溶解と同時にハル分離を行う(ハル分離・燃料溶解工程)。この工程では、燃料成分のみが溶解され、ハル(被覆管片など)はそのまま残る他、貴金属FP(核分裂生成物)及び高発熱体で高レベル廃棄物の要因であるCs等も溶解しない。そこで、これらハルや溶解残渣を除去する。   In the conventional dry reprocessing method, the fuel pin fragment is previously decoated before proceeding to the next dissolution step, but in the method of the present invention, the process proceeds directly to the dissolution step. That is, the fuel pin fragment is directly put into a molybdate or tungstic acid molten salt used as a solvent, and dissolved while passing an inert gas through the solvent, thereby performing hull separation simultaneously with fuel dissolution (hull separation / Fuel dissolution process). In this step, only the fuel component is dissolved and the hull (cladding tube piece and the like) remains as it is, and the noble metal FP (fission product) and the high-temperature heating element Cs and the like are not dissolved. Therefore, these hulls and dissolved residues are removed.

使用済酸化物燃料の中には、ウラン、アルカリ金属元素、貴金属元素、希土類元素、及び原子炉内で生成したプルトニウムなどの超ウラン元素が存在する。本発明方法では、使用済酸化物燃料を溶解する溶媒として、例えばモリブデン酸ナトリウム(Na2 MoO4 ,Na2 Mo2 7 等)あるいはタングステン酸ナトリウム(Na2 WO4 ,Na2 2 7 等)を用いる。これらの化合物の融点は約700℃であるが、溶解反応を促進させるためには750℃以上に加熱することが望ましい。不活性ガス雰囲気下において、使用済酸化物燃料に含まれている二酸化ウラン及び二酸化プルトニウムが、溶融しているモリブデン酸ナトリウムに溶解する反応式は、次の通りである。
UO2 +2Na2 Mo2 7 →Na4 U(MoO4 4
(なお、Na4 U(MoO4 4 はU(MoO4 2 +2Na2 MoO4 と同表現)
PuO2 +2Na2 Mo2 7 →Na4 Pu(MoO4 4
(なお、Na4 Pu(MoO4 4 はPu(MoO4 2 +2Na2 MoO4 と同表現)
ウラン及びプルトニウムは、4価のまま価数を変えずに溶融塩中に溶解するため、酸化のための助剤などを必要とせず、反応の遅い酸化反応を伴わないため、溶解速度は大幅に向上する。このとき、溶媒は被覆管などの構造材のを溶かさずに、燃料成分のみが溶解することになり、ハル分離と燃料溶解を同時に達成できる。また、使用済燃料に含まれている貴金属元素及び高発熱体であるCsは溶解しないため、ハルと共に燃料から分離される。そして、ウラン及びプルトニウム等の超ウラン元素、一部の希土類元素が溶融塩に溶解した均一な融体が得られる。
Among spent oxide fuels, there are uranium, alkali metal elements, noble metal elements, rare earth elements, and transuranium elements such as plutonium produced in a nuclear reactor. In the method of the present invention, as a solvent for dissolving the spent oxide fuel, for example, sodium molybdate (Na 2 MoO 4 , Na 2 Mo 2 O 7, etc.) or sodium tungstate (Na 2 WO 4 , Na 2 W 2 O 7). Etc.). The melting point of these compounds is about 700 ° C., but it is desirable to heat to 750 ° C. or higher in order to promote the dissolution reaction. The reaction formula in which uranium dioxide and plutonium dioxide contained in the spent oxide fuel are dissolved in molten sodium molybdate under an inert gas atmosphere is as follows.
UO 2 + 2Na 2 Mo 2 O 7 → Na 4 U (MoO 4 ) 4
(Na 4 U (MoO 4 ) 4 is the same expression as U (MoO 4 ) 2 + 2Na 2 MoO 4 )
PuO 2 + 2Na 2 Mo 2 O 7 → Na 4 Pu (MoO 4 ) 4
(Na 4 Pu (MoO 4 ) 4 is the same as Pu (MoO 4 ) 2 + 2Na 2 MoO 4 )
Uranium and plutonium dissolve in the molten salt without changing the valence as tetravalent, so there is no need for oxidation aids, etc., and there is no slow oxidation reaction, so the dissolution rate is greatly increased. improves. At this time, the solvent dissolves only the fuel component without dissolving the structural material such as the cladding tube, so that hull separation and fuel dissolution can be achieved simultaneously. Further, since noble metal elements and high heating elements Cs contained in the spent fuel are not dissolved, they are separated from the fuel together with the hull. Then, a uniform melt in which transuranium elements such as uranium and plutonium and some rare earth elements are dissolved in the molten salt can be obtained.

引き続いて、溶媒に溶解した燃料に酸化処理を施す(酸化工程)。燃料が溶解している溶媒に、酸素ガスや空気を吹き込み、燃料成分を酸化させる。これによって、ウラン及びプルトニウムの原子価は4価から6価に変化する。このとき、ウランやプルトニウムは既に溶媒に溶解している状態にあるため、酸化反応は速やかに進行する。そして、酸化処理後の溶媒に電解処理を施すことによってウラン・プルトニウム混合酸化物を陰極上に析出・回収する(電解工程)。溶媒中に陽極及び陰極を浸漬して、UO2 の酸化還元電位付近で電解を行うことにより、ウラン・プルトニウム(TRU)混合酸化物を陰極上に選択的に析出させ、回収することができる。これが再処理製品となる。 Subsequently, the fuel dissolved in the solvent is oxidized (oxidation process). Oxygen gas or air is blown into the solvent in which the fuel is dissolved to oxidize the fuel components. This changes the valence of uranium and plutonium from tetravalent to hexavalent. At this time, since uranium and plutonium are already dissolved in the solvent, the oxidation reaction proceeds promptly. Then, the uranium / plutonium mixed oxide is deposited and recovered on the cathode by subjecting the solvent after the oxidation treatment to electrolytic treatment (electrolysis step). The uranium / plutonium (TRU) mixed oxide can be selectively deposited on the cathode and recovered by immersing the anode and the cathode in a solvent and performing electrolysis near the redox potential of UO 2 . This is a reprocessed product.

(ハル分離・燃料溶解)
図2のAに示す試験装置を用いて、ハル分離・燃料溶解試験を行った。試験装置は、炉10内に、密封可能な試験容器12を設置し、その内部にアルミナ製の坩堝14を設けた構造である。坩堝14内に溶媒(モリブデン酸ナトリウム溶融塩)16を入れ、その中に試料18として二酸化ウランと被覆管材料片(材料名:PNC1520(高速炉「もんじゅ」で使用されている被覆管材料、主成分はSUS316と同じステンレス鋼))を入れて溶解処理を行った。ガス吹き込み管20から不活性ガスを吹き込み、オフガスはオフガス排出管22からオフガス処理系に排出させた。使用した溶媒は、Na2 Mo2 7 で表されるモリブデン酸ナトリウム溶融塩であり、750℃に加熱して行った。
(Hull separation and fuel dissolution)
A hull separation and fuel dissolution test was conducted using the test apparatus shown in FIG. The test apparatus has a structure in which a sealable test vessel 12 is installed in a furnace 10 and an alumina crucible 14 is provided therein. A solvent (molten sodium molybdate) 16 is placed in a crucible 14, and uranium dioxide and a cladding tube material piece (material name: PNC1520 (a cladding tube material used in the fast reactor "Monju" The component was the same stainless steel as SUS316))) and the dissolution treatment was performed. An inert gas was blown from the gas blowing pipe 20 and the off gas was discharged from the off gas discharge pipe 22 to the off gas processing system. The solvent used was a sodium molybdate molten salt represented by Na 2 Mo 2 O 7 and was heated to 750 ° C.

その結果、被覆管材料片は溶けず、約5分間でウラン酸化物のみが全量、モリブデン酸塩へ溶解することが確認できた。このときの溶解反応は、次の通りである。
UO2 +2Na2 Mo2 7 →U(MoO4 2 +2Na2 MoO4
溶解速度は、5mg/cm2 /h以上であった。因みに、湿式再処理を想定した60℃の硝酸6〜7NのUO2 の溶解速度は5mg/cm2 /hであり、実験結果で比較すると約10倍速い溶解速度が得られている。
As a result, it was confirmed that the clad tube material piece did not melt, and that only the entire amount of uranium oxide was dissolved in molybdate in about 5 minutes. The dissolution reaction at this time is as follows.
UO 2 + 2Na 2 Mo 2 O 7 → U (MoO 4 ) 2 + 2Na 2 MoO 4
The dissolution rate was 5 mg / cm 2 / h or more. Incidentally, the dissolution rate of the UO 2 of 60 ° C. nitrate 6~7N assuming the wet reprocessing is 5mg / cm 2 / h, dissolution rate have about 10 times when compared with the experimental results have been obtained.

