JPS6117677A - Earthquake resistant wall made of reinforced concrete - Google Patents

Earthquake resistant wall made of reinforced concrete

Info

Publication number
JPS6117677A
JPS6117677A JP13747184A JP13747184A JPS6117677A JP S6117677 A JPS6117677 A JP S6117677A JP 13747184 A JP13747184 A JP 13747184A JP 13747184 A JP13747184 A JP 13747184A JP S6117677 A JPS6117677 A JP S6117677A
Authority
JP
Japan
Prior art keywords
reinforced concrete
pipe
beams
wall plate
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13747184A
Other languages
Japanese (ja)
Other versions
JPH0429832B2 (en
Inventor
泰夫 東端
太田 道彦
育雄 山口
実三郎 今宮
靖昌 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP13747184A priority Critical patent/JPS6117677A/en
Publication of JPS6117677A publication Critical patent/JPS6117677A/en
Publication of JPH0429832B2 publication Critical patent/JPH0429832B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄筋コンクリ−1・造(以下RC造という
)の中高層建物において上下に連層せず梁が中央部で上
下に膨らむことが可能な架構部分の耐震要素として実施
されるRC造耐震壁に係シ、さらにいえば、壁板の中間
部分に両端を上下の梁に定着した太径鉄筋を配筋し、も
って上下の梁の膨らみを拘束する構成としたRC(従来
技術とその問題点など) 従来一般のせん断破壊型耐震壁の力学性能は、第1図中
に曲線■で表わしたように、耐力は大きいが、最大耐力
時の変形が少なく、最大耐力以降は急激々耐力低下を生
ずる、脆性的な破壊性状を呈し変形性能に劣った。
[Detailed Description of the Invention] (Field of Industrial Application) This invention is a medium-to-high-rise building made of reinforced concrete (hereinafter referred to as RC construction), in which the beams do not bulge vertically in the center. Regarding the RC shear wall that is implemented as a possible seismic element of the frame part, more specifically, large-diameter reinforcing bars with both ends fixed to the upper and lower beams are arranged in the middle part of the wall plate, thereby strengthening the upper and lower beams. RC configured to restrain bulges (prior art and its problems, etc.) The mechanical performance of conventional general shear failure type shear walls, as shown by the curve ■ in Figure 1, has a high yield strength, but the maximum yield strength is There was little deformation over time, and after the maximum yield strength, the yield strength rapidly decreased, resulting in brittle fracture behavior and poor deformation performance.

昭 に係るRC造耐震壁は、壁板の中間部に両端を上下の梁
に定着した太径鉄筋を配筋した構成であplその基本的
メカニズムは、 ■ 太径鉄筋に間柱的役割をもたせる。
The RC shear wall constructed in the Showa era consists of large-diameter reinforcing bars placed in the middle of the wall plate with both ends anchored to the upper and lower beams.The basic mechanism is: ■ Giving the large-diameter reinforcing bars the role of studs. .

■ 太径鉄筋が柱・梁(周辺フレーム)の自由変形を拘
束する。
■ Large-diameter reinforcing bars restrain free deformation of columns and beams (surrounding frames).

■ 太径鉄筋が分割壁板の回転を拘束する。■ Large-diameter reinforcing bars restrain the rotation of the dividing wall plate.

等々の技術゛思想に立脚するものである。It is based on such technological ideas.

従って、このRC造耐震壁の力学性能は、第1図中に曲
線@で表わしているとおシ、変形性能に優れ、最大耐力
以後も急激な耐力低下を生じないから、大幅に性能改善
されたことになる。
Therefore, the mechanical performance of this RC shear wall, as shown by the curve @ in Figure 1, is excellent in deformation performance and there is no sudden drop in strength even after the maximum strength, so the performance has been significantly improved. It turns out.

しかし、第1図中にθで指示した最大耐力は、各せん断
容易箇所がぜん断スリップを生じた所謂メカニズム形成
前後に発現され、その後太径鉄筋が働くところまで一旦
耐力低下を生じ、しかる後に一定した耐力で変形が伸び
る。
However, the maximum yield strength indicated by θ in Figure 1 is developed before and after the formation of a so-called mechanism in which shear slip occurs at each easily sheared point, and then the yield strength decreases once until the large-diameter reinforcing bars act, and then becomes constant. The deformation increases due to the yield strength.

従って、耐力の計算は困難であυ、ひいては経済設計を
図9難い欠点があった。
Therefore, it was difficult to calculate the yield strength, which made economical design difficult.

(発明の目的、解決すべき技術的課題)そこで、この発
明の目的は、変形部材角R=20/1000Rad以上
の靭性に富むと共に力学性能を明快に把握できて耐力の
計算が容易であシ、現場打ち施工が容易な構成に改良し
たRC造耐震壁を提供することにある。
(Objective of the Invention, Technical Problem to be Solved) Therefore, the object of the present invention is to provide a structure that is rich in toughness with a deformable member angle R = 20/1000 Rad or more, and that allows for a clear understanding of mechanical performance and easy calculation of proof stress. The object of the present invention is to provide an improved RC shear wall with a structure that is easy to cast on-site.

(第1の発明の構成と作用効果) 上記目的を達成するために、この発明のRC造耐震壁は
、壁板の中間部分の垂直縦方向にせん断容易箇所を形成
するパイプを設置し、両端を上下の梁に定着した太径鉄
筋を前記パイプ中に通して配筋した構成とされている。
(Configuration and effects of the first invention) In order to achieve the above object, the RC shear wall of the present invention is provided with pipes that form easy shear points in the vertical longitudinal direction of the middle part of the wall plate, and The structure is such that large-diameter reinforcing bars fixed to the upper and lower beams are passed through the pipe.

前記パイプはコンクリートの打設圧力に耐える程度の合
成樹脂パイプ又は紙製、繊維製、ブリキ製の如きパイプ
であシ、その外径はせん断容易箇所を特定するため少な
くとも壁厚の40チ以上とされる。
The pipe should be a synthetic resin pipe or a pipe made of paper, fiber, or tin that can withstand the pressure of concrete placement, and its outer diameter should be at least 40 inches thicker than the wall thickness in order to identify areas where shear is likely to occur. be done.

しかして、このRC造耐震壁の場合、水平せん断力の負
荷によってせん断容易箇所にせん断スリップを生じて壁
板が左右2枚に分割され上下の梁が外方に膨らむと、直
ちに太径鉄筋が前記膨らみを拘束するべく働く。太径鉄
筋は引張材として働くのである。
However, in the case of this RC shear wall, when horizontal shear force loads cause shear slip in easy-to-shear areas, dividing the wall plate into left and right pieces and causing the upper and lower beams to bulge outward, large-diameter reinforcing bars are immediately removed. It acts to restrain the bulge. Large diameter reinforcing bars act as tension members.

従って、その力学性能は第1図中に曲線Oで示したとお
シ、最大耐力に達したのちそのまま太径鉄筋の降伏とし
て変形がR=20/1000Rad以上に伸びてゆき、
耐力低下は生じない。即ち力学性能は明快に把握でき、
太径鉄筋の降伏耐力として耐力計算が容易である。
Therefore, its mechanical performance is shown by curve O in Figure 1, and after reaching the maximum yield strength, the deformation continues to increase to R = 20/1000 Rad or more as the large diameter reinforcing bars yield.
No reduction in yield strength occurs. In other words, mechanical performance can be clearly understood,
It is easy to calculate the yield strength as the yield strength of large diameter reinforcing bars.

また、せん断容易箇所を形成するパイプを垂直縦方向に
設置しているから、コンクリート打設のじゃまにならず
、現場打ち施工が容易である。
In addition, since the pipes that form the easy shear points are installed vertically and vertically, they do not interfere with concrete pouring, making it easy to cast on site.

(第2の発明の構成と作用効果) 同上の目的を達成するために、この発明のRC造耐震壁
は、上記第1の発明の構成、即ち壁板の中間部分の垂直
縦方向にパイプを設置し、両端を上下の梁に定着した太
径鉄筋を前記ノくイブ中に通して配筋した構成を主要部
としており、その上に、壁板において梁に沿う境界部分
にせん断容易箇所を設けた構成とされている。
(Configuration and effects of the second invention) In order to achieve the same object, the RC shear wall of the present invention has the configuration of the first invention, that is, pipes are installed in the vertical direction of the middle part of the wall plate. The main structure consists of large-diameter reinforcing bars with both ends fixed to the upper and lower beams, passed through the nodules, and on top of that, easy-to-shear points are placed at the boundaries of the wall plates along the beams. It is said that the configuration is as follows.

前記せん断容易箇所は、コンクリートの打継ぎ若しくは
パイプ等の埋め込みによる断面欠損又は鉄筋のカット等
の手段により設けられている。
The easy-to-shear points are provided by means such as concrete pouring, cross-sectional defects by embedding pipes, etc., or cutting of reinforcing bars.

もっとも、壁板と柱とはできるだけ一体化した構成とさ
れている。
However, the wall plates and pillars are designed to be integrated as much as possible.

従って、このRC造耐震壁のメカニズム時変形状態は第
2図に概念図で示しているとおシ、壁板3と上下の梁2
,2′との境界部がせん断容易箇所により一定耐力でせ
ん断スリップを生じ縁切シされるため、上下の梁2,2
′は膨らむが如くに変形し、必然太径鉄筋4が引張材と
して当初から有効に働く。
Therefore, the mechanical deformation state of this RC shear wall is shown in a conceptual diagram in Figure 2.The wall plate 3 and the upper and lower beams 2
, 2' due to easy shear points, shear slip occurs with a certain resistance force and the edges are cut off.
' deforms as if expanding, and inevitably the large diameter reinforcing bars 4 work effectively as tension members from the beginning.

この時の力の流れは、水干せん断力Qがまず左側の分割
壁板3、のせん断力Qwとして伝わってゆき、該せん断
力はQwは上下の梁2,2′の曲げQB及び太径鉄筋4
の引張力Tとして伝達処理される。これを式で示せば、 Q =Qw X cotθ” (T+ 2 Qn ) 
X cotθとなシ、耐力は明快に計算できる。これを
荷重変形線図で示せば第1図中の曲線Oのとおりとなる
のである。
The flow of force at this time is that the water drying shear force Q is first transmitted as a shear force Qw to the left partition wall plate 3, and this shear force Qw is the bending force QB of the upper and lower beams 2 and 2' 4
It is transmitted as a tensile force T. Expressing this as a formula, Q = Qw X cotθ” (T+ 2 Qn)
The yield strength can be calculated clearly as X cot θ. If this is shown in a load deformation diagram, it will be as shown by curve O in Fig. 1.

即ち、せん断角θが小さいほど有効的である。That is, the smaller the shear angle θ is, the more effective it is.

従って、太径鉄筋は壁板3の横長に応じ、θがあまシ大
きくならないように、場合によっては第3図に示した如
く2箇所ないしそれ以上配筋するのがよい。
Therefore, depending on the horizontal length of the wall plate 3, it is preferable to arrange the large-diameter reinforcing bars at two or more locations as shown in FIG. 3, depending on the case, so that θ does not become too large.

ところで、本願のいずれの発明も、上述の如く水干せん
断力の負荷時に梁2,2′が膨らむが如く変形すること
を前提としている。このため、当該RC造耐震壁の建物
への適用箇所は、第4図に斜線を付して示した如く上下
に連層しない箇所を選んで実施することになる。もつと
も、最下階では基礎梁でを小さく出来、かつ、膨らむ可
能性がある場合にのみ実施可能である。
By the way, all of the inventions of the present application are based on the premise that the beams 2, 2' deform as if swollen when subjected to a water-drying shear force, as described above. For this reason, the locations where the RC shear walls are applied to buildings should be selected and implemented in locations where there are no vertically connected layers, as shown with diagonal lines in Figure 4. However, this is only possible on the lowest floor if the foundation beam can be made smaller and there is a possibility of it expanding.

このよう力条件を考慮するとき、本願のRC造耐震壁の
利用分野は、どちらかといえば中高層建物に適性を有す
るのである。
Considering such force conditions, the field of application of the RC shear wall of the present application is rather suitable for medium and high-rise buildings.

(第3の発明の構成と作用効果) 同上の目的を達成するために、この発明のRC造耐震壁
は、上記第1の発明の構成、即ち壁板の中間部分の垂直
縦方向にせん断容易箇所を形成するパイプを設置し、垂
直縦鉄筋として両端を梁に強固に定着した太径鉄筋を配
筋した構成を主要部としているが、但し、前記太径鉄筋
はコンクリートとのまさつがほとんどないアンボンド鋼
材となし、かつ、これを前記パイプに接近してその両性
側に略対称な配置で配筋した構成を特徴としている。
(Configuration and effects of the third invention) In order to achieve the above object, the RC shear wall of the present invention has the configuration of the first invention, that is, the middle part of the wall board can be easily sheared in the vertical longitudinal direction. The main structure consists of pipes that form the sections, and large-diameter reinforcing bars that are firmly fixed to the beams at both ends as vertical longitudinal reinforcing bars. However, the large-diameter reinforcing bars have almost no contact with the concrete. It is characterized by a structure in which it is made of unbonded steel material, and the steel is arranged near the pipe in a substantially symmetrical arrangement on both sides thereof.

