JP5594671B2 - Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions - Google Patents

Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions Download PDF

Info

Publication number
JP5594671B2
JP5594671B2 JP2011035573A JP2011035573A JP5594671B2 JP 5594671 B2 JP5594671 B2 JP 5594671B2 JP 2011035573 A JP2011035573 A JP 2011035573A JP 2011035573 A JP2011035573 A JP 2011035573A JP 5594671 B2 JP5594671 B2 JP 5594671B2
Authority
JP
Japan
Prior art keywords
chloride
molten salt
reducing agent
tungsten
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011035573A
Other languages
Japanese (ja)
Other versions
JP2012173145A (en
Inventor
崇之 永井
元 山名
俊行 藤井
章寛 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2011035573A priority Critical patent/JP5594671B2/en
Publication of JP2012173145A publication Critical patent/JP2012173145A/en
Application granted granted Critical
Publication of JP5594671B2 publication Critical patent/JP5594671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩を溶媒に用いる化学処理プロセスにおいて、電解析出又は蒸留分離等の操作による回収が困難な酸塩化物及び酸化物並びにこれら化合物イオンを、回収が容易な塩化物又は塩化物イオンの化学種に塩化処理する方法に関する。   The present invention relates to an acid chloride and an oxidation which are difficult to recover by an operation such as electrolytic deposition or distillation separation in a chemical treatment process using a molten salt composed of chloride and a halide such as a mixture of chloride and fluoride as a solvent. And a method of chlorinating these compound ions into chlorides or chemical species of chloride ions that can be easily recovered.

本発明の適用の一具体例としては、使用済核燃料の乾式再処理プロセスにおいて、溶融塩に含まれる回収対象のアクチニド元素の酸塩化物及び酸化物並びにこれら化合物イオンを、金属の形態で回収し易い塩化物又は塩化物イオンに処理する技術への適用がある。また、本発明の適用の他の具体例としては、遷移金属元素又は希土類元素の精錬プロセスにおいて、溶融塩に含まれる回収対象の遷移金属元素又は希土類元素の酸塩化物及び酸化物並びにこれら化合物イオンを、金属の化学形態で回収することが容易な塩化物又は塩化物イオンに処理する技術への適用がある。   As a specific example of the application of the present invention, in the dry reprocessing process of spent nuclear fuel, the acid chlorides and oxides of the actinide elements to be recovered contained in the molten salt and these compound ions are recovered in the form of metal. There is an application to technology that processes easily to chloride or chloride ions. Further, as other specific examples of application of the present invention, in the refining process of transition metal elements or rare earth elements, acid chlorides and oxides of transition metal elements or rare earth elements to be recovered contained in the molten salt and these compound ions Is applied to a technique for treating chlorides or chloride ions, which can be easily recovered in a metal chemical form.

ハロゲン化物溶融塩に含まれる酸塩化物及び酸化物並びにこれら化合物イオンを塩化物又は塩化物イオンに処理する従来技術として、酸素を除去する還元剤を供給する方法が知られている。このような方法の一例としては、例えば、塩化リチウム(LiCl)と塩化カリウム(KCl)の共晶塩化物溶融塩中の二酸化ウラン(UO2)等を四塩化ジルコニウム(ZrCl4)で三塩化ウランへ塩化処理する研究成果が報告されている[非特許文献1]。 As a conventional technique for treating acid chlorides and oxides contained in molten halide salts and chlorides or chloride ions of these compound ions, a method of supplying a reducing agent for removing oxygen is known. As an example of such a method, for example, uranium dioxide (UO 2 ) in eutectic chloride molten salt of lithium chloride (LiCl) and potassium chloride (KCl) is replaced with zirconium tetrachloride (ZrCl 4 ) uranium trichloride. Research results of chlorination treatment have been reported [Non-Patent Document 1].

また、還元剤による塩化処理の従来技術のうち、新たな生成物が溶融塩中に残留しない還元剤として、黒鉛(C)を投入し塩素ガスを供給する方法も知られている[特許文献1]。   In addition, among conventional techniques for chlorination with a reducing agent, a method of supplying chlorine gas by introducing graphite (C) as a reducing agent in which a new product does not remain in the molten salt is also known [Patent Document 1]. ].

さらに、酸化物を塩化物へ直接処理する従来技術として、酸素を除去する還元剤と処理対象の酸化物と混合して反応させ、対象元素の塩化物のみを揮発蒸留等により回収する方法が知られている。このような方法の一例としては、例えば、還元剤に五塩化モリブデン(MoCl5)を用いてZrO2をZrCl4へ塩化させる研究成果が報告されている[非特許文献2]。 Furthermore, as a conventional technique for directly processing oxides into chlorides, there is known a method in which a reducing agent for removing oxygen and an oxide to be treated are mixed and reacted, and only chlorides of the target element are recovered by volatile distillation or the like. It has been. As an example of such a method, for example, a research result of chlorinating ZrO 2 to ZrCl 4 using molybdenum pentachloride (MoCl 5 ) as a reducing agent has been reported [Non-patent Document 2].

特許第3143852号「使用済核燃料の塩化物への転換方法及びその装置」Patent No. 3314852 “Method and apparatus for converting spent nuclear fuel to chloride”

Y. Sakamura, T. Inoue, T. Iwai, H. Moriyama, "Chlorination of UO2, PuO2 and rare earth oxides using ZrCl4 in LiCl-KCl eutectic melt"Journal of Nuclear Materials, Vol.340(2005)39-51.Y. Sakamura, T. Inoue, T. Iwai, H. Moriyama, "Chlorination of UO2, PuO2 and rare earth oxides using ZrCl4 in LiCl-KCl eutectic melt" Journal of Nuclear Materials, Vol. 340 (2005) 39-51. T. Hijikata, M. Kurata, "Novel Chlorination of Zirconium Dioxide at Low Temperature", Electrochemistry, Vol.77, No. 8(2009)702-708・T. Hijikata, M. Kurata, "Novel Chlorination of Zirconium Dioxide at Low Temperature", Electrochemistry, Vol. 77, no. 8 (2009) 702-708

しかしながら、上述の、ハロゲン化物溶融塩に含まれる酸塩化物及び酸化物並びにこれら化合物イオンを塩化物又は塩化物イオンに処理するために、酸素を除去する還元剤を供給する方法は、供給した還元剤が酸塩化物及び酸化物並びにこれら化合物イオンと反応して新たな酸化物又は酸塩化物等の微粒子を生成し、これら生成物が溶融塩中を浮遊又は溶融塩下部に堆積するため、これら生成物を溶融塩から除去する操作が必要となる。具体的には、例えば、上述の非特許文献1に報告されている例では、ZrC14とUO2との反応によりジルコニア(ZrO2)が生成し溶融塩中に残留するため、プロセスとしてZrO2をろ過分離する操作が必要となる。 However, in order to treat the acid chlorides and oxides contained in the halide molten salt and the compound ions into chlorides or chloride ions, a method of supplying a reducing agent for removing oxygen is used in the above-described reduction. The agent reacts with acid chlorides and oxides and these compound ions to produce new oxides or acid chloride fine particles, which float in the molten salt or deposit under the molten salt. An operation for removing the product from the molten salt is required. Specifically, for example, in the example reported in Non-Patent Document 1 described above, for remaining in the reaction by zirconia (ZrO 2) is produced molten salt of ZrC1 4 and UO 2, ZrO 2 as a process It is necessary to perform an operation for separating and filtering.

また、上述の特許文献1に記載されている、黒鉛(C)を投入し塩素ガスを供給する方法は、溶融塩中に新たな生成物を発生させないものの、黒鉛を溶融塩中へ投入した場合、黒鉛の密度が小さいために溶融塩の表面を浮遊し易く、反応で消費される量よりも多い黒鉛を添加する必要があり、この黒鉛の余剰分が、塩化処理後の電解析出による対象元素の回収時に、電極間の短絡原因となるため、電解前に除去する必要がある。   In addition, the method of supplying graphite (C) and supplying chlorine gas described in Patent Document 1 described above does not generate a new product in the molten salt, but when graphite is introduced into the molten salt. Because the density of graphite is small, it is easy to float on the surface of the molten salt, and it is necessary to add more graphite than the amount consumed by the reaction. At the time of element recovery, it causes a short circuit between the electrodes and must be removed before electrolysis.

さらに、上述の非特許文献2に記載されているように、酸化物を塩化物へ直接処理する場合にも、還元剤との反応により生成する酸化物及びオキシ塩化物の粒子を分離する操作が必要となる。   Furthermore, as described in Non-Patent Document 2 described above, even when the oxide is directly processed into chloride, the operation of separating the oxide and oxychloride particles generated by the reaction with the reducing agent is performed. Necessary.

したがって、本発明の目的は、塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩を溶媒に用いる化学処理プロセスを対象に、還元剤との反応による新たな生成物を溶融塩中に残留させることなく、かつ余分な処理剤を溶融塩中に残すことなく、ハロゲン化物溶融塩に含まれる酸塩化物及び酸化物並びにこれら化合物イオンを、回収が容易な塩化物又は塩化物イオンに塩化処理する新しい方法を提供することにある。   Accordingly, an object of the present invention is to provide a chemical treatment process in which a molten salt composed of chloride and a halide such as a mixture of chloride and fluoride is used as a solvent. Chlorides or chloride ions which are easily recovered from acid chlorides and oxides contained in the halide molten salt and these compound ions without remaining in the molten salt and without leaving an extra treating agent in the molten salt. The aim is to provide a new method of chlorination.

本発明の一つの観点によれば、上述の新しい方法は、基本的には、処理対象物である溶融塩中に、タングステン金属からなる還元剤又はタングステン酸塩化物からなる還元剤或いはタングステン塩化物からなる還元剤を供給するとともに、塩素ガス又は塩化水素ガス或いはこれら混合ガスからなる反応ガスを前記溶融塩中に供給し、前記溶融塩に含まれるアクチニド元素又は遷移金属元素或いは希土類元素の、酸塩化物及び酸化物並びにこれら化合物イオンを、塩化物及び塩化物イオンに塩化処理するものである。   According to one aspect of the present invention, the above-described new method basically includes a reducing agent made of tungsten metal or a reducing agent made of tungstate chloride or tungsten chloride in a molten salt to be treated. And a reactive gas consisting of chlorine gas, hydrogen chloride gas or a mixed gas thereof is supplied into the molten salt, and an acid of an actinide element, transition metal element or rare earth element contained in the molten salt is supplied. Chlorides and oxides, and these compound ions are chlorinated to chloride and chloride ions.

上述の反応により生成するタングステン酸塩化物(WO2Cl2、WOCl4等)の生成物は、沸点が300℃以下であるため、アルゴンガス等の不活性ガスを溶融塩中へ供給することで容易に溶融塩から揮発除去でき、溶融塩中に生成物は残留しない。 Since the product of tungstated chloride (WO 2 Cl 2 , WOCl 4, etc.) produced by the above reaction has a boiling point of 300 ° C. or less, an inert gas such as argon gas is supplied into the molten salt. Easily removed from the molten salt by volatilization, and no product remains in the molten salt.

本発明の他の観点に係る方法では、処理対象物である溶融塩中に、タングステン酸塩化物及びタングステン塩化物からなる還元剤を供給し、上述と同様に特定の元素の酸塩化物及び酸化物並びにこれら化合物イオンを、その塩化物及び塩化物イオンに塩化処理する。   In the method according to another aspect of the present invention, a reducing agent composed of tungstic acid chloride and tungsten chloride is supplied into a molten salt that is an object to be treated, and the acid chloride and oxidation of a specific element are performed in the same manner as described above. And the compound ions are chlorinated to their chloride and chloride ions.

この方法においても、アルゴンガスなどの不活性ガスを溶融塩中へ供給することで、還元反応による生成物を容易に溶融塩から揮発除去でき、溶融塩中に生成物が残留することはない。   Also in this method, by supplying an inert gas such as argon gas into the molten salt, the product by the reduction reaction can be easily volatilized and removed from the molten salt, and the product does not remain in the molten salt.

本発明では、塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩を溶媒に用いる化学処理プロセスを対象に、還元剤との反応による新たな生成物を溶融塩中に残留させることなく、かつ余分な処理剤を溶融塩中に残すことなく、ハロゲン化物溶融塩に含まれる酸塩化物及び酸化物並びにこれら化合物イオンを、回収が容易な塩化物又は塩化物イオンにすることができるので、使用済核燃料の乾式再処理プロセスや、遷移金属元素又は希土類元素の精錬プロセスを単純化できる。   In the present invention, for a chemical treatment process in which a molten salt composed of chloride and a halide such as a mixture of chloride and fluoride is used as a solvent, a new product by reaction with a reducing agent is left in the molten salt. Without making an excessive treatment agent remain in the molten salt, the acid chloride and oxide contained in the halide molten salt and these compound ions can be easily recovered as chlorides or chloride ions. Therefore, it is possible to simplify the dry reprocessing process of spent nuclear fuel and the refining process of transition metal elements or rare earth elements.

本発明の第1の形態に係る塩化処理プロセスを示す図。The figure which shows the chlorination process based on the 1st form of this invention. 本発明の第2の形態に係る塩化処理プロセスを示す図。The figure which shows the chlorination process based on the 2nd form of this invention. 本発明の第3の形態に係る塩化処理プロセスを示す図。The figure which shows the chlorination process based on the 3rd form of this invention. 本発明の第1の形態に係る塩化処理プロセスでの還元剤供給方法の説明図。Explanatory drawing of the reducing agent supply method in the chlorination process which concerns on the 1st form of this invention. 本発明の第2の形態に係る塩化処理プロセスでの還元剤供給方法の説明図。Explanatory drawing of the reducing agent supply method in the chlorination process which concerns on the 2nd form of this invention. 本発明の第3の形態に係る塩化処理プロセスでの還元剤供給方法の説明図。Explanatory drawing of the reducing agent supply method in the chlorination process which concerns on the 3rd form of this invention. 本発明の第3の形態に係る塩化処理プロセスでの還元剤供給方法の説明図。Explanatory drawing of the reducing agent supply method in the chlorination process which concerns on the 3rd form of this invention. 本発明の第3の形態に係る塩化処理プロセスでの還元剤供給方法の説明図。Explanatory drawing of the reducing agent supply method in the chlorination process which concerns on the 3rd form of this invention. 本発明の効果を実証するための吸光分光測定方法の説明図。Explanatory drawing of the absorption-spectrum measuring method for demonstrating the effect of this invention. 図7に示された吸光分光測定方法で測定された吸収スペクトルを示す図。The figure which shows the absorption spectrum measured with the absorption spectroscopy measuring method shown by FIG. 図7に示された吸光分光測定方法で測定されたタングステン塩化物(WCl6)を添加した場合の吸収スペクトルを示す図。Show an absorption spectrum of adding measured tungsten chloride at the indicated absorption spectrometry method in FIG. 7 (WCl 6).

本発明に係る、溶融塩中の酸塩化物及び酸化物並びにこれら化合物イオンの塩化処理方法を実施するための形態として、処理対象元素の酸塩化物及び酸化物並びにこれら化合物イオンを塩化処理する還元剤及び反応ガスの種類等によって、大きく分けて以下の(1)乃至(3)のいずれかのプロセスがある。なお、本願明細書中において使用する、還元剤3a、還元剤3b、または還元剤3cとは、特定の物質を指すものではなく、(1)乃至(3)のプロセスによって適用する還元剤の種類が異なることを表す。特定の物質の還元剤を適用する場合は、「タングステン酸塩化物からなる還元剤3b」という表現のように、修飾語によって区別する。   As a mode for carrying out the chlorination treatment method of acid chlorides and oxides and these compound ions in molten salt according to the present invention, reduction of chlorination treatment of acid chlorides and oxides of the elements to be treated and these compound ions Depending on the type of the agent and the reaction gas, there are roughly the following processes (1) to (3). In addition, the reducing agent 3a, reducing agent 3b, or reducing agent 3c used in the specification of the present application does not indicate a specific substance, but the type of reducing agent applied by the processes (1) to (3). Represents different. When a reducing agent of a specific substance is applied, it is distinguished by a modifier such as the expression “reducing agent 3b made of tungstic acid chloride”.

(1)タングステン金属と、塩素ガス又は塩化水素ガスを利用するプロセス   (1) Process using tungsten metal and chlorine gas or hydrogen chloride gas

図1は、タングステン金属(W)からなる還元剤3a及び反応ガス4の供給による塩化処理プロセスを示す。反応ガス4は、塩素ガス又は塩化水素ガスを用いる。処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩2中へ、タングステン金属からなる還元剤3a及び反応ガス4の供給によって、溶融塩2中で処理対象元素の塩化物5a又は塩化物イオン5bに塩化するものである。   FIG. 1 shows a chlorination treatment process by supplying a reducing agent 3 a made of tungsten metal (W) and a reaction gas 4. As the reaction gas 4, chlorine gas or hydrogen chloride gas is used. Reductant 3a composed of tungsten metal and reaction into molten salt 2 composed of acid chloride 1a and oxide 1b of the element to be treated and halides such as chloride and a mixture of chloride and fluoride containing compound ion 1c. By supplying the gas 4, the molten salt 2 is salified to the chloride 5a or chloride ion 5b of the element to be treated.

供給した上記還元剤3a及び反応ガス4と、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cとの反応により生成するタングステン酸塩化物(WO2C12、WOC14等)の生成物6は、沸点が300℃以下であるため、アルゴンガス等の不活性ガス7を溶融塩2中へ供給することで容易に溶融塩2から揮発除去され、低温状態にあるコールドトラップ等で回収することができる。 A product 6 of tungstic acid chloride (WO 2 C1 2 , WOC1 4 etc.) produced by the reaction of the reducing agent 3a and reaction gas 4 supplied with the acid chloride 1a and oxide 1b and these compound ions 1c is Since the boiling point is 300 ° C. or less, by supplying an inert gas 7 such as argon gas into the molten salt 2, it can be easily volatilized and removed from the molten salt 2 and recovered by a cold trap or the like in a low temperature state. it can.

(2)タングステン酸塩化物又はタングステン塩化物と、塩素ガス又は塩化水素ガスを利用するプロセス   (2) Process using tungstated chloride or tungsten chloride and chlorine gas or hydrogen chloride gas

図2は、タングステン酸塩化物(WOC14等)又はタングステン塩化物(WCl5、WCl6等)からなる還元剤3b及び反応ガス4の供給による塩化処理プロセスを示す。反応ガス4は、塩素ガス又は塩化水素ガスを用いる。処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩2中へ、タングステン酸塩化物又はタングステン塩化物からなる還元剤3b及び反応ガス4の供給によって、溶融塩2中で処理対象元素の塩化物5a又は塩化物イオン5bに塩化するものである。 Figure 2 shows the chloride treatment process by the supply of the reducing agent 3b and the reaction gas 4 consisting of tungsten acid chloride (WOC1 4, etc.) or tungsten chloride (WCl 5, WCl 6, etc.). As the reaction gas 4, chlorine gas or hydrogen chloride gas is used. From the tungstated chloride or tungsten chloride into the molten salt 2 composed of the acid chloride 1a and oxide 1b of the element to be treated and the compound ion 1c and a halide such as a chloride and a mixture of chloride and fluoride. By supplying the reducing agent 3b and the reaction gas 4 as described above, the salt 5a or chloride ion 5b of the element to be treated is salified in the molten salt 2.

供給した上記還元剤3b及び反応ガス4と、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cとの反応により生成するタングステン酸塩化物(WO2C12、WOC14等)の生成物6は、沸点が300℃以下であるため、アルゴンガス等の不活性ガス7を溶融塩2中へ供給することで容易に溶融塩2から揮発除去され、低温状態にあるコールドトラップ等で回収される。タングステン酸塩化物又はタングステン塩化物からなる還元剤3bの供給方法は、溶融塩2中へ直接供給する方法、又は溶融塩2と上記還元剤3bを予め溶融した混合物(2+3b)を調製してこれを供給する方法がある。 A product 6 of tungstic acid chloride (WO 2 C1 2 , WOC1 4 etc.) produced by the reaction of the reducing agent 3b and reaction gas 4 supplied with the acid chloride 1a and oxide 1b and these compound ions 1c is Since the boiling point is 300 ° C. or less, the inert gas 7 such as argon gas is easily volatilized and removed from the molten salt 2 by supplying it into the molten salt 2 and recovered by a cold trap or the like in a low temperature state. The method of supplying the reducing agent 3b made of tungstated chloride or tungsten chloride can be directly supplied into the molten salt 2 or a mixture (2 + 3b) prepared by previously melting the molten salt 2 and the reducing agent 3b can be prepared. There is a way to supply.

(3)タングステン酸塩化物及びタングステン塩化物を利用するプロセス
図3は、タングステン酸塩化物(WOCl4等)及びタングステン塩化物(WCl5、WCl6等)からなる還元剤3cの供給による塩化処理プロセスを示す。処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩2中へ、タングステン酸塩化物及びタングステン塩化物からなる還元剤3cの供給によって、溶融塩2中で処理対象元素の塩化物5a又は塩化物イオン5bに塩化するものである。
(3) Process using tungstated chloride and tungsten chloride FIG. 3 shows chlorination treatment by supplying a reducing agent 3c composed of tungstated chloride (WOCl 4 etc.) and tungsten chloride (WCl 5 , WCl 6 etc.). Indicates the process. From tungstated chloride and tungsten chloride into molten salt 2 composed of acid chloride 1a and oxide 1b of the element to be treated and halides such as a chloride and a mixture of chloride and fluoride containing these compound ions 1c By supplying the reducing agent 3c, the salt 5a or chloride ion 5b of the element to be treated is salified in the molten salt 2.

供給した上記還元剤3cと、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cとの反応により生成するタングステン酸塩化物(WO2Cl2、WOCl4等)の生成物6は、沸点が300℃以下であるため、アルゴンガス等の不活性ガス7を溶融塩2中へ供給することで容易に溶融塩2から揮発除去され、低温状態にあるコールドトラップ等で回収される。上記還元剤3cの供給方法は、溶融塩2中へ直接供給する方法、又は溶融塩2と還元剤3cを予め溶融した混合物(2+3c)を調製してこれを供給する方法、或いは沸点以上に還元剤3cを加熱によりガス化して不活性ガス7との混合ガス(3c+7)を供給する方法がある。 The product 6 of tungstic acid chloride (WO 2 Cl 2 , WOCl 4, etc.) produced by the reaction of the supplied reducing agent 3c with the acid chloride 1a and oxide 1b and these compound ions 1c has a boiling point of 300. Since the temperature is lower than or equal to ° C., the inert gas 7 such as argon gas is easily volatilized and removed from the molten salt 2 by supplying it into the molten salt 2 and recovered by a cold trap or the like in a low temperature state. The method of supplying the reducing agent 3c may be a method of supplying directly into the molten salt 2, a method of preparing a mixture (2 + 3c) in which the molten salt 2 and the reducing agent 3c are previously melted and supplying them, or a reduction to the boiling point or higher. There is a method of supplying the mixed gas (3c + 7) with the inert gas 7 by gasifying the agent 3c by heating.

次に、上述の(1)乃至(3)の各塩化処理プロセスについて、さらに具体的に説明する。   Next, each of the above chlorination processes (1) to (3) will be described more specifically.

本発明で対象とする塩化処理プロセスでは、塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩2に含まれる処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを、タングステン金属からなる還元剤3a及び塩素ガス又は塩化水素ガスからなる反応ガス4の供給、又はタングステン酸塩化物又はタングステン塩化物からなる還元剤3b及び塩素ガス又は塩化水素ガスからなる反応ガス4の供給、或いはタングステン酸塩化物及びタングステン塩化物からなる還元剤3cの供給によって、溶融塩2中で処理対象元素の塩化物5a又は塩化物イオン5bに塩化するものである。   In the chlorination treatment process targeted by the present invention, the acid chloride 1a and oxide 1b of the element to be treated contained in the molten salt 2 composed of chloride and a halide such as a mixture of chloride and fluoride, and these compound ions 1c. The supply of the reducing agent 3a made of tungsten metal and the reaction gas 4 made of chlorine gas or hydrogen chloride gas, or the reducing agent 3b made of tungstic acid chloride or tungsten chloride and the reaction gas 4 made of chlorine gas or hydrogen chloride gas Or the reducing agent 3c made of tungstated chloride and tungsten chloride is chlorinated into the chloride 5a or chloride ion 5b of the element to be treated in the molten salt 2.

本発明の特徴は、塩化処理の還元剤として、タングステン金属、タングステン酸塩化物、タングステン塩化物、又はこれら化合物の混合物を用いる点にある。これらタングステン金属等からなる還元剤3a、3b、3cを用いて溶融塩2に含まれる処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを塩化した場合の特徴として、還元剤3a、3b及び反応ガス4との反応、或いは還元剤3cとの反応により生成するタングステン酸塩化物(WO2Cl2、WOCl4等)の生成物6は、沸点が300℃以下であるため、アルゴンガス等の不活性ガス7を溶融塩2中へ供給することで容易に溶融塩2から揮発除去でき、溶融塩2中に生成物6は残留しない。 A feature of the present invention is that tungsten metal, tungstated chloride, tungsten chloride, or a mixture of these compounds is used as a reducing agent for chlorination. As a feature when the acid chloride 1a and oxide 1b of the element to be treated and the compound ion 1c contained in the molten salt 2 are chlorinated using the reducing agents 3a, 3b and 3c made of tungsten metal or the like, the reducing agent 3a Since the product 6 of tungstate (WO 2 Cl 2 , WOCl 4, etc.) produced by the reaction with 3b and the reaction gas 4 or with the reducing agent 3c has a boiling point of 300 ° C. or less, By supplying an inert gas 7 such as a gas into the molten salt 2, it can be easily volatilized and removed from the molten salt 2, and the product 6 does not remain in the molten salt 2.

本発明で対象とする塩化処理プロセスに用いる還元剤及び反応ガス4の供給方法は、還元剤の性状及び図1乃至図3に示したプロセスによって異なる。次にそれらの具体的な供給方法を、図4乃至図6を参照して説明する。   The supply method of the reducing agent and the reaction gas 4 used in the chlorination treatment process targeted in the present invention differs depending on the properties of the reducing agent and the processes shown in FIGS. Next, specific supply methods thereof will be described with reference to FIGS.

(1)のa: 容器11に収納した、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩2中に、還元剤3aとしてタングステン金属又はタングステンを主成分とする合金からなる棒材、板材、網、粒又は粉末を浸漬又は添加し、反応ガス4をセラミック又はガラス或いは耐食性金属で構成された供給管8により溶融塩2中へ供給する。(図4参照)   (1) a: A rod made of tungsten metal or an alloy containing tungsten as a main component as the reducing agent 3a in the molten salt 2 containing the acid chloride 1a, the oxide 1b, and these compound ions 1c contained in the container 11. A material, a plate material, a net, a grain, or a powder is immersed or added, and the reaction gas 4 is supplied into the molten salt 2 through a supply pipe 8 made of ceramic, glass, or corrosion-resistant metal. (See Figure 4)

(2)のa: 容器11に収納した、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩2中に、還元剤3bとしてタングステン酸塩化物若しくはタングステン塩化物又はタングステン酸塩化物若しくはタングステン塩化物を主成分とする化合物からなるペレット、粒又は粉末を添加、或いはタングステン塩化物又はタングステン酸塩化物を表面に付着又は塗布させた棒材、板材若しくは網を浸漬又は添加し、反応ガス4をセラミック又はガラス或いは耐食性金属で構成された供給管8により溶融塩2中へ供給する。(図5a参照)   (2) a: Tungsten oxychloride or tungsten chloride or tungstate oxychloride as reducing agent 3b in molten salt 2 containing acid chloride 1a and oxide 1b and these compound ions 1c stored in container 11 Alternatively, pellets, grains or powders composed of compounds containing tungsten chloride as the main component are added, or rods, plates or nets with tungsten chloride or tungstated chloride attached or coated on the surface are immersed or added to react. The gas 4 is supplied into the molten salt 2 through a supply pipe 8 made of ceramic, glass or corrosion-resistant metal. (See Figure 5a)

(2)のb: 予め、還元剤3bであるタングステン酸塩化物又はタングステン塩化物或いはタングステン酸塩化物又はタングステン塩化物を主成分とする化合物を、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩2と同組成又は類似組成の塩と溶融混合したペレット又は粒状或いは粉末の混合物(2+3b)に加工し、容器11に収納した溶融塩2中にこれら混合物(2+3b)を添加して、反応ガス4をセラミック又はガラス或いは耐食性金属で構成された供給管8により溶融塩2中へ供給する。(図5b参照)   (2) b: In advance, a tungstate chloride or tungsten chloride or a compound mainly composed of tungstate chloride or tungsten chloride, which is the reducing agent 3b, is converted to acid chloride 1a, oxide 1b, and these compound ions. 1c-containing molten salt 2 is processed into a mixture (2 + 3b) of pellets or granules or powder that is melt-mixed with a salt of the same composition or a similar composition, and these mixtures (2 + 3b) are added to molten salt 2 contained in container 11 Then, the reaction gas 4 is supplied into the molten salt 2 through a supply pipe 8 made of ceramic, glass or corrosion-resistant metal. (See Figure 5b)

ここで、タングステン塩化物を添加した場合の反応について、少し詳細に説明する。タングステン塩化物を添加した場合、処理対象物である溶融塩中に含まれるアクチニド元素又は遷移金属元素或いは希土類元素の酸塩化物及び酸化物並びにこれら化合物イオンとの還元反応の副反応生成物として、タングステン酸化物が発生し、溶融塩中に残留する。このため、生成したタングステン酸化物を反応ガスの供給により、タングステン酸塩化物又はタングステン塩化物を生成させ、これらタングステン酸塩化物又はタングステン塩化物を還元剤として活用する。また、タングステン酸化物から反応ガスの供給によって溶融塩中に生成させたタングステン酸塩化物又はタングステン塩化物が余剰になった場合、反応ガス又は不活性ガスを溶融塩中に供給することで溶融塩中から余剰なタングステン酸塩化物又はタングステン塩化物を容易に揮発除去できる。   Here, the reaction when tungsten chloride is added will be described in a little more detail. When tungsten chloride is added, as a side reaction product of a reduction reaction with an actinide element, transition metal element or rare earth element acid chloride and oxide contained in the molten salt that is the object to be treated, and these compound ions, Tungsten oxide is generated and remains in the molten salt. For this reason, the tungsten oxide produced or tungsten chloride is produced by supplying the reaction gas to the produced tungsten oxide, and the tungsten acid chloride or tungsten chloride is utilized as a reducing agent. In addition, when the tungsten oxychloride or tungsten chloride produced in the molten salt by supplying the reaction gas from the tungsten oxide becomes surplus, the molten salt is supplied by supplying the reaction gas or inert gas into the molten salt. Excess tungstated chloride or tungsten chloride can be easily volatilized and removed from the inside.

(3)のa: 容器11に収納した、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩2中に、還元剤3cとしてタングステン酸塩化物、タングステン塩化物又はタングステン酸塩化物及びタングステン塩化物を主成分とする化合物からなるペレット、粒又は粉末を添加、或いはタングステン酸塩化物又はタングステン塩化物を表面に付着又は塗布させた棒材、板材又は網を浸漬又は添加する。(図6a参照)   (3) a: Tungsten oxychloride, tungsten chloride or tungstate oxychloride as reducing agent 3c in molten salt 2 containing acid chloride 1a and oxide 1b and these compound ions 1c stored in container 11 In addition, pellets, grains, or powders composed of a compound containing tungsten chloride as a main component are added, or a bar, plate, or net having tungsten oxychloride or tungsten chloride attached or coated on the surface is immersed or added. (See Figure 6a)

(3)のb: 予め、還元剤3cであるタングステン酸塩化物、タングステン塩化物又はタングステン酸塩化物及びタングステン塩化物を主成分とする化合物を、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩3と同組成又は類似組成の塩と溶融混合したペレット又は粒状或いは粉末の混合物(2+3c)に加工し、容器11に収納した溶融塩2中にこれら混合物(2+3c)を添加する。(図6b参照)   B in (3): Tungsten oxychloride, tungsten chloride or a compound mainly composed of tungstate oxychloride and tungsten chloride, which is the reducing agent 3c, is converted into acid chloride 1a, oxide 1b, and these compound ions. 1c-containing molten salt 3 is processed into a mixture (2 + 3c) of pellets or granules or powder melted and mixed with a salt of the same composition or a similar composition, and these mixtures (2 + 3c) are added to molten salt 2 stored in container 11 . (See Figure 6b)

(3)のc: 還元剤3cであるタングステン酸塩化物、タングステン塩化物又はタングステン酸塩化物及びタングステン塩化物を主成分とする化合物を耐食性容器9内に収納して電気炉10等により加熱してガス化し、アルゴンガス等の不活性ガス7をキャリアガスとするガス化した還元剤3cを含む混合ガス(3c+7)を、セラミック又はガラス或いは耐食性金属で構成された供給管8により、容器11に収納した、酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを含む溶融塩2中へ供給する。(図6c参照)   (3) c: The reducing agent 3c, tungstated chloride, tungsten chloride or a compound composed mainly of tungstated chloride and tungsten chloride is housed in a corrosion-resistant vessel 9 and heated by an electric furnace 10 or the like. The mixed gas (3c + 7) containing the gasified reducing agent 3c using an inert gas 7 such as argon gas as a carrier gas is supplied to the container 11 by a supply pipe 8 made of ceramic, glass or corrosion-resistant metal. The stored acid chloride 1a and oxide 1b and the molten salt 2 containing these compound ions 1c are supplied. (See Figure 6c)

本発明による塩化処理を実施した事例(上記(1)のaによる方法)として、図7に示す吸光分光測定方法によって、塩化処理結果の評価を行った。この評価は、図7に示すように、処理対象のUO2Cl2を含む400℃のLiCl-RbCl溶融塩(2)中に、還元剤としてのタングステン金属網3aを浸漬し、反応ガスである塩素ガス4を供給管8から供給するやり方で行い、W浸漬前のUO2Cl2の吸収スペクトル、W浸漬後のUO2Cl及びUCl4の吸収スペクトル、及びW浸漬及びCl2供給後のUCl4の吸収スペクトルを観察した。 As an example of carrying out the chlorination treatment according to the present invention (the method according to (1) a), the chlorination treatment results were evaluated by the absorption spectroscopy measurement method shown in FIG. As shown in FIG. 7, this evaluation is performed by immersing the tungsten metal net 3a as a reducing agent in a 400 ° C. LiCl—RbCl molten salt (2) containing UO 2 Cl 2 to be treated. The chlorine gas 4 is supplied from the supply pipe 8, and the absorption spectrum of UO 2 Cl 2 before W immersion, the absorption spectrum of UO 2 Cl and UCl 4 after W immersion, and UCl after W immersion and Cl 2 supply. An absorption spectrum of 4 was observed.

より具体的には、処理対象となる酸塩化物1aであるウラン酸塩化物(二塩化ウラニルUO2Cl2)を含む塩化リチウムと塩化ルビジウムの共晶塩(LiCl-RbCl)からなる溶融塩2を分光セル付石英セル11中に装荷し、電気炉等で溶融塩2を400 ℃に加熱溶融し、吸光分光測定によりUO2Cl2の吸収スペクトル(図8中の細線101)を確認した。この状態で、溶融塩2中に還元剤3aであるタングステン金属(W)製網を浸漬して吸光分光測定により吸収スペクトルの変化を観察したところ、一塩化ウラニル(UO2Cl)と少量の四塩化ウラン(UCl4)の生成(図8中の中太線102)を確認した。 More specifically, molten salt 2 comprising eutectic salt of lithium chloride and rubidium chloride (LiCl—RbCl) containing uranium chloride (uranyl dichloride UO 2 Cl 2 ), which is the acid chloride 1a to be treated. Was loaded into a quartz cell 11 with a spectroscopic cell, and the molten salt 2 was heated and melted to 400 ° C. with an electric furnace or the like, and an absorption spectrum of UO 2 Cl 2 (thin line 101 in FIG. 8) was confirmed by absorption spectroscopic measurement. In this state, a tungsten metal (W) net, which is the reducing agent 3a, was immersed in the molten salt 2 and the change in the absorption spectrum was observed by absorption spectrophotometry. As a result, uranyl monochloride (UO 2 Cl) and a small amount of 4 Formation of uranium chloride (UCl 4 ) (middle thick line 102 in FIG. 8) was confirmed.

これらUO2ClとUCl4の生成過程は、下式(反応1)に示す反応によりUO2Clと二塩化タングステン(WCl2)が生成し、生成したWCl2が下式(反応2)に示すUO2Cl2との反応によりUO2ClとUCl4を生成したことによる。 The process of generating UO 2 Cl and UCl 4 is as follows. UO 2 Cl and tungsten dichloride (WCl 2 ) are generated by the reaction shown in the following formula (reaction 1), and the generated WCl 2 is shown in the following formula (reaction 2). According to the generation of the UO 2 Cl and UCl 4 by reaction with UO 2 Cl 2.

2UO2Cl2+W→2UO2Cl+WCl2 (反応1)
7UO2Cl2+2WCl2→6UO2Cl+UCl4+2WOCl4↑ (反応2)
2UO2Cl+4W+11Cl2→2UCl4+4WOCl4↑ (反応3)
UO2Cl2+2W+5Cl2→UCl4+2WOCl4↑ (反応4)
2UO 2 Cl 2 + W → 2UO 2 Cl + WCl 2 (Reaction 1)
7UO 2 Cl 2 + 2WCl 2 → 6UO 2 Cl + UCl 4 + 2WOCl 4 ↑ (Reaction 2)
2UO 2 Cl + 4W + 11Cl 2 → 2UCl 4 + 4WOCl 4 ↑ (Reaction 3)
UO 2 Cl 2 + 2W + 5Cl 2 → UCl 4 + 2WOCl 4 ↑ (Reaction 4)

引き続きこの状態で、反応ガス4である塩素(Cl2)ガスを供給して吸光分光測定により吸収スペクトルの変化を観察したところ、UCl4のみが溶融塩2中に残留すること(図8中の太線103)を確認した。UCl4の生成は下式(反応3)及び(反応4)によるものであり、同時に生成したタングステン酸塩化物(WOCl4)は沸点が300℃以下で溶融塩2中から揮発除去される。仮に、タングステン塩化物が溶融塩2中に溶存した場合、波数20×10〜10×10cm-1の可視光領域にブロードな大きい吸収ピークを示すため、容易に目視で判断できる。なお、上述の図8においては、W浸漬前のUO2Cl2の吸収スペクトルの吸光度が波数18×10から5×10cm-1の範囲で吸収ピークが無いため、細線101の吸光度はこの範囲においてゼロになっている。 In this state, when chlorine (Cl 2 ) gas as the reaction gas 4 was supplied and the change in the absorption spectrum was observed by absorption spectroscopic measurement, only UCl 4 remained in the molten salt 2 (in FIG. 8). A thick line 103) was confirmed. UCl 4 is produced by the following formulas (reaction 3) and (reaction 4), and the tungstate chloride (WOCl 4 ) produced simultaneously is volatilized and removed from the molten salt 2 at a boiling point of 300 ° C. or lower. If tungsten chloride is dissolved in the molten salt 2, it shows a broad absorption peak in the visible light region having a wave number of 20 × 10 3 to 10 × 10 3 cm −1 , so that it can be easily judged visually. In FIG. 8 described above, since the absorbance of the absorption spectrum of UO 2 Cl 2 before W immersion does not have an absorption peak in the wave number range of 18 × 10 3 to 5 × 10 3 cm −1 , the absorbance of the thin wire 101 is It is zero in this range.

処理対象の酸塩化物1aであるUO2Cl2は20×10cm-1以上の紫外光領域に巨大な吸収ピーク(図8中の細線101)を示すが、処理後の吸収スペクトル(図8中の太線103)にこの吸収ピークは極端に低下しており、酸塩化物1aであるUO2Cl2はほぼ全量が塩化物5aであるUCl4に処理することを確認した。 UO 2 Cl 2, which is the acid chloride 1a to be treated, shows a huge absorption peak (thin line 101 in FIG. 8) in the ultraviolet light region of 20 × 10 3 cm −1 or more. In FIG. 8, the thick line 103) shows that the absorption peak is extremely lowered, and it was confirmed that UO 2 Cl 2 which is the acid chloride 1a is processed to UCl 4 which is almost all chloride 5a.

以上述べた通り、本発明は、塩化物及び塩化物とフッ化物の混合物等のハロゲン化物からなる溶融塩2に含まれる処理対象元素の酸塩化物1a及び酸化物1b並びにこれら化合物イオン1cを、還元剤3a、3b、3c及び反応ガス4による新たな生成物6を溶融塩2中に残留させずに、塩化物5a又は塩化物イオン5bに処理することを目的にしているが、これに関して、図7の具体例に示した通り、還元剤3aであるタングステン金属及び反応ガス4である塩素ガスを溶融塩2中に供給することで、溶融塩2中に含まれる処理対象の酸塩化物1aであるUO2Cl2はほぼ全量塩化物UCl4へ処理でき、還元剤3aのタングステン金属からの生成物6であるタングステン酸塩化物を溶融塩2中から揮発除去できることを確認した。 As described above, the present invention provides the acid chloride 1a and oxide 1b of the element to be treated and the compound ion 1c contained in the molten salt 2 composed of chloride and a halide such as a mixture of chloride and fluoride. The aim is to treat the reducing agent 3a, 3b, 3c and the new product 6 from the reaction gas 4 into the chloride 5a or chloride ions 5b without leaving them in the molten salt 2, As shown in the specific example of FIG. 7, by supplying tungsten metal as the reducing agent 3a and chlorine gas as the reaction gas 4 into the molten salt 2, the acid chloride 1a to be treated contained in the molten salt 2 is obtained. It was confirmed that UO 2 Cl 2 , which can be treated with almost all the amount of chloride UCl 4, was able to volatilize and remove the tungstate chloride as the product 6 from the tungsten metal of the reducing agent 3 a from the molten salt 2.

また、処理対象の酸塩化物1aであるUO2Cl2を含む溶融塩2中へタングステン塩化物(WCl6)から成る還元剤3cを供給した場合の状況を、図7と同様な吸光分光測定による評価手法で確認した結果、図9に示すように溶融塩2中に含まれる処理対象の酸塩化物1aであるUO2Cl2は塩化物UCl4へ処理でき(すなわち、UO2 2+がU4+へ還元)、上記還元剤3cのタングステン塩化物からの生成物6であるタングステン酸塩化物を溶融塩2中から揮発除去できることも確認した。 The situation when the reducing agent 3c made of tungsten chloride (WCl 6 ) is supplied into the molten salt 2 containing UO 2 Cl 2 which is the acid chloride 1a to be treated is the same spectroscopic measurement as in FIG. As shown in FIG. 9, UO 2 Cl 2 which is the acid chloride 1a to be treated contained in the molten salt 2 can be treated to the chloride UCl 4 (ie, UO 2 2+ is converted as shown in FIG. 9). reduced to U 4+), was also confirmed to be able to volatilization removal of tungstic acid chlorides from the molten salt 2 is a product 6 from tungsten chloride of the reducing agent 3c.

2 … 酸塩化物、酸化物、化合物イオンを含む溶融塩
3a、3b、3c … 還元剤
4 … 反応ガス
7 … 不活性ガス
8 … 供給管
9 … 還元剤気化容器
10 … 電気炉等加熱装置
11 … 容器
101 … タングステン金属を浸漬する前に観察したUO2Cl2の吸収スペクトル
102 … タングステン金属を浸漬した後に観察したUO2Clの吸収スペクトル
103 … タングステン金属を浸漬し、塩素ガスを供給した後に観察したUCl4の吸収スペクトル
201 … 塩化タングステン(WCl6)を添加する前に観察したUO2Cl2の吸収スペクトル
202 … 塩化タングステン(WCl6)を添加してUCl4が増加したことを示す吸収スペクトル
2 ... Molten salt 3a, 3b, 3c containing acid chloride, oxide, compound ion ... Reducing agent 4 ... Reactive gas 7 ... Inert gas 8 ... Supply pipe 9 ... Reducing agent vaporization vessel 10 ... Heating device 11 such as an electric furnace ... Container 101 ... UO 2 Cl 2 absorption spectrum 102 observed before immersing tungsten metal ... UO 2 Cl absorption spectrum 103 observed after immersing tungsten metal 103 ... After immersing tungsten metal and supplying chlorine gas Observed absorption spectrum 201 of UCl 4 ... Absorption spectrum of UO 2 Cl 2 observed before adding tungsten chloride (WCl 6 ) 202 Absorption showing that UCl 4 increased by adding tungsten chloride (WCl 6 ) Spectrum

Claims (4)

処理対象物である溶融塩中に、タングステン金属からなる還元剤又はタングステン酸塩化物からなる還元剤或いはタングステン塩化物からなる還元剤を供給するとともに、塩素ガス又は塩化水素ガス或いはこれら混合ガスからなる反応ガスを前記溶融塩中に供給し、アルカリ塩化物及びアルカリ土類塩化物並びにこれらを主成分とする塩化物からなる前記溶融塩中に含まれるアクチニド元素の酸塩化物及び酸化物並びにこれら化合物イオンを、アクチニド元素の塩化物及び塩化物イオンに塩化処理する方法。A molten metal, which is an object to be treated, is supplied with a reducing agent made of tungsten metal, a reducing agent made of tungstated chloride or a reducing agent made of tungsten chloride, and made of chlorine gas, hydrogen chloride gas, or a mixed gas thereof. Supplying a reaction gas into the molten salt, acid chlorides and oxides of actinide elements contained in the molten salt comprising alkali chlorides and alkaline earth chlorides and chlorides containing these as main components, and compounds thereof A method in which ions are chlorinated to chloride and chloride ions of actinide elements. 処理対象物である溶融塩中に、タングステン金属からなる還元剤又はタングステン酸塩化物からなる還元剤或いはタングステン塩化物からなる還元剤を供給するとともに、塩素ガス又は塩化水素ガス或いはこれら混合ガスからなる反応ガスを前記溶融塩中に供給し、アルカリ塩化物又はアルカリ土類塩化物或いはこれらを主成分とする塩化物とアルカリフッ化物又はアルカリ土類フッ化物或いはこれらを主成分とするフッ化物との混合物であるハロゲン化物からなる前記溶融塩中に含まれるアクチニド元素の酸塩化物及び酸化物並びにこれら化合物イオンを、アクチニド元素の塩化物及び塩化物イオンに塩化処理する方法。A molten metal, which is an object to be treated, is supplied with a reducing agent made of tungsten metal, a reducing agent made of tungstated chloride or a reducing agent made of tungsten chloride, and made of chlorine gas, hydrogen chloride gas, or a mixed gas thereof. A reaction gas is supplied into the molten salt, and an alkali chloride, an alkaline earth chloride, or a chloride containing these as a main component and an alkali fluoride, an alkaline earth fluoride, or a fluoride containing these as a main component. A method of chlorinating acid chlorides and oxides of actinide elements and their compound ions contained in the molten salt comprising a halide which is a mixture into chlorides and chloride ions of actinide elements. 処理対象物である溶融塩中に、タングステン酸塩化物及びタングステン塩化物からなる還元剤を供給し、アルカリ塩化物及びアルカリ土類塩化物並びにこれらを主成分とする塩化物からなる前記溶融塩中に含まれるアクチニド元素の酸塩化物及び酸化物並びにこれら化合物イオンを、アクチニド元素の塩化物及び塩化物イオンに塩化処理する方法。In the molten salt, which is a treatment object, a reducing agent composed of tungstated chloride and tungsten chloride is supplied, and the molten salt is composed of alkali chloride, alkaline earth chloride and chloride based on these. The acid chloride and oxide of an actinide element and the compound ion contained therein are chlorinated into chloride and chloride ions of an actinide element. 処理対象物である溶融塩中に、タングステン酸塩化物及びタングステン塩化物からなる還元剤を供給し、アルカリ塩化物又はアルカリ土類塩化物或いはこれらを主成分とする塩化物とアルカリフッ化物又はアルカリ土類フッ化物或いはこれらを主成分とするフッ化物との混合物であるハロゲン化物からなる前記溶融塩中に含まれるアクチニド元素の酸塩化物及び酸化物並びにこれら化合物イオンを、アクチニド元素の塩化物及び塩化物イオンに塩化処理する手法。Supplying a reducing agent consisting of tungstated chloride and tungsten chloride into the molten salt that is the object to be treated, and then alkali chloride or alkaline earth chloride or chloride and alkali fluoride or alkali mainly composed of these. Acid chlorides and oxides of actinide elements contained in the molten salt consisting of earth fluorides or halides that are mixtures with fluorides based on these, as well as these compound ions, chlorides of actinide elements and A technique for chlorination of chloride ions.
JP2011035573A 2011-02-22 2011-02-22 Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions Expired - Fee Related JP5594671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035573A JP5594671B2 (en) 2011-02-22 2011-02-22 Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035573A JP5594671B2 (en) 2011-02-22 2011-02-22 Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions

Publications (2)

Publication Number Publication Date
JP2012173145A JP2012173145A (en) 2012-09-10
JP5594671B2 true JP5594671B2 (en) 2014-09-24

Family

ID=46976181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035573A Expired - Fee Related JP5594671B2 (en) 2011-02-22 2011-02-22 Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions

Country Status (1)

Country Link
JP (1) JP5594671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220048882A (en) * 2020-10-13 2022-04-20 한국원자력연구원 Chlorination-decontamination method for radioactive concrete waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038585B2 (en) * 2012-10-12 2016-12-07 株式会社東芝 Processing method of radioactive material
KR101628242B1 (en) * 2014-12-31 2016-06-09 한국원자력연구원 The method for measurement of Lithium metal in the metal reduced after electrochemical reduction
KR102470208B1 (en) * 2020-12-28 2022-11-25 한국원자력연구원 Method for recovering trans-uranium element during nuclear fuel cycle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815447B2 (en) * 1975-04-17 1983-03-25 東ソー株式会社 Tungsten Enkabutsuno Seizouhouhou
JPH0527090A (en) * 1991-07-23 1993-02-05 Hitachi Ltd Separation of radioactive nucleus obtained from reprocessed high level waste liquid
JP3143854B2 (en) * 1995-12-27 2001-03-07 三菱マテリアル株式会社 Nuclear fuel material recovery method and apparatus
JP2000284090A (en) * 1999-03-31 2000-10-13 Sumitomo Metal Mining Co Ltd Method for reprocessing spent nuclear fuel
JP2001056393A (en) * 1999-08-19 2001-02-27 Sumitomo Metal Mining Co Ltd Method for uranium recovery from spent oxide nuclear fuel
JP4147352B2 (en) * 2005-07-08 2008-09-10 独立行政法人 日本原子力研究開発機構 Method for dry reprocessing of spent oxide fuel
JP4487031B2 (en) * 2006-05-10 2010-06-23 独立行政法人 日本原子力研究開発機構 Method for dry reprocessing of spent oxide fuel
FR2920424B1 (en) * 2007-09-04 2010-03-12 Commissariat Energie Atomique PROCESS FOR THE CONVERSION OF ALKALINE-EARTH METAL CHLORIDES TO TUNGSTATES AND MOLYBDATES AND USES THEREOF
JP5017069B2 (en) * 2007-11-29 2012-09-05 株式会社東芝 Reprocessing of spent fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220048882A (en) * 2020-10-13 2022-04-20 한국원자력연구원 Chlorination-decontamination method for radioactive concrete waste
KR102469051B1 (en) 2020-10-13 2022-11-22 한국원자력연구원 Chlorination-decontamination method for radioactive concrete waste

Also Published As

Publication number Publication date
JP2012173145A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
Zhong et al. In-situ anodic precipitation process for highly efficient separation of aluminum alloys
Claux et al. Electrochemical reduction of cerium oxide into metal
Nourry et al. Electrochemistry of uranium in molten LiF–CaF2
RU2603844C1 (en) Method of nitride spent nuclear fuel recycling in salt melts
JP5594671B2 (en) Acid chlorides and oxides in molten salts and methods for chlorination of these compound ions
Cai et al. Investigation on the reaction progress of zirconium and cuprous chloride in the LiCl–KCl melt
Liu et al. Electrochemical behavior of praseodymium on the W and Al–Zn electrodes in LiCl–KCl eutectic: A comparison study
Jiang et al. Electrochemical behavior of Th (IV) on the bismuth electrode in LiCl–KCl eutectic
Jiang et al. The study of metallic uranium production by pyrochemical mix-conversion of U3O8
Wang et al. Electrochemical behavior of Th (IV) and its electrodeposition from ThF4-LiCl-KCl melt
Jiang et al. Electrochemical study of reduction Ce (III) ions and production of high purity metallic cerium by electrorefining in fused LiCl-KCl eutectic
JP2016507008A (en) Room temperature electrodeposition of actinides from ionic liquids
Xu et al. Thermodynamic properties of stable states cerium compounds in fused 3LiCl-2KCl eutectic
Novoselova et al. Electrode processes and electrochemical formation of Dy-Ga and Dy-Cd alloys in molten LiCl–KCl–CsCl eutectic
Yoon et al. Spectroelectrochemical behavior of Cr, Fe, Co, and Ni in LiCl-KCl molten salt for decontaminating radioactive metallic wastes
Jang et al. Synthetic diversity in the preparation of metallic uranium
Lee et al. Electrodeposition characteristics of uranium in molten LiCl-KCl eutectic and its salt distillation behavior
Giridhar et al. Electrochemical behavior of uranium (VI) in 1-butyl-3-methylimidazolium chloride and in 0.05 M aliquat-336/chloroform
US9631290B2 (en) Room temperature electrodeposition of actinides from ionic solutions
EP1240647B1 (en) Actinide production
Xi et al. Electrochemical behavior and separation of Ce (III) in LiCl-KCl molten salt
Zhang et al. Application of liquid Ga-Pb cathode for selective separation of samarium fission products from molten alkali metal chlorides
Han et al. Anodic dissolution behavior of Zr‐Dy alloy in LiCl‐KCl molten salt
Zhu et al. Investigating the influence of F− on U 4+ in molten LiCl–KCl–UF 4 system and electro-deposition of U
Chipman et al. Determination of a surrogate for plutonium electrorefining

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5594671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees