JPS61250586A - Method of processing spent nuclear fuel element - Google Patents

Method of processing spent nuclear fuel element

Info

Publication number
JPS61250586A
JPS61250586A JP60092824A JP9282485A JPS61250586A JP S61250586 A JPS61250586 A JP S61250586A JP 60092824 A JP60092824 A JP 60092824A JP 9282485 A JP9282485 A JP 9282485A JP S61250586 A JPS61250586 A JP S61250586A
Authority
JP
Japan
Prior art keywords
nuclear fuel
hull
spent
fuel cladding
spent nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092824A
Other languages
Japanese (ja)
Inventor
雅文 中司
今橋 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP60092824A priority Critical patent/JPS61250586A/en
Publication of JPS61250586A publication Critical patent/JPS61250586A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、使用済核燃料要素の処理方法に係シ。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for processing spent nuclear fuel elements.

特に使用済燃料被覆管の処理法に好適な使用済核燃料要
素の処理方法に関する。
In particular, the present invention relates to a method for processing spent nuclear fuel elements suitable for processing spent fuel cladding tubes.

〔発明の背景〕[Background of the invention]

原子力発電所で使用され、運搬されてきた使用済燃料集
合体は、貯蔵池中で数ケ月保管され、燃料集合体中の放
射能が減衰してから処理される。
Spent fuel assemblies used in nuclear power plants and transported are stored in storage ponds for several months, and after the radioactivity in the fuel assemblies has attenuated, they are processed.

使用済燃料棒は、一定期間冷却後に燃料集合体から取外
されて処理工程で束にして切断され、硝酸によって溶解
される。硝酸溶液から分離されたウランおよびプルトニ
ウムは、それぞれ精製・転換されt後に再利用される。
After cooling for a certain period of time, the spent fuel rods are removed from the fuel assembly, cut into bundles in a processing step, and dissolved with nitric acid. Uranium and plutonium separated from the nitric acid solution are purified and converted, respectively, and reused after t.

一方、使用済核燃料要素の燃料被覆管は、ハルと称呼さ
れ、不燃性の放射性固体廃棄物として、未処理のまま水
槽中に貯蔵される。しかしながら、この方法は暫定的な
もので、高放射性の被覆管を保管するためには、膨大な
貯蔵スペースを必要とする。従って、放射性固体廃棄物
の減法・固化処理技術の開発が進められている。例えば
「原子カニ業」26巻8号p52には、ハルの減容法と
して熱間で静水圧を作用させて高密度に圧縮成形する方
法あるいは高周波加熱もしくはアーク法を用いて溶融・
鋳造する方法が報告されている。
On the other hand, the fuel cladding tubes of spent nuclear fuel elements are called hulls and are stored untreated in water tanks as non-flammable radioactive solid waste. However, this method is temporary and requires a huge amount of storage space to store the highly radioactive cladding. Therefore, development of methods for reducing and solidifying radioactive solid waste is underway. For example, ``Atomic Crab Industry'' Vol. 26, No. 8, p. 52 describes methods for reducing the volume of hulls by applying hot hydrostatic pressure to compression mold them to a high density, or by melting and molding them using high-frequency heating or an arc method.
A casting method has been reported.

しかしながら、従来の案では、ハルを加熱することによ
って三重水素(トリチウム)等の放射性のガスが放出さ
れるので好ましくない。ま几、高い放射能を持つハルを
加熱又は溶融するためには、新たに特殊な技術的問題を
解決する必要があシ。
However, the conventional method is undesirable because radioactive gases such as tritium are released by heating the hull. However, in order to heat or melt the highly radioactive hull, new and special technical problems must be solved.

信頼性の高い装置を開発するためには技術上の問題点が
多い。
There are many technical problems in developing a highly reliable device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の問題に鑑みてなされたものであ
シ、破砕後の被覆管を安全に保管できる使用済核燃料要
素の処理方法を提供するにある。
An object of the present invention was made in view of the above-mentioned problems, and it is an object of the present invention to provide a method for processing spent nuclear fuel elements in which shredded cladding tubes can be safely stored.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、ハルと称呼される使用済燃料被覆管を
脆化させる液中に浸漬した後に圧縮破砕し、その後にハ
ルを陽極にして電気化学的に、ハルを構成するジルコニ
ウム合金表面を酸化して貯蔵することにある。
A feature of the present invention is that the spent fuel cladding tube, called a hull, is immersed in a liquid that embrittles it, then compressed and crushed, and then the surface of the zirconium alloy that makes up the hull is electrochemically crushed using the hull as an anode. The purpose is to oxidize and store it.

〔発明の実施例〕 以下、本発明の実施例を第1図を用いて説明する。第1
図に本実施例の再処理工程をフローチャートで示す。軽
水炉で用いた使用済の核燃料要素10を運搬容器から取
シ出【1.約半年間貯蔵池中で冷却し、核燃料要素中の
放射能の減衰を待っ11゜次の前処理工程12で核燃料
要素を機械的に切断して破砕する。その後、切断した核
燃料要素内に存在する燃料ペレットを溶解13し、ピー
レックス法の工程に従ってウラン及びプルトニウムを分
離14.精製15する。核燃料要素を分離した後には、
100100Oの軽水炉の一炉心あたシ約3 Q to
nの割合いで発生する被覆管を処理する必要がある。従
来は、これらの被覆管類を圧縮密封して、高放射性廃棄
物として保管している。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to FIG. 1st
The figure shows a flowchart of the reprocessing process of this example. A spent nuclear fuel element 10 used in a light water reactor is removed from a transport container [1. The nuclear fuel element is cooled in a storage pond for about half a year, and the radioactivity in the nuclear fuel element is allowed to decay.Then, in the next pretreatment step 12, the nuclear fuel element is mechanically cut and crushed. Thereafter, the fuel pellets present in the cut nuclear fuel elements are melted 13 and the uranium and plutonium are separated 14. according to the Pelex process. Purify 15 times. After separating the nuclear fuel elements,
Approximately 3 Q to one core of a 100,100O light water reactor
It is necessary to treat the cladding tubes generated at a rate of n. Conventionally, these cladding tubes are compressed and sealed and stored as highly radioactive waste.

本実施例の再処理法では、燃料ペレットの溶解を完了し
た後に残った被覆管類(ハル)をヨウ素1チ(重量比)
を溶したメチルアルコール溶液を満しtステンレス製容
器中に室温で浸漬する16゜約150時間の浸漬を終え
t後に、上記被覆管類を減容するための圧縮機および破
砕機17に送る。
In the reprocessing method of this example, the cladding tubes (hull) remaining after the melting of the fuel pellets is completed are treated with 1 g of iodine (by weight).
After immersion for about 150 hours at room temperature in a stainless steel container filled with a methyl alcohol solution in which the cladding tubes are immersed for about 150 hours, the cladding tubes are sent to a compressor and crusher 17 for volume reduction.

圧縮および破砕工程を終了したハルを第2図に示す電導
性のバスケット22に収納して容器21内の電解液25
中に浸漬した。電解液25は、水酸化力IJ(KOH)
1%の水溶液を用いた。KOH水溶液中にステンレス鋼
からなる陰極23を浸し。
The hull that has undergone the compression and crushing process is stored in an electrically conductive basket 22 shown in FIG.
immersed in it. The electrolytic solution 25 has a hydration power IJ (KOH)
A 1% aqueous solution was used. A cathode 23 made of stainless steel is immersed in a KOH aqueous solution.

バスケット22を陽極とし、電源部19よ#)80Vの
直流電圧を10時間印加し、破砕されたハル24を陽極
酸化18し九。なお、電解槽は、ステンレス製容器21
および上部ふft20よシなる。
Using the basket 22 as an anode, a DC voltage of 80 V was applied to the power source 19 for 10 hours to anodize the crushed hull 24. Note that the electrolytic cell is a stainless steel container 21.
And the upper part is ft20.

陽極酸化処理18を終了したハルを乾燥し、貯蔵用容器
内に密封し、不燃性固体廃棄物として保管する。
The hull that has undergone the anodizing treatment 18 is dried, sealed in a storage container, and stored as nonflammable solid waste.

このように構成されt本実施例の処理法を用いると従来
技術に比べて次のような効果がある。すなわち、従来技
術においてはハルの減容を機械的な圧縮破壊法で行って
いる。ハルを機械的に圧縮破壊するためには過大な機械
力を必要とする究めに1通常液体窒素を用いて冷却して
破壊する。いわゆる深冷法を採用している。この深冷法
を採用するとシステムが大規模になるために、システム
の維持・管理に多くの努力が必要である。それに対し1
本実施例では粒界脆化液に浸漬することによってジルコ
ニウムの結晶粒界の結合力が著しく低下し、微小な荷重
で圧縮破砕できる。すなわち、粒界脆化処理を加えるこ
とによって圧縮破壊に要する荷重は従来の深冷法に比べ
て約17100以下に低下するので小型のプレスを用い
ることが可能になシ、プレスの維持・管理も容易になつ
几。
By using the processing method of this embodiment configured as described above, the following effects can be obtained compared to the conventional technology. That is, in the prior art, the volume of the hull is reduced by a mechanical compression destruction method. In order to mechanically compress and destroy the hull, an excessive amount of mechanical force is required.1 Usually, liquid nitrogen is used to cool and destroy the hull. A so-called deep cooling method is used. When this deep cooling method is adopted, the system becomes large-scale, and a lot of effort is required to maintain and manage the system. On the other hand, 1
In this example, by immersing the zirconium in a grain boundary embrittlement solution, the bonding strength of the zirconium grain boundaries is significantly reduced, and the zirconium can be compressed and fractured with a small load. In other words, by adding grain boundary embrittlement treatment, the load required for compressive fracture is reduced to about 17,100 yen or less compared to the conventional deep cooling method, making it possible to use a small press and making it easier to maintain and manage the press. It's easy to get used to.

11従来の機械プレスで圧縮減容すると、ハルの圧縮破
壊に伴ってハルの構成材質でらるジルコニウムに新鮮な
破面が形成され、この新鮮な破面を保つ7tまま貯厳す
ることはジルコニウムに自燃発大の可能性が考えられる
ので好ましくなかった。
11 When compressing and reducing the volume with a conventional mechanical press, a fresh fracture surface is formed in the zirconium, which is the constituent material of the hull, as the hull is compressed. This was not desirable because there was a high possibility of self-combustion.

本実施例は、被覆管を構成するジルコニウム材に新鮮な
破面が生じた後に、これらの破面を液体中で酸化させる
ので自然発火の可能性がない。本実施例の陽極酸化処理
の効果を定量化するために。
In this embodiment, after fresh fractured surfaces are generated in the zirconium material constituting the cladding tube, these fractured surfaces are oxidized in the liquid, so there is no possibility of spontaneous combustion. In order to quantify the effect of anodizing treatment in this example.

ジルコニウム試験片の着火の様子を調べ九。すなわち、
ジルカロイ−2製の被覆管から直径が約0.1fiの大
略球形状の破片を大気中で加熱した。
Examine the ignition behavior of the zirconium test piece9. That is,
A roughly spherical piece with a diameter of about 0.1 fi was heated in the air from a Zircaloy-2 cladding tube.

従来の機械的に圧縮破壊し、新鮮な破面を持ったままの
試料は約80(IK加熱すると数秒で着火したのに対し
5本実施例の陽極酸化処理をした試料は着火しなかった
。このことから本実施例のハルの酸化処理は、ハルの貯
蔵時の着火性に対する安全性には著しい効果が認められ
る。
The conventional sample, which was mechanically compressed and fractured with a fresh fracture surface, ignited within a few seconds when heated by IK (IK), but the anodized sample of Example 5 did not ignite. From this, it can be seen that the oxidation treatment of the hull in this example has a significant effect on the safety of ignitability during storage of the hull.

原 さらに付加的な効果として、ハルの内部には厚子炉内で
生成された放射性の三重水素(トリチウム)が形成され
ておシ、従来案のハルの溶解による減容時に、この放射
性トリチウムが施設内大気中に放出散逸する問題点があ
ったが1本発明ではハルを高温にすることなく酸化して
いるのでハルから放射性トリチウムが放出されることが
なく、貯蔵施設の管理技術を大幅に簡素化可能になった
Furthermore, as an additional effect, radioactive tritium (tritium) generated in the Atsushi reactor is formed inside the hull, and when the hull was reduced in volume by melting in the conventional plan, this radioactive tritium was released into the facility. However, in the present invention, radioactive tritium is not released from the hull because it is oxidized without raising the hull to high temperatures, which greatly simplifies storage facility management technology. became possible.

なお、上述の実施例では粒界脆化液としてヨウ素/アル
コール溶液を示し九がヨウ素以外の他のハロゲンであっ
ても良いし、アルコール以外に他の有機溶媒であっても
同様な効果が得られる。また陽極酸化の電解液としてK
OHについて述べたが、他の水酸化物であってもよい。
In addition, in the above-mentioned example, an iodine/alcohol solution is used as the grain boundary embrittlement liquid, and 9 may be other halogens than iodine, or other organic solvents other than alcohol may be used to obtain the same effect. It will be done. Also, K is used as an electrolyte for anodizing.
Although OH has been described, other hydroxides may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、使用済燃料被覆管の破砕が小さな荷重
で容易に実施できるとともに、使用済燃料被覆管の破砕
片の破面に酸化処理を施こすので安全な保管が可能にな
る。
According to the present invention, spent fuel cladding tubes can be easily crushed with a small load, and the fractured surfaces of the fragments of spent fuel cladding tubes are subjected to oxidation treatment, so that safe storage is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の好適な一実施例の処理工程を示したフ
ロー図、第2図は第1図に示す陽極酸化処理を行う装置
の構成図である。 19・・・電源、20・・・上部ふた。21・・・容器
、22・・・バスケット、23・・・陰極、24・・・
ハA/、25・・・電解液。
FIG. 1 is a flow diagram showing the processing steps of a preferred embodiment of the present invention, and FIG. 2 is a configuration diagram of an apparatus for carrying out the anodizing treatment shown in FIG. 1. 19...Power supply, 20...Top lid. 21... Container, 22... Basket, 23... Cathode, 24...
HaA/, 25... Electrolyte.

Claims (1)

【特許請求の範囲】 1、ジルコニウム合金からなる使用済燃料被覆管を圧縮
減容する工程と、前記工程を終了した後、前記使用済燃
料被覆管を電解液中で電気化学的に酸化する工程とを含
むことを特徴とする使用済核燃料要素の処理法。 2、前記圧縮減容工程は、前記使用済燃料被覆管の結晶
粒界脆化雰囲気に前記使用済燃料被覆管をさらした後に
圧縮する工程であり、前記酸化工程は電解液中で前記使
用済燃料被覆管を陽極にして陽極酸化する工程である特
許請求の範囲第1項記載の使用済核燃料要素の処理法。
[Scope of Claims] 1. A step of compressing and reducing the volume of a spent fuel cladding tube made of a zirconium alloy, and a step of electrochemically oxidizing the spent fuel cladding tube in an electrolytic solution after completing the step. A method for processing spent nuclear fuel elements, the method comprising: 2. The compression volume reduction step is a step of compressing the spent fuel cladding after exposing it to a grain boundary embrittlement atmosphere of the spent fuel cladding, and the oxidation step is a step of compressing the spent fuel cladding in an electrolytic solution. 2. A method for treating spent nuclear fuel elements according to claim 1, which is a step of anodizing using a fuel cladding tube as an anode.
JP60092824A 1985-04-30 1985-04-30 Method of processing spent nuclear fuel element Pending JPS61250586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092824A JPS61250586A (en) 1985-04-30 1985-04-30 Method of processing spent nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092824A JPS61250586A (en) 1985-04-30 1985-04-30 Method of processing spent nuclear fuel element

Publications (1)

Publication Number Publication Date
JPS61250586A true JPS61250586A (en) 1986-11-07

Family

ID=14065179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092824A Pending JPS61250586A (en) 1985-04-30 1985-04-30 Method of processing spent nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS61250586A (en)

Similar Documents

Publication Publication Date Title
CA2020601A1 (en) Actinide recovery
US4331618A (en) Treatment of fuel pellets
JP2014029319A (en) Method of processing damaged or molten nuclear fuel
JPS61250586A (en) Method of processing spent nuclear fuel element
JPH08233987A (en) Reprocessing method for spent fuel
US3089751A (en) Selective separation of uranium from ferritic stainless steels
JPH11231091A (en) Reprocessing method for spent nuclear fuel
CA1212787A (en) Method for reprocessing a nuclear reactor fuel rod
US4296074A (en) Method of decladding
JP2002071882A (en) Melting method of spent fuel rod, and apparatus thereof
JPS61176888A (en) Pre-treatment method of light water reactor spent nuclear-fuel
RU2376667C1 (en) Method of breaking down zirconium cladding of fuel rods of fuel assembly
JP2845413B2 (en) Reprocessing method of spent nitride fuel
JPS61250594A (en) Method of breaking down spent nuclear fuel element
JPS61250592A (en) Method of breaking down spent nuclear fuel element
KR101522980B1 (en) Yttrium Tri-iodide Target for Nuclear Transmutation of Nuclide Iodine-129 and the Manufacturing Method thereof, and Treatment System for Nuclide Iodine-129 using It
JP2004239693A (en) Method for melting treatment of radioactive contaminated metal
JPH03140898A (en) Reprocessing method of spent nuclear fuel element
KR100740779B1 (en) Method for reducing radioactivity of spent pwr cladding hull by using pulse laser
JPS6258197A (en) Method of melting and processing spent nuclear fuel
JPH055319B2 (en)
JPS61250587A (en) Method of breaking down spent nuclear fuel element
JPH02196999A (en) Volume reduction processing method for spent nuclear fuel coated tube
JPS61250588A (en) Processor for spent nuclear fuel element
JPS61250593A (en) Method of processing coated tube of spent nuclear fuel element