従って、構成に若干の相違はあるが、この発明が奏する
作用効果は上記第1の発明とほとんど同じである。
Therefore, although there are some differences in structure, the effects achieved by this invention are almost the same as those of the first invention.

(第4の発明の構成と作用効果) 同上の目的を達成するために、この発明のRC造耐震壁
は、上記第1の発明の構成、即ち壁板の中間部分の垂直
縦方向にせん断容易箇所を形成するパイプを設置し、垂
直縦鉄筋として両端を梁に強固に定着した太径鉄筋を配
筋した構成を主要部としているが、但し、前記太径鉄筋
はコンクリートとのまさつがほとんどないアンポンド鋼
材となし、かつ、これを前記パイプに接近してその両性
側に略対称な配置で配筋していると共に、壁板における
梁に沿う境界部分にせん断力の伝達が小さいせん断容易
箇所を設けた構成を特徴としている。
(Structure and effect of the fourth invention) In order to achieve the same object, the RC shear wall of the present invention has the structure of the first invention, that is, the middle part of the wall plate can be easily sheared in the vertical longitudinal direction. The main structure consists of pipes that form the sections, and large-diameter reinforcing bars that are firmly fixed to the beams at both ends as vertical longitudinal reinforcing bars. However, the large-diameter reinforcing bars have almost no contact with the concrete. It is made of unponded steel, and is reinforced in a substantially symmetrical arrangement on both sides close to the pipe, as well as easy shear points where the transmission of shear force is small at the boundary part of the wall plate along the beam. It is characterized by the following configuration.

従って、構成に若干の相違はあるけれども、この発明が
奏する作用効果は、上記第2の発明が奏するものとほと
んど同じである。
Therefore, although there are some differences in structure, the effects achieved by this invention are almost the same as those achieved by the second invention.

(実施例) 。(Example) .

第5図と第6図に示したRC造耐震壁は、柱1.1′及
び梁2.2’O鉄筋ID13o主筋1a又は2aにΔ6
のフープ筋1b又は2bを巻いて補強した構成とされて
いる。  、 また、壁板1の縦横筋3a、3bには04の鉄筋を使用
し、間隔100■のダブル配筋として構成されている。
The RC shear wall shown in Figures 5 and 6 has a Δ6
The structure is such that the hoop muscle 1b or 2b is wound and reinforced. In addition, 04 reinforcing bars are used for the vertical and horizontal reinforcements 3a and 3b of the wall board 1, and the structure is configured as a double reinforcement arrangement with an interval of 100 cm.

なお、横筋3bは柱鉄筋中に十分深く挿し入れて定着さ
れているが、縦筋3aは上下の梁2,2′の手前でカッ
トされている。
Note that the horizontal reinforcement 3b is inserted sufficiently deeply into the column reinforcing bars and fixed, but the vertical reinforcement 3a is cut in front of the upper and lower beams 2, 2'.

つまり、壁板3と柱1.1′とは一体化した構造である
が、壁板3と梁2,2′とはせん断スリップが可能な構
造である。
In other words, the wall plate 3 and the pillar 1.1' have an integrated structure, but the wall plate 3 and the beams 2, 2' have a structure that allows shear slippage.

図中4が太径鉄筋であシ、これは壁板3の中間部分の垂
直縦方向にせん断容易箇所を形成するべく設置されたパ
イプ10中に通し、その上下両端4a、4bは上下の梁
鉄筋中に深く挿し入れて強固に定着されている。
4 in the figure is a large diameter reinforcing bar, which is passed through a pipe 10 installed to form an easy shearing point in the vertical longitudinal direction of the middle part of the wall board 3, and its upper and lower ends 4a and 4b are the upper and lower beams. It is inserted deeply into the reinforcing steel and firmly fixed.

従って、太径゛鉄筋4と壁板コンクリートとはパイプ1
0によシ完全に縁が切られておシ、水干せん断力に対し
てはバラバラに独立して働くことができる。即ち、太径
鉄筋4は引張力のみ負担する材として働くのである。
Therefore, the large diameter reinforcing bars 4 and wall plate concrete are pipe 1.
Since the edges are completely cut off at zero, they can act independently against the shear force. In other words, the large-diameter reinforcing bars 4 act as a material that bears only tensile force.

太径鉄筋4にはり、19の鉄筋を使用している。19 reinforcing bars are used on the large diameter reinforcing bar 4.

その引張降伏は3900に9/cdであるから、当:該
RC造耐震壁の耐力は約30トン、変形能力は30/1
000Radと算定することができる。
Since its tensile yield is 3900 to 9/cd, the strength of the RC shear wall is approximately 30 tons, and the deformation capacity is 30/1.
It can be calculated as 000 Rad.

上記パイプ10に、打設コンクリート圧に耐える程度の
あまル強くないもの、例えば塩化ビニルパイプ、紙製パ
イプ、繊維製パイプ、ブリキ製パイプなどが使用されて
いる。該パイプ10の外径は、せん断容易箇所の特定の
ために、壁厚(通常150〜180m)に対し少なくと
も40チ以上(z60〜080)のものが使用されてい
る。もっとも、円形のパイプには限らない。
For the pipe 10, a material that is not too strong enough to withstand the pressure of poured concrete, such as a vinyl chloride pipe, a paper pipe, a fiber pipe, a tin plate pipe, etc., is used. The outer diameter of the pipe 10 is at least 40 inches or more (z60 to 080) relative to the wall thickness (usually 150 to 180 m) in order to identify locations where shear is easy. However, it is not limited to circular pipes.

要するに、パイプ10による空洞が壁板の断面欠損とな
るため、該パイプ100両外側の最薄内部に薄層のせん
断容易箇所9が形成され、そこにせん断スリップが誘発
されるのである。
In short, since the cavity created by the pipe 10 becomes a cross-sectional defect in the wall plate, a thin layer easily sheared area 9 is formed in the thinnest inner part of both outer sides of the pipe 100, and shear slip is induced there.

但し、このせん断容易箇所9は、非破壊時には通常の壁
と一切区別のつかない外観意匠であることに特徴がある
However, this easily sheared area 9 is characterized by an external design that is completely indistinguishable from a normal wall when it is not destroyed.

図中5は壁板3において上下の梁2,2’に沿う境界部
分にせん断容易箇所を形成するため設゛ 置したパイプ
である。
In the figure, 5 is a pipe installed in the wall board 3 in order to form an easy shearing area at the boundary part along the upper and lower beams 2 and 2'.

このRC造耐震壁は、上記構成の鉄筋等を組立てたあと
、コンクリートを現場打ちして完成されている。
This RC shear wall is completed by assembling reinforcing bars, etc. with the above structure, and then pouring concrete on-site.

従って、−足取上の水干せん断力の負荷に対しては、パ
イプ5,10がまず圧縮圧壊され、せん断容易箇所にせ
ん断スリップが誘発され、メカニズムを形成する。即ち
、第2図に概念図を示した如き変形を生じ、壁板3は柱
1,1′とは一体化した構造の1ま左右2枚に分割され
、太径鉄筋4の降伏として変形が伸び、降伏耐力として
計算とおシの耐力が変形時にも保持されるのである。
Therefore, in response to a load of water-dried shear force on the foot, the pipes 5 and 10 are first compressed and crushed, and shear slip is induced at the easy-to-shear points, forming a mechanism. That is, the deformation as shown in the conceptual diagram in FIG. 2 occurs, and the wall plate 3 is divided into two pieces, one on the left and one on the left, which is an integrated structure with the columns 1 and 1', and the deformation occurs as the large diameter reinforcing bars 4 yield. The elongation and yield strength calculated and the strength of the oshi are maintained even during deformation.

(第2の実施例) 第7図と第8図に示したRC造耐震壁の構成の大部分は
、上記第1実施例と同じである。
(Second Embodiment) Most of the configuration of the RC shear wall shown in FIGS. 7 and 8 is the same as in the first embodiment.

但し、太径鉄筋の代シにコンクリートとの摩擦がほとん
どないアンボンド鋼材4′ヲ使用し、これを壁板3の中
間部分の垂直縦方向に設置したパイプ100両外側であ
ってパイプ10にごく接近した略対称な配置として両端
4a’、4b’を上下の梁2,2′の鉄筋中に十分深く
挿し込んで強固に定着した構成とされている。
However, unbonded steel 4', which has almost no friction with concrete, is used in place of the large-diameter reinforcing bars, and this is installed in the vertical direction in the middle of the wall plate 3 on both outsides of the pipe 10. The two ends 4a' and 4b' are arranged closely and substantially symmetrically so that they are inserted sufficiently deeply into the reinforcing bars of the upper and lower beams 2 and 2' to be firmly fixed.

アンボンド鋼材4′は、その表面にアスファルト系の物
質を塗布し、その上にシールドを施したものであシ、水
平せん断力に対してコンクリートとはバラバラに働き垂
直に引張力のみ負担する材として存在する。
The unbonded steel material 4' has an asphalt-based substance applied to its surface and a shield applied thereon, and is a material that acts differently from concrete in response to horizontal shear force and bears only vertical tensile force. exist.

従って、このRC造耐震壁の場合にも、水干せん断力の
負荷に対しては第2図に概念図で示したとおシの変形、
せん断スリップを生じ、第1図中の曲線Oの如く所定の
耐力で変形が20/1000Rad以上によく伸び、変
形時耐力の低下は生じない。即ち、アンボンド鋼材4′
の降伏耐力とし、て耐力の計算が明快にできるのである
Therefore, even in the case of this RC shear wall, the deformation as shown in the conceptual diagram in Figure 2 due to the load of water-drying shear force,
Shear slip occurs, and as shown by curve O in FIG. 1, the deformation extends well to 20/1000 Rad or more at a predetermined proof stress, and no decrease in proof stress occurs during deformation. That is, unbonded steel material 4'
The yield strength can be calculated clearly.

(第3の実施例) 第9図に示したRC造耐震壁は、壁板3の中間部分の垂
直縦方向に垂直縦鉄筋として太径鉄筋4(又はアンボン
ド鋼材4′でも可)をばその両端を上下の梁2,2′に
強固に定着して配筋し、該太径鉄筋4にごく接近してそ
の左右両性側にせん断容易箇所を形成する壁厚より若干
狭幅の鉄板11(又はテフロン板、木材その他のもので
あってもよい。)を設置した構成を特徴とする。鉄板1
10両端外方の薄肉部がぜん断容易箇所となシ、ここに
せん断スリップが誘発され、もって壁板3は左右2枚に
分割されるのである。
(Third Embodiment) The RC shear wall shown in FIG. 9 uses large diameter reinforcing bars 4 (or unbonded steel 4') as vertical reinforcing bars in the vertical direction of the middle part of the wall plate 3. A steel plate 11 (with a width slightly narrower than the wall thickness) is arranged with both ends firmly fixed to the upper and lower beams 2, 2', and is placed in close proximity to the large-diameter reinforcing bars 4 to form easy shear points on both left and right sides thereof. or Teflon board, wood, or other materials). iron plate 1
The thin walled portions on the outside of both ends of the wall plate 10 are easily sheared, and shear slip is induced there, thereby dividing the wall plate 3 into two left and right pieces.

その余の構成は上記第1.第2実施例のものと変シがな
い。
The rest of the configuration is as described in 1 above. There is no difference from that of the second embodiment.

従って、このRC造耐震壁も、水干せん断力の負荷に対
しては第2図に概念図で示したとおりの変形、せん断ス
リップを生じ、耐力の低下を生ずることなく変形が良く
伸びるし、太径鉄筋4の降伏耐力として耐力算出が明快
にできるのである。
Therefore, this RC shear wall also undergoes deformation and shear slip as shown in the conceptual diagram in Figure 2 under the load of water-drying shear force, and the deformation and elongation are good without reducing the bearing strength. The yield strength can be clearly calculated as the yield strength of the diameter reinforcing bar 4.

(その他の実施例) なお、壁板をPC板で形成することも可能である。この
場合、周辺フレームと一体化する必要のあるところには
コツター等を使用して連結する。
(Other Examples) Note that it is also possible to form the wall plate with a PC board. In this case, where it is necessary to integrate it with the surrounding frame, it is connected using a cotter or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例と本発明に係るRC造耐震壁の荷重変形
関係を示したグラフ、第2図はこの発明に係るRC造耐
震壁のメカニズム時変形状態を示した概念図、第3図は
この発明に係るRC造耐震壁のパリエージ1ンを示した
概念図、第4図はこの発明に係るRC造耐震壁の適用例
を示した建物概念図、第5図はこの発明の第1実施例を
示したRC造耐震壁の鉄筋組立図、第6図は第5図の■
−■矢視断面図、第7図は第2実施例の鉄筋組立図、第
8図は第7図の■−■矢視断面図、第9図は第3実施例
の断面図である。 第2E 第3WA 第4WA 第58iQ 第6図 第7図 第811 第9図
Fig. 1 is a graph showing the load deformation relationship between the conventional example and the RC shear wall according to the present invention, Fig. 2 is a conceptual diagram showing the mechanical deformation state of the RC shear wall according to the present invention, and Fig. 3 4 is a conceptual diagram showing the pariage 1 of the RC shear wall according to the present invention, FIG. 4 is a conceptual diagram of a building showing an application example of the RC shear wall according to the present invention, and FIG. The reinforcing bar assembly diagram of the RC shear wall showing an example, Figure 6 is the same as ■ in Figure 5.
FIG. 7 is a sectional view taken along arrows -■, FIG. 7 is a reinforcing bar assembly diagram of the second embodiment, FIG. 8 is a sectional view taken along arrows -■ in FIG. 7, and FIG. 9 is a sectional view of the third embodiment. 2E 3WA 4th WA 58iQ Figure 6 Figure 7 811 Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1)鉄筋コンクリート造の柱及び梁で囲まれた架構面
内に鉄筋コンクリート造の壁板を一体的に設けている鉄
筋コンクリート造耐震壁において、 壁板(3)の中間部分の垂直縦方向にせん断容易箇所(
9)を形成するパイプ(10)を設置し、垂直縦鉄筋と
して両端を梁(2)、(2′)に強固に定着した太径鉄
筋(4)を前記パイプ(10)中に通して配筋している
ことを特徴とする鉄筋コンクリート造耐震壁。
(1) In a reinforced concrete shear wall in which a reinforced concrete wall plate is integrally installed within the frame surface surrounded by reinforced concrete columns and beams, shearing is easy in the vertical longitudinal direction of the middle part of the wall plate (3). part(
9) is installed, and large-diameter reinforcing bars (4) with both ends firmly fixed to the beams (2) and (2') as vertical longitudinal reinforcing bars are placed through the pipe (10). A reinforced concrete shear wall characterized by its striations.
(2)鉄筋コンクリート造の柱及び梁で囲まれた架構面
内に鉄筋コンクリート造の壁板を一体的に設けている鉄
筋コンクリート造耐震壁において、 壁板(3)の中間部分の垂直縦方向にせん断容易箇所(
9)を形成するパイプ(10)を設置し、垂直縦鉄筋と
して両端を梁(2)、(2′)に強固に定着した太径鉄
筋(4)を前記パイプ(10)中に通して配筋してあり
、壁板(3)において梁(2)、(2′)に沿う部分に
せん断力の伝達能力が小さいせん断容易箇所(5)を設
けていることを特徴とする鉄筋コンクリート造耐震壁。
(2) In a reinforced concrete shear wall where a reinforced concrete wall plate is integrally installed within the frame surface surrounded by reinforced concrete columns and beams, shearing is easy in the vertical longitudinal direction of the middle part of the wall plate (3). part(
9) is installed, and large-diameter reinforcing bars (4) with both ends firmly fixed to the beams (2) and (2') as vertical longitudinal reinforcing bars are placed through the pipe (10). A shear wall made of reinforced concrete, characterized in that the wall plate (3) is provided with easily sheared areas (5) with a small shearing force transmission capacity along the beams (2) and (2'). .
(3)鉄筋コンクリート造の柱及び梁で囲まれた架構面
内に鉄筋コンクリート造の壁板を一体的に設けている鉄
筋コンクリート造耐震壁において、 壁板(3)の中間部分の垂直縦方向にせん断容易箇所(
9)を形成するパイプ(10)を設置し、垂直縦鉄筋と
して両端を梁(2)、(2′)に強固に定着したアンボ
ンド鋼材(4′)を前記パイプ(10)に接近してその
両外側路対称な配置に配筋していることを特徴とする鉄
筋コンクリート造耐震壁。
(3) In a reinforced concrete shear wall where a reinforced concrete wall plate is integrally provided within the frame surface surrounded by reinforced concrete columns and beams, shearing is easy in the vertical longitudinal direction of the middle part of the wall plate (3). part(
A pipe (10) forming a pipe (9) is installed, and an unbonded steel member (4') whose both ends are firmly fixed to the beams (2) and (2') as a vertical longitudinal reinforcing bar is brought close to the pipe (10) and attached to the pipe (10). A reinforced concrete shear wall characterized by having reinforcement arranged symmetrically on both sides.
(4)鉄筋コンクリート造の柱及び梁で囲まれた架構面
内に鉄筋コンクリート造の壁板を一体的に設けている鉄
筋コンクリート造耐震壁において、 壁板(3)の中間部分の垂直縦方向にせん断容易箇所(
9)を形成するパイプ(10)を設置し、垂直縦鉄筋と
して両端を梁(2)、(2′)に強固に定着したアンボ
ンド鋼材(4′)を前記パイプ(10)に接近してその
両外側路対称な配置に配筋してあり、壁板(3)におい
て梁(2)、(2′)に沿う部分にせん断力の伝達能力
が小さいせん断容易箇所(5)を設けていることを特徴
とする鉄筋コンクリート造耐震壁。
(4) In a reinforced concrete shear wall where a reinforced concrete wall plate is integrally installed within the frame surface surrounded by reinforced concrete columns and beams, shearing is easy in the vertical longitudinal direction at the middle part of the wall plate (3). part(
A pipe (10) forming a pipe (9) is installed, and an unbonded steel member (4') whose both ends are firmly fixed to the beams (2) and (2') as a vertical longitudinal reinforcing bar is brought close to the pipe (10) and attached to the pipe (10). Reinforcement is arranged in a symmetrical arrangement on both outer paths, and easy shear points (5) with low shear force transmission capacity are provided in the wall plate (3) along the beams (2) and (2'). A reinforced concrete shear wall with the following features:
JP13747184A 1984-07-03 1984-07-03 Earthquake resistant wall made of reinforced concrete Granted JPS6117677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13747184A JPS6117677A (en) 1984-07-03 1984-07-03 Earthquake resistant wall made of reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13747184A JPS6117677A (en) 1984-07-03 1984-07-03 Earthquake resistant wall made of reinforced concrete

Publications (2)

Publication Number Publication Date
JPS6117677A true JPS6117677A (en) 1986-01-25
JPH0429832B2 JPH0429832B2 (en) 1992-05-20

Family

ID=15199379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13747184A Granted JPS6117677A (en) 1984-07-03 1984-07-03 Earthquake resistant wall made of reinforced concrete

Country Status (1)

Country Link
JP (1) JPS6117677A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826611B2 (en) 2011-11-17 2015-12-02 株式会社ミツトヨ Hardness tester and hardness test method

Also Published As

Publication number Publication date
JPH0429832B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
JPS6117677A (en) Earthquake resistant wall made of reinforced concrete
JPS62146342A (en) Reinforced steel bar beam
JP2729129B2 (en) Core pillar
JPH08246547A (en) Pole-beam junction structure
JPH0365467B2 (en)
JPS61165452A (en) Concrete filled steel beam
JPS61261556A (en) Reinforcement of connection part of pillar and beam/slab in inverse impact construction method
JPS61179947A (en) Steel pipe concrete composite pillar
JPS6022151B2 (en) Precast reinforced concrete beam section split vertically
JPS6411796B2 (en)
JPS61179949A (en) Reinforced concrete pillar
JPS6362622B2 (en)
JPH06248755A (en) Steel framed concrete column and manufacture thereof
JPS6229588B2 (en)
SU672304A2 (en) Assembly for joining building framework column to foundation
JPS60175670A (en) Earthquake-proof wall of reinforced concrete
JPS6363708B2 (en)
JP2005023603A (en) Reinforcing structure of column-beam joining part
JPH08226131A (en) Anchor bolt erection structure
JPS6286253A (en) Pillar structure
JPH0548355B2 (en)
JPS6016674A (en) Earthquake-proof wall having stud
JPH0414551A (en) Core column
JPH0619158B2 (en) High-rise building structure
JPS6175144A (en) Structure of high building