(酸化)
被覆管材料片を引き上げて取り除いた後、酸化試験を行った。これには、図2のAに示されている試験装置をそのまま使用した。ガス吹き込み管20から酸素ガスを吹き込み、オフガスはオフガス排出管22からオフガス処理系に排出させた。酸化処理後に溶融塩のXPS(X線光電子分光法)解析結果によれば、Uの4価に起因するピークが減少し、Uの6価に起因するピークが増加していることが確認できた。このときの酸化反応は、次の通りである。
U(MoO4 2 +O2 +2NaMoO4 →UO2 MoO4 +2Na2 Mo2 7
(Oxidation)
After the clad tube material piece was pulled up and removed, an oxidation test was conducted. For this purpose, the test apparatus shown in FIG. 2A was used as it was. Oxygen gas was blown from the gas blow pipe 20 and the off gas was discharged from the off gas discharge pipe 22 to the off gas treatment system. According to the XPS (X-ray photoelectron spectroscopy) analysis result of the molten salt after the oxidation treatment, it was confirmed that the peak due to the tetravalent U was decreased and the peak due to the hexavalent U was increased. . The oxidation reaction at this time is as follows.
U (MoO 4 ) 2 + O 2 + 2NaMoO 4 → UO 2 MoO 4 + 2Na 2 Mo 2 O 7

(電解)
被覆管材料片を引き上げて取り除いた後、図2のBに示す試験装置を用いて電解試験を行った。試験装置は、基本的に前記ハル分離・燃料溶解試験で用いたのと同様であり、炉10内に、密封可能な試験容器12を設置し、その内部にシリカ製の坩堝24を設けた構造である。坩堝24内に、6価のウランとして溶解している溶媒(モリブデン酸ナトリウム溶融塩)26が入っている。溶融塩中に陽極30と陰極32を挿入し、電解処理を行った。必要に応じて、適宜ガス吹き込み管20から酸素ガスを吹き込み、オフガスはオフガス排出管22からオフガス処理系に排出させた。陽極30には白金線を使用し、陰極32には白金板を使用した。また、参照電極34として白金線を挿入した。溶融塩の加熱温度を700℃とし、電流密度50mA/cm2 で電解を行った。電解処理後に陰極を引き上げたところ、電解析出物が観察された。この電解析出物をXRD(X線回折法)解析した結果、電解処理によりUO2を陰極上で回収できることが確認できた。
(electrolytic)
After the clad tube material piece was pulled up and removed, an electrolytic test was conducted using the test apparatus shown in FIG. The test apparatus is basically the same as that used in the hull separation / fuel dissolution test, and has a structure in which a sealable test vessel 12 is installed in a furnace 10 and a silica crucible 24 is provided therein. It is. In the crucible 24, a solvent (sodium molybdate molten salt) 26 dissolved as hexavalent uranium is contained. The anode 30 and the cathode 32 were inserted into the molten salt, and electrolytic treatment was performed. If necessary, oxygen gas was appropriately blown from the gas blowing pipe 20 and the off gas was discharged from the off gas discharge pipe 22 to the off gas processing system. A platinum wire was used for the anode 30 and a platinum plate was used for the cathode 32. A platinum wire was inserted as the reference electrode 34. Electrolysis was performed at a molten salt heating temperature of 700 ° C. and a current density of 50 mA / cm 2 . When the cathode was pulled up after the electrolytic treatment, electrolytic deposits were observed. As a result of XRD (X-ray diffraction method) analysis of this electrolytic deposit, it was confirmed that UO2 can be recovered on the cathode by electrolytic treatment.

本発明に係る使用済酸化物燃料の乾式再処理方法のフローチャート。The flowchart of the dry reprocessing method of the spent oxide fuel which concerns on this invention. 試験装置の例を示す説明図。Explanatory drawing which shows the example of a test apparatus. 先行技術の一例を示すフローチャート。The flowchart which shows an example of a prior art.

符号の説明Explanation of symbols

10 炉
12 密閉容器
14,24 坩堝
16,26 溶媒
18 試料
20 ガス吹き込み管
22 ガス排出管
30 陽極
32 陰極
DESCRIPTION OF SYMBOLS 10 Furnace 12 Sealed container 14,24 Crucible 16,26 Solvent 18 Sample 20 Gas blowing pipe 22 Gas exhaust pipe 30 Anode 32 Cathode

Claims (1)

使用済酸化物燃料を溶媒に溶解させ、電解によってウラン・プルトニウム混合酸化物を析出・回収する使用済酸化物燃料の乾式再処理方法において、
金属被覆管内に酸化物燃料が充填されている使用済燃料ピンを機械的に破砕する破砕工程と、燃料ピン破砕片を、溶媒として用いるモリブデン酸溶融塩もしくはタングステン酸溶融塩に投入して不活性ガス雰囲気下で燃料成分の溶解を行うことにより、燃料溶解と同時にハル分離を行うハル分離・燃料溶解工程と、前記溶媒に溶解した燃料成分に酸化処理を施す酸化工程と、酸化処理後の溶媒に電解処理を施すことによってウラン・プルトニウム混合酸化物を陰極上に析出・回収する電解工程とを備えていることを特徴とする使用済酸化物燃料の乾式再処理方法。
In the dry reprocessing method of spent oxide fuel in which spent oxide fuel is dissolved in a solvent and uranium / plutonium mixed oxide is precipitated and recovered by electrolysis,
A crushing process that mechanically crushes spent fuel pins filled with oxide fuel in a metal cladding tube, and fuel pin crush pieces are put into molybdate or tungstic acid molten salt used as a solvent for inertness A hull separation / fuel dissolution step for performing hull separation simultaneously with fuel dissolution by dissolving the fuel component in a gas atmosphere, an oxidation step for oxidizing the fuel component dissolved in the solvent, and a solvent after the oxidation treatment And an electrolytic process for depositing and recovering a uranium / plutonium mixed oxide on the cathode by subjecting to electrolysis to a dry reprocessing method of spent oxide fuel.
JP2006131830A 2006-05-10 2006-05-10 Method for dry reprocessing of spent oxide fuel Expired - Fee Related JP4487031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131830A JP4487031B2 (en) 2006-05-10 2006-05-10 Method for dry reprocessing of spent oxide fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131830A JP4487031B2 (en) 2006-05-10 2006-05-10 Method for dry reprocessing of spent oxide fuel

Publications (2)

Publication Number Publication Date
JP2007303932A JP2007303932A (en) 2007-11-22
JP4487031B2 true JP4487031B2 (en) 2010-06-23

Family

ID=38837977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131830A Expired - Fee Related JP4487031B2 (en) 2006-05-10 2006-05-10 Method for dry reprocessing of spent oxide fuel

Country Status (1)

Country Link
JP (1) JP4487031B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920424B1 (en) * 2007-09-04 2010-03-12 Commissariat Energie Atomique PROCESS FOR THE CONVERSION OF ALKALINE-EARTH METAL CHLORIDES TO TUNGSTATES AND MOLYBDATES AND USES THEREOF
JP5017069B2 (en) * 2007-11-29 2012-09-05 株式会社東芝 Reprocessing of spent fuel
JP5594671B2 (en) * 2011-02-22 2014-09-24 独立行政法人日本原子力研究開発機構 Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions
JP6038585B2 (en) * 2012-10-12 2016-12-07 株式会社東芝 Processing method of radioactive material
JP6513909B2 (en) * 2014-05-30 2019-05-15 株式会社東芝 Radionuclide separation method for vitrified material
JP6502621B2 (en) * 2014-06-03 2019-04-17 株式会社東芝 Complex oxide separation method

Also Published As

Publication number Publication date
JP2007303932A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4726943B2 (en) Uranium recovery from spent nuclear fuel by high alkali carbonate solution system
JP4504247B2 (en) Minor actinide recycling method
JP4487031B2 (en) Method for dry reprocessing of spent oxide fuel
JPH0545000B2 (en)
Lewin et al. International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels
US10323330B2 (en) Method of recovering nuclear fuel material
JP2010127616A (en) Method for recovering metallic fuel material from spent fuel and method for reprocessing spent fuel
JPH03123896A (en) Recovery of actinides
EP1240647B1 (en) Actinide production
JPH0854493A (en) Method for reprocessing spent fuel
JP3519557B2 (en) Reprocessing of spent fuel
JP4679070B2 (en) Method for reprocessing spent oxide fuel
JP5017069B2 (en) Reprocessing of spent fuel
KR101513652B1 (en) Method of processing composite wastes
JP2000056075A (en) Recycling method for spent oxide fuel
JP4147352B2 (en) Method for dry reprocessing of spent oxide fuel
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
KR101553895B1 (en) Method of processing composite wastes
JP4025125B2 (en) How to reprocess spent fuel
JP2001174590A (en) Treating method for radioactive waste
WO2004050955A2 (en) Separation of metals
JPH1164577A (en) Fused salt electrolytic reprocessing method for spent fuel
JPWO2003063178A1 (en) Method of electrolytic reduction of spent oxide fuel and simple dry reprocessing method
JP4025809B2 (en) Reprocessing method by selective sulfidation and partial dissolution
JPH0933688A (en) Recovery method for uranium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees