JPH0552479B2 - - Google Patents

Info

Publication number
JPH0552479B2
JPH0552479B2 JP59054639A JP5463984A JPH0552479B2 JP H0552479 B2 JPH0552479 B2 JP H0552479B2 JP 59054639 A JP59054639 A JP 59054639A JP 5463984 A JP5463984 A JP 5463984A JP H0552479 B2 JPH0552479 B2 JP H0552479B2
Authority
JP
Japan
Prior art keywords
zircaloy
hull
oxide
oxidation
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59054639A
Other languages
Japanese (ja)
Other versions
JPS60198498A (en
Inventor
Eiichi Inada
Masao Shiotsuki
Takao Yamamoto
Kazuo Kitagawa
Hirozo Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Kobe Steel Ltd
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Kobe Steel Ltd filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP5463984A priority Critical patent/JPS60198498A/en
Publication of JPS60198498A publication Critical patent/JPS60198498A/en
Publication of JPH0552479B2 publication Critical patent/JPH0552479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 この発明は、再処理施設の前処理工程から発生
する剪断溶解後の使用済燃料被覆管、燃料集合体
の上下端末部材、スペーサ、スプリング等の高レ
ベル金属廃棄物(以下、ハル等という)の減容安
定化処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high-level metal waste (such as spent fuel cladding tubes, upper and lower end members of fuel assemblies, spacers, springs, etc.) after shear melting generated in the pretreatment process of reprocessing facilities. The present invention relates to a volume reduction and stabilization treatment method for (hereinafter referred to as Hull, etc.).

近時、石油を中心とするエネルギー不足に対応
し、原子力エネルギーが注目され開発されている
が、原子力エネルギーはそのエネルギー産出過程
において長い半減期を有する多くの放射性廃棄物
を排出するため、この放射性廃棄物を安全に貯蔵
する技術の確立が重要な問題となつている。とく
に、上記ハル等は放射能レベルが高いばかりでな
く、その材質(ジルカロイ)は自然発火の危険性
を有するためにハンドリングと貯蔵技術が問題と
なる。
In recent years, nuclear energy has been attracting attention and being developed in response to energy shortages centered on petroleum. However, nuclear energy generates a lot of radioactive waste with a long half-life during the energy production process. Establishing technology to safely store waste has become an important issue. In particular, the hulls and the like have not only high radioactivity levels, but also the material (Zircaloy) that they are made of has the risk of spontaneous combustion, which poses problems in handling and storage techniques.

従来、このような放射性物質を含むハル等はそ
の取扱いが困難であることから、再処理施設では
ドラム缶中に納められステンレスライニングした
水槽中に沈める方法で貯蔵していた。しかしなが
らこの方法はハル等の嵩密度が低密度(約1.1
g/cm3)であるために、必要な貯蔵空間が膨大な
ものとなること、また万一の外乱に対して安定な
結合体となつていない等の問題がある。
Conventionally, since it is difficult to handle hulls and the like containing such radioactive materials, reprocessing facilities have stored them in drums and submerging them in stainless steel-lined water tanks. However, this method has a low bulk density (approximately 1.1
g/cm 3 ), there are problems such as the required storage space is enormous and the combination is not stable against unexpected disturbances.

そこで、よりコンパクトで安定な貯蔵形態の検
討が各方面で進められており、例えば金属廃棄物
の場合にはこれを加熱炉中で一旦溶解して固化す
ることにより緻密なブロツク体とする方法が提案
されており、また可燃性廃棄物を焼却して発生し
た放射性焼却灰の場合には、これをマイクロ波溶
融手段によつて溶融固化する方法が提案されてい
る。これらの方法は減容化という点ではいずれも
一応の成功を納めているが、溶解時の放射性ガス
および炉体の耐火物の放射能化など廃棄物の処理
問題において難点がある。
Therefore, more compact and stable storage formats are being investigated in various fields.For example, in the case of metal waste, there is a method of melting it in a heating furnace and solidifying it to form a dense block. In the case of radioactive incineration ash generated by incinerating combustible waste, a method has been proposed in which radioactive incineration ash is melted and solidified using microwave melting means. All of these methods have achieved some success in terms of volume reduction, but they have drawbacks in the disposal of waste, such as radioactive gas during melting and radioactivity of refractories in the furnace body.

ハル等の構成材料は、ジルカロイ:82〜92%、
SUS304:5〜14%、インコネル:2〜4%であ
り、主要構成品であるジルカロイ製の被覆管ハル
は、外径10mm前後、肉厚0.6mm前後、長さ30〜50
mmであつて端部には剪断による変形がある。この
被覆管ハルの表面には強固な不動態としての酸化
物層(ZrO2)が存在する。この層は内面、外面
の両者にわたつて存在する。このうち、外面は原
子炉冷却水との反応によりジルコニウム酸化物が
生成し、その厚さは均一腐蝕部で10〜20μm程
度、内面は核燃料に含まれる酸素によりジルコニ
ウム酸化物が生成し、厚さは薄く、10μm以下と
推定される。
The constituent materials of the hull etc. are Zircaloy: 82-92%;
SUS304: 5 to 14%, Inconel: 2 to 4%, and the main component, the Zircaloy cladding tube hull, has an outer diameter of around 10 mm, a wall thickness of around 0.6 mm, and a length of 30 to 50 mm.
mm, and there is deformation due to shearing at the ends. A strong passive oxide layer (ZrO 2 ) exists on the surface of this cladding tube hull. This layer exists on both the inner and outer surfaces. On the outer surface, zirconium oxide is generated by reaction with the reactor cooling water, and its thickness is approximately 10 to 20 μm in uniformly corroded areas.On the inner surface, zirconium oxide is generated due to the oxygen contained in the nuclear fuel, and the thickness is approximately 10 to 20 μm. is thin, estimated to be less than 10 μm.

放射性廃棄物の管理上、最も注意を要するのは
超ウラン元素(TRU)である。これは、核燃料
物質としてのウランの原子炉中での放射化により
生成するものであり、再処理工程における溶解工
程で核燃料が被覆管材と共存のもとで硝酸に溶解
される時にハル表面に附着する。従つて、ハルは
パイプ形状の内面、外面にわたつて汚染されてい
る。このTRU等による汚染はハルの表面に限ら
れ、実質上すべての量が上記酸化層中に存在する
ことが知られている。
In terms of radioactive waste management, transuranic elements (TRU) require the most attention. This is generated by the activation of uranium as a nuclear fuel material in a nuclear reactor, and it adheres to the hull surface when the nuclear fuel is dissolved in nitric acid in the melting process in the reprocessing process, coexisting with the cladding material. do. Therefore, the pipe-shaped inner and outer surfaces of the hull are contaminated. It is known that contamination by TRU and the like is limited to the surface of the hull, and substantially all of the contamination is present in the oxide layer.

ジルカロイ素材が耐食材料として用いられるこ
とから推測されるように、ZrO2の不動態化層は
非常に耐食性に富み、この表面酸化層のみを溶解
するには、高い活性の溶液やガスを使用する必要
があり、このため後処理が必要となつて放射性物
質取扱い施設一般に高い信頼性が要求され現実的
ではない。また、機械的な作用を基本とする研磨
法等の適用は、上記のようにハルが複雑な形状を
しているために不可能である。
As expected from the fact that Zircaloy material is used as a corrosion-resistant material, the ZrO 2 passivation layer is highly corrosion-resistant, and a highly active solution or gas must be used to dissolve only this surface oxidized layer. Therefore, post-processing is required, and high reliability is generally required for facilities handling radioactive materials, which is not realistic. Further, it is impossible to apply a polishing method based on mechanical action because the hull has a complicated shape as described above.

この発明はこのような技術的背景のもとになさ
れたものであり、比較的簡単な方法で大幅に減容
効果を図ることができる方法を提供するものであ
る。
The present invention has been made against this technical background, and aims to provide a method that can achieve a significant volume reduction effect using a relatively simple method.

すなわち、この発明は使用済燃料被覆管等のジ
ルカロイ製の被処理物を酸化雰囲気中で昇温、降
温の熱サイクルで加熱して全体を酸化物に転換
し、この酸化物を加圧成形した後廃棄するように
したものである。
That is, this invention heats a Zircaloy treated object such as a spent fuel cladding tube in a thermal cycle of increasing and decreasing temperature in an oxidizing atmosphere to convert the entire body into an oxide, and then press-forms this oxide. It was designed to be disposed of afterwards.

ジルコニウムは酸素と広い範囲の固溶体をつく
り、酸素との親和力が高い。これを裏付ける事実
としてジルコニウム酸化物の標準生成自由エネル
ギーが挙げられる。すなわち、ZrO2はステンレ
ス鋼、インコネルの主成分であるFe、Ni、Cr等
の酸化物よりはるかに低い標準自由エネルギー値
を持つているために酸素との結合はより強く、よ
り速くなる。従つて、ジルコニウムの酸化物の層
が表面に存在する場合は、その耐食性のためにほ
とんどの溶液に対して優れた耐食性を示す。一
方、ジルコニウムは本来酸素との反応性が強いた
め、高温においては酸化雰囲気中で著しく酸化さ
れる。とくに窒素ガスを含む酸化性ガス(空気)
中では窒化物の介在する酸化メカニズムのために
酸化反応が促進される。これに対してステンレス
鋼、インコネルは本来これらが耐熱材料であるこ
とから、およびそれらの構成成分の酸化物の標準
生成エネルギーの関係からジルカロイのように完
全に酸化してしまう可能性はなく、塊状として残
る。
Zirconium forms a wide range of solid solutions with oxygen and has a high affinity for oxygen. A fact that supports this is the standard free energy of formation of zirconium oxide. In other words, ZrO 2 has a much lower standard free energy value than oxides of Fe, Ni, Cr, etc., which are the main components of stainless steel and Inconel, so it bonds stronger and faster with oxygen. Therefore, when a zirconium oxide layer is present on the surface, it exhibits excellent corrosion resistance against most solutions due to its corrosion resistance. On the other hand, since zirconium inherently has strong reactivity with oxygen, it is significantly oxidized in an oxidizing atmosphere at high temperatures. Oxidizing gases (air), especially nitrogen gas
The oxidation reaction is accelerated therein due to the nitride-mediated oxidation mechanism. On the other hand, stainless steel and Inconel are inherently heat-resistant materials, and because of the standard energy of formation of their constituent oxides, there is no possibility of them being completely oxidized like Zircaloy, and they form in lumps. remains as.

酸化されたジルコニウム酸化物はHIP法により
粉体から固化成形され、金属カプセルに封入され
たセラミツク固化体となり、その安定性は非常に
勝れている。また、HIP法によらない場合でも、
焼結温度、圧力を下げるために適当な添加材を加
えた後にホツトプレス(一軸圧縮)、あるいは通
常のジルコニウム耐火物ルツボの製造に用いられ
ているような常温成形、常圧焼成の方法も可能で
ある。
The oxidized zirconium oxide is solidified from powder using the HIP method and becomes a ceramic solidified body enclosed in a metal capsule, which has excellent stability. In addition, even if it is not based on the HIP law,
After adding appropriate additives to lower the sintering temperature and pressure, it is also possible to use hot pressing (uniaxial compression), or room-temperature forming and normal-pressure firing methods, such as those used in the production of ordinary zirconium refractory crucibles. be.

第1図はこの発明の実施例を示すフローであ
り、被処理物を酸化炉に挿入し(ステツプ1)、
酸化炉で雰囲気調整系(ステツプ2)により調整
するとともに熱サイクルを加えかつ振動、衝撃を
付与する(ステツプ3)。酸化炉で発生したトリ
チウム、揮発性物質は回収系(ステツプ4)から
ダスト回収系(ステツプ5)を通して、モニター
(ステツプ6)しつつ放出する。所定の処理後、
被処理物を搬出し(ステツプ7)、ステンレス鋼、
インコネルとジルコニウム酸化物とを分離し(ス
テツプ8)、ジルコニウムはHIP法等によりセラ
ミツク固化体にし(ステツプ9)、その他の残留
金属は別途処理する(ステツプ10)。なお、ジル
コニウムの真密度は5.68g/cm3であり、酸素によ
る増量を考慮しても、嵩密度が1.1g/cm3の低密
度のハルは、上記処理により容積が4分の1以下
のセラミツク固化体となり、大幅な減容が達成さ
れる。
FIG. 1 is a flowchart showing an embodiment of the present invention, in which a workpiece is inserted into an oxidation furnace (step 1),
The atmosphere is adjusted in the oxidation furnace using an atmosphere adjustment system (step 2), and a thermal cycle is applied, as well as vibration and impact (step 3). Tritium and volatile substances generated in the oxidation furnace are discharged from the recovery system (step 4) through the dust recovery system (step 5) while being monitored (step 6). After the prescribed processing,
Unload the workpiece (step 7), remove the stainless steel
Inconel and zirconium oxide are separated (step 8), zirconium is solidified into ceramic by the HIP method (step 9), and other residual metals are treated separately (step 10). The true density of zirconium is 5.68 g/cm 3 , and even considering the increase in volume due to oxygen, a low-density hull with a bulk density of 1.1 g/cm 3 can be reduced to less than a quarter of its volume by the above treatment. It becomes a ceramic solidified body, and a significant volume reduction is achieved.

上記酸化を効率的に進めるために、加熱炉の昇
温、降温の熱サイクルを導入し、酸化ジルコニウ
ム、ジルカロイ金属相、結晶構造変態点を通過さ
せ、酸化層と金属相の剥離を促進し、酸素の供給
を高めるようにすることが好ましい。さらに効率
的に酸化を進めるためには、ロータリーキルン等
の中で機械的な振動衝撃を加えながら加熱を進め
ればよい。ハル等に含まれるステンレス鋼、イン
コネルはこのような酸化雰囲気中での加熱では粉
体化するまで酸化することができないので、事後
に粉体と塊状との分離を振動篩等で行なえばよ
い。酸化された後の酸化ジルコニウム粉末はその
ままHIP法で処理するか、焼結性、安定性を増す
ための適当な添加材を加えた後に、ホツトプレス
を施すか、あるいは冷間で成形した後に焼成し、
ペレツト化して処分固化体とすればよい。
In order to efficiently proceed with the oxidation, a thermal cycle of heating and cooling in the heating furnace is introduced to pass the zirconium oxide, zircaloy metal phase, and crystal structure transformation point, promoting separation of the oxide layer and the metal phase. Preferably, the supply of oxygen is increased. In order to proceed with oxidation more efficiently, heating may be carried out while applying mechanical vibration shock in a rotary kiln or the like. Stainless steel and Inconel contained in hulls and the like cannot be oxidized until they are turned into powder by heating in such an oxidizing atmosphere, so the powder and lumps may be separated after the fact using a vibrating sieve or the like. After oxidation, the zirconium oxide powder can be processed as is by the HIP method, or it can be hot-pressed after adding appropriate additives to increase sinterability and stability, or it can be cold-formed and then fired. ,
It may be pelletized to obtain a solidified material for disposal.

実施例 ジルカロイ2パイプ(ハルを模擬し、表面にオ
ートクレーブ処理により酸化層を付与している)
を大気雰囲気中で加熱、熱サイクルを与え、表面
酸化層の変化を観察した。
Example: Zircaloy 2 pipe (simulating a hull, with an oxide layer added to the surface by autoclave treatment)
was heated in the air, subjected to thermal cycles, and changes in the surface oxidation layer were observed.

試 料 ジルカロイ2パイプをつぎの条件でオートクレ
ーブ処理を施し、表面に酸化層を(ハル相当)を
与えたものを使用した。
Sample Zircaloy 2 pipe was autoclaved under the following conditions to give an oxidized layer (equivalent to hull) on the surface.

処理温度:500℃ 処理圧力:105気圧 処理時間:24時間 処理条件および結果 試料はアルミナ製ボートに載せ、大気雰囲気で
電気炉加熱を行なつた。試験に供した試料は各条
件につき1個ずつで第2図に示す4条件について
行なつた。No.1では750℃に加熱して45分間保持
後、750〜1250℃の間の昇温、降温を繰返した。
この温度範囲はジルコニウム酸化物の熱膨張挙動
の不連続性を利用するための温度サイクルであ
る。No.2では750℃に加熱して45分間保持した。
No.3では750〜1250℃の間の昇温、降温を繰返し
た。No.4では1250℃に加熱して15分間保持した。
これらの処理の結果、No.1およびNo.3では全くパ
イプ形状を止めないほどに酸化された。No.2およ
びNo.4では脱落スケールが全く認められず、No.4
では外表面とくに電気炉の熱輻射を直接に受ける
部分に厚い酸化層の成長が認められ、指先で脱落
させることができた。しかしながら内面にはこの
ような脱落可能な酸化層は認められなかつた。こ
れは内面および試料下部の熱輻射を直接受けない
部分(発熱体は上方、側方にある)は局部的に温
度が低く、反応が遅いためと思われる。
Processing temperature: 500°C Processing pressure: 105 atm Processing time: 24 hours Processing conditions and results The sample was placed on an alumina boat and heated in an electric furnace in an atmospheric atmosphere. The test was carried out under four conditions shown in FIG. 2, with one sample for each condition. In No. 1, after heating to 750°C and holding for 45 minutes, the temperature was repeatedly raised and lowered between 750 and 1250°C.
This temperature range is a temperature cycle to take advantage of the discontinuity in thermal expansion behavior of zirconium oxide. In No. 2, it was heated to 750°C and held for 45 minutes.
In No. 3, the temperature was repeatedly raised and lowered between 750 and 1250°C. In No. 4, it was heated to 1250°C and held for 15 minutes.
As a result of these treatments, No. 1 and No. 3 were oxidized to the extent that they did not retain their pipe shape at all. In No. 2 and No. 4, no shedding scale was observed, and in No. 4
A thick oxide layer was observed to have grown on the outer surface, especially on the areas directly exposed to the heat radiation from the electric furnace, and could be removed with the fingertips. However, no such removable oxide layer was observed on the inner surface. This is thought to be because the inner surface and the lower part of the sample, which are not directly exposed to thermal radiation (the heating element is located above and on the side), have locally low temperatures and slow reactions.

以上説明したように、この発明は使用済燃料被
覆管等を酸化雰囲気中で熱サイクルを加えて加熱
して全体を酸化物に転換し、加圧成形により減容
処理後廃棄するようにしたものであり、廃棄物を
大幅に減容することができるものである。また、
振動または衝撃を加えると酸化を速やかに行なえ
るという利点がある。さらに廃棄物はジルコニウ
ム酸化物ベースのセラミツクであるために、その
安定性が優れているという利点もある。
As explained above, this invention heats spent fuel cladding tubes, etc. in an oxidizing atmosphere by applying a thermal cycle to convert them into oxides, which are then disposed of after volume reduction treatment by pressure molding. This makes it possible to significantly reduce the volume of waste. Also,
The advantage of applying vibration or shock is that oxidation can be carried out quickly. Furthermore, since the waste is a ceramic based on zirconium oxide, it has the advantage of excellent stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施する工程のフロー図、
第2図は種々の熱サイクルを示す説明図である。 1……被処理物を酸化炉に挿入するステツプ、
3……酸化炉で処理するステツプ、8……廃棄物
を分離するステツプ。
Figure 1 is a flow diagram of the process of implementing this invention;
FIG. 2 is an explanatory diagram showing various thermal cycles. 1... step of inserting the object to be treated into the oxidation furnace,
3... Step of processing in an oxidation furnace, 8... Step of separating waste.

Claims (1)

【特許請求の範囲】[Claims] 1 使用済燃料被覆管等のジルカロイ製の被処理
物を酸化雰囲気中で昇温、降温の熱サイクルで加
熱して全体を酸化物に転換し、この酸化物を加圧
成形した後廃棄することを特徴とする使用済燃料
被覆管等の処理方法。
1. A Zircaloy treated object such as a spent fuel cladding tube is heated in an oxidizing atmosphere through a thermal cycle of increasing and decreasing temperature to convert the entire product into an oxide, and this oxide is pressure-formed and then disposed of. A method for processing spent fuel cladding tubes, etc., characterized by:
JP5463984A 1984-03-21 1984-03-21 Method of treating spent fuel coated tube, etc. Granted JPS60198498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5463984A JPS60198498A (en) 1984-03-21 1984-03-21 Method of treating spent fuel coated tube, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5463984A JPS60198498A (en) 1984-03-21 1984-03-21 Method of treating spent fuel coated tube, etc.

Publications (2)

Publication Number Publication Date
JPS60198498A JPS60198498A (en) 1985-10-07
JPH0552479B2 true JPH0552479B2 (en) 1993-08-05

Family

ID=12976340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5463984A Granted JPS60198498A (en) 1984-03-21 1984-03-21 Method of treating spent fuel coated tube, etc.

Country Status (1)

Country Link
JP (1) JPS60198498A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644076B2 (en) * 1986-01-07 1994-06-08 動力炉・核燃料開発事業団 Method and apparatus for thermal oxidation treatment of spent nuclear fuel cladding tube
JPS63108300A (en) * 1986-10-24 1988-05-13 中国電力株式会社 Oxidation processing decontamination method of radioactive metallic waste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512448A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS58140699A (en) * 1982-02-17 1983-08-20 株式会社東芝 Removal of radioactive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512448A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS58140699A (en) * 1982-02-17 1983-08-20 株式会社東芝 Removal of radioactive material

Also Published As

Publication number Publication date
JPS60198498A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US5461185A (en) Radioactive waste material disposal
Masson et al. Block-type HTGR spent fuel processing: CEA investigation program and initial results
JPH0552479B2 (en)
Mendel High-level waste glass
JPS58106492A (en) Method of separating structural graphite from nuclear fuel in nuclear fuel element
US2900230A (en) Method of disintegrating refractory bodies
US3485594A (en) Molten iron method of recovering nuclear material from composite bodies
JPH058400B2 (en)
JPS62159099A (en) Heating oxidation treating method and device for spent nuclear fuel coated tube
RU2790544C1 (en) Method for remelting structural materials of shells of spent fuel rods and structural materials of spent fuel assemblies
US3219541A (en) Method of preventing carburization of fuel element cladding metals by uranium carbide fuels
Thomas SOME FUNDAMENTAL PROBLEMS IN FIXATION OF RADIOISOTOPES IN SOLIDS
Johnson Development of a Laboratory-size, Fluidized-bed Reactor
JP2005164320A (en) Fusion treatment method for radioactive incombustible solid waste
JPS61176888A (en) Pre-treatment method of light water reactor spent nuclear-fuel
Taylor et al. Synthesis and Fabrication of Refractory Uranium Compounds. Summary Report for May 1959 Through December 1960
Parker et al. The Volatilization of Fission Products by Melting of Reactor Fuel Plates
Alimgulov et al. Corrosion resistance of silicon carbide in molten salts based on FLiNaK eutectic mixture
Hofmann et al. External and internal reaction of zircaloy tubing with oxygen and UO 2 and its modeling
Chubb et al. PREPARATION OF URANIUM CARBO-NITRIDES BY ARC MELTING
Pearson The explosive working of Metals
Straumanis et al. THE REACTION OF ZIRCONIUM-OXYGEN ALLOYS WITH HYDROFLUORIC ACID
Glazova et al. RESISTANCE OF TITANIUM-ZIRCONIUM SOLID SOLUTIONS AGAINST PLASTIC DEFORMATION AT VARIOUS TEMPERATURES
Swanson An estimation of the explosion hazard during reprocessing of metallic uranium fuel elements metallurgically bonded to zircaloy cladding
JPS62223700A (en) Melting processing method of substance to be processed containing zirconium or zirconium alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term