JPH0414551A - Core column - Google Patents

Core column

Info

Publication number
JPH0414551A
JPH0414551A JP11169990A JP11169990A JPH0414551A JP H0414551 A JPH0414551 A JP H0414551A JP 11169990 A JP11169990 A JP 11169990A JP 11169990 A JP11169990 A JP 11169990A JP H0414551 A JPH0414551 A JP H0414551A
Authority
JP
Japan
Prior art keywords
core column
core
strength
cylindrical body
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11169990A
Other languages
Japanese (ja)
Other versions
JPH07107302B2 (en
Inventor
Hiroyuki Tsubosaki
坪崎 裕幸
Hiroyuki Tomatsuri
弘幸 都祭
Yoshiyuki Murata
義行 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP11169990A priority Critical patent/JPH07107302B2/en
Publication of JPH0414551A publication Critical patent/JPH0414551A/en
Publication of JPH07107302B2 publication Critical patent/JPH07107302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE:To provide compressive strength and compressive flexibility by bringing spiral bars into close contact with each other to form a cylindrical body, providing a supporting plate at the upper or lower end of the body and filling filling material into the body. CONSTITUTION:A spiral bar 1 is formed into a cylindrical body 2 with proper diameter, leaving a gap of about 0-2mm between adjacent bars, while a supporting plate 3 with a diameter larger than that of the body 2 is welded to the lower end of the body 2. And filling material 4 composed of high-strength concrete etc., is filled into the body 2 to form a core column A. As a result, the core column A is prevented from being embedded in a base slab.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超高層集合住宅の下階柱や、連層耐震壁におけ
る付帯柱等の高軸力鉄筋コンクリート柱に埋設されるコ
ア柱に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a core column embedded in a high axial force reinforced concrete column such as a lower floor column of a super high-rise apartment building or an auxiliary column in a multi-story shear wall. be.

(従来の技術) 超高層鉄筋コンクリート造建物の下階柱や連層耐震壁の
下階の付帯柱は、地震時において高軸圧縮力や、せん断
力を繰返し受けるため、コアコンクリートが圧壊して脆
性的な破壊を呈していた。
(Conventional technology) Lower floor columns of ultra-high-rise reinforced concrete buildings and attached columns on the lower floors of multi-story shear walls are repeatedly subjected to high axial compressive force and shear force during earthquakes, resulting in the core concrete being crushed and becoming brittle. It was causing major destruction.

そのため、従来はこのような高軸圧縮力や、繰り返しの
せん断力に対して、コアコンクリートの拘束を帯筋のみ
で行う設計をしていたが、この程度の帯筋量では、コア
コンクリートの圧壊が除々に進展して靭性に乏しい挙動
を示していた。
Therefore, in the past, the core concrete was designed to be restrained only by stirrups against such high axial compressive force and repeated shear force, but with this level of stirrup, the core concrete could not be crushed. gradually progressed and showed behavior with poor toughness.

そこで、前記コアコンクリートの圧壊を防ぐため、帯筋
量又は主筋量を多くすることが考えられる。しかし、前
者の場合は、大きな変形性能を確保することはできるが
、帯筋のピッチが非常に小さくなるためにコンクリート
の骨材が帯筋に引っ掛かって良好なコンクリートの打設
が行えず、かえって柱の強度と靭性の低下を招く。
Therefore, in order to prevent the core concrete from collapsing, it is conceivable to increase the amount of tie reinforcements or main reinforcements. However, in the former case, although a large deformation performance can be ensured, the pitch of the stirrups becomes very small, so the concrete aggregate gets caught in the stirrups, making it difficult to place concrete properly, which can lead to problems. This results in a decrease in the strength and toughness of the column.

また後者の場合は、柱や耐震壁の曲げ耐力が増大するた
め、それに伴って増大するせん断力に対応する設計が困
難となり、結果的には脆性的なせん断破壊を起こすとい
う問題があった。
In the latter case, the bending strength of the columns and shear walls increases, making it difficult to design a structure that can handle the increased shear force, resulting in brittle shear failure.

そこで、前記のような問題を解決するために、近年はコ
アコンクリート内に、高強度、高靭性を有するコア柱な
どを埋設する方法なども考えられている。
Therefore, in order to solve the above-mentioned problems, in recent years, methods of burying core columns having high strength and high toughness in core concrete have been considered.

(問題を解決しようとする課題) しかし、上記のようにコア柱の耐力を増大させると、コ
ア柱下端部の支圧応力が基礎スラブの支圧強度を越えて
しtうなめ、地震時において高軸圧縮力や、せん断力を
繰返し受けると、該コア柱自体が基礎スラブ内に埋没し
て、柱自体が破壊してしまうという問題があった。
(Issues to solve the problem) However, if the bearing strength of the core column is increased as described above, the bearing stress at the bottom end of the core column will exceed the bearing strength of the foundation slab, and this will cause the There is a problem in that when subjected to repeated high axial compressive force or shear force, the core column itself becomes buried in the foundation slab and the column itself is destroyed.

本発明は、上記問題に鑑みてなされたものであり、その
目的は、コア柱の耐力の増大に伴って、コア柱下端部の
支圧面積を増大させたコア柱を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide a core column in which the bearing pressure area of the lower end of the core column is increased as the yield strength of the core column is increased.

(課題を達成するための手段) 以上の課題を達成するための本発明のコア柱は、スパイ
ラル筋を互いに密接して筒体を形成し、該筒体の上端及
び下端の少なくとも一方に支圧プレートを設けると共に
、筒体の内側に充填材を充填して形成したことを特徴と
する構成にすることである。
(Means for Achieving the Object) In order to achieve the above object, the core column of the present invention has spiral reinforcements closely connected to each other to form a cylindrical body, and bearing pressure is applied to at least one of the upper end and the lower end of the cylindrical body. The present invention is characterized in that a plate is provided and a filler is filled inside the cylindrical body.

(作用) 而して上記構成によれば、スパイラル筋による3軸圧縮
状態での拘束作用と、スパイラル筋を互いに密接したこ
とによる圧縮負担の作用とにより、コア柱が鋼管コンク
リートのごとく大きな圧縮耐力と圧縮靭性を備えると共
に、コア柱のコンクリートの付着性及び一体性を高める
ことができ、しかも支圧プレートを設けたことにより、
支圧面積が増大するので、コア柱の耐力が増大しても、
該コア柱が基礎スラブに埋没するのを防止することがで
きる。
(Function) According to the above configuration, the core column has a large compressive strength similar to that of steel pipe concrete due to the restraining action of the spiral reinforcement in a triaxial compression state and the compressive load action due to the close proximity of the spiral reinforcement. In addition to providing compressive toughness, it is possible to improve the adhesion and integrity of the concrete of the core column, and by providing a bearing plate,
Since the bearing area increases, even if the core column strength increases,
It is possible to prevent the core columns from being buried in the foundation slab.

(実施例) 以下本発明の一実施例を図面に基づいて詳細に説明する
(Example) An example of the present invention will be described in detail below based on the drawings.

第1図は本発明のコア柱Aの一実施例を示した斜視図で
ある。
FIG. 1 is a perspective view showing an embodiment of the core column A of the present invention.

コア柱Aはプレキャスト製であり、スパイラル筋1を互
いに密接して適宜径の筒体2を形成し、該筒体2の下端
に支圧プレート3を溶接すると共に、筒体2内に充填材
4を充填して形成している。
The core column A is made of precast, and the spiral reinforcements 1 are closely connected to each other to form a cylindrical body 2 of an appropriate diameter.A bearing plate 3 is welded to the lower end of the cylindrical body 2, and a filler material is placed inside the cylindrical body 2. It is formed by filling 4.

このスパイラル筋1はコア柱Aの耐力に応じて適宜径の
ものが使用され、0〜2 m+o程度の隙間をもって密
接されている。
The spiral reinforcement 1 is of an appropriate diameter depending on the strength of the core column A, and is closely spaced with a gap of about 0 to 2 m+o.

また、筒体2は使用箇所に応じて径の大きさ及び長さが
決定され、第2図の0図及び0図に示すように、中央部
又は内面側に補強筋2aを配設してもよい。
In addition, the diameter and length of the cylinder 2 are determined depending on the location where it is used, and as shown in Figures 0 and 0 of Figure 2, reinforcing bars 2a are provided in the center or on the inner surface. Good too.

支圧プレート3は鋼製であり、筒体2の径よりも大きく
形成され、第3図に示すように溶接されている。
The bearing plate 3 is made of steel, has a diameter larger than that of the cylindrical body 2, and is welded as shown in FIG. 3.

なお、充填材4の材質は、コア柱Aに要求される強度に
応じて、設計者が高強度コンクリートの他にコンクリー
ト、モルタル、セメントペースト及び石膏等を任意に選
択できる。
Note that the material of the filler 4 can be arbitrarily selected by the designer from high-strength concrete, concrete, mortar, cement paste, plaster, etc., depending on the strength required of the core column A.

また、このコア柱Aは前記のようにプレキャスト製に限
らず、径が大きくなると重量が大きくなるため、このよ
うな場合には、充填材4を予め充填せず柱のコンクリー
トと同時に現場打ちで充填することも可能である。
In addition, this core column A is not limited to being made of precast as mentioned above, and as the diameter increases, the weight increases. Filling is also possible.

また、第9図に示すものは、上端及び下端に支圧プレー
ト3を設けた他の実施例であり、上端の支圧プレート3
は筒体2の上端に載せた状態で溶接され、筒体2の内径
よりも小さい充填材投入口3aを備えている。
Moreover, what is shown in FIG. 9 is another embodiment in which bearing pressure plates 3 are provided at the upper end and the lower end, and the bearing pressure plate 3 at the upper end is
is welded while placed on the upper end of the cylindrical body 2, and is provided with a filler inlet 3a smaller than the inner diameter of the cylindrical body 2.

このように、本発明のコア柱Aはスパイラル筋1による
3軸圧縮状態での拘束作用と、該スパイラル筋1を密接
して形成したことによ、る圧縮負担の作用により、鋼管
コンクリートと比較した場合、この鋼管コンクリートと
ほぼ同様な大きさの圧縮耐力と圧縮靭性とを有する。
In this way, the core column A of the present invention has a restraint action in a triaxial compression state due to the spiral reinforcements 1, and a compressive load effect due to the close formation of the spiral reinforcements 1, compared to steel pipe concrete. In this case, it has compressive strength and compressive toughness that are almost the same as this steel pipe concrete.

したがって、第4図に示すような状態で超高層集合住宅
の下階柱、高層壁式集合住宅の下階柱及び、連層耐震壁
の下階の付帯柱に埋設して使用されることにより、これ
まで不十分な特性をもつ現場打ちコンクリートが負担し
ていた圧縮軸力を低減することができ、かつ圧縮力を高
圧縮耐力と高圧縮靭性を有するコア柱Aに負担させたの
で、靭性のある柱の構築が可能となる。
Therefore, when used by being buried in the lower floor columns of super high-rise apartment buildings, the lower floor columns of high-rise wall-type apartment buildings, and the attached columns of the lower floors of multi-story earthquake-resistant walls, as shown in Figure 4, , it is possible to reduce the compressive axial force that was previously borne by cast-in-place concrete with insufficient properties, and the compressive force is borne by the core column A, which has high compressive strength and high compressive toughness. It becomes possible to construct a pillar with a

さらに、コア柱Aは引張力をほとんど負担しないため、
曲げ耐力の増大とせん断応力の増大を押さえることがで
きる。
Furthermore, since core column A bears almost no tensile force,
It is possible to suppress an increase in bending strength and an increase in shear stress.

味な、コア柱Aは平面的には第4図に示すように配設す
るが、超高層集合住宅の下階柱mの場合は第6図の0〜
0図に示す方法、連層耐震壁の下階の付帯柱nの場合は
第7図の■及び■図に示す方法、高層壁式集合住宅の下
階柱Sの場合は第8図に示す方法等が夫々考えられる。
The core pillar A is arranged as shown in Figure 4 in plan view, but in the case of the lower floor pillar M of a super high-rise apartment building, the core pillar A is arranged as shown in Figure 6.
The method shown in Figure 0, the method shown in Figures ■ and ■ in Figure 7 for the accessory column n on the lower floor of a multi-story shear wall, and the method shown in Figure 8 for the lower floor column S of a high-rise wall type apartment building. Various methods can be considered.

また、縦方向は第5図の0図及び■図に示すように、柱
の全長に配設する場合や、途中までしか配設しない場合
があり、柱の全長に配設する場合は前記0図に示すよう
に、上下両端に支圧プレート3を設ける。
In addition, in the vertical direction, as shown in Fig. As shown in the figure, bearing plates 3 are provided at both the upper and lower ends.

尚、上記の配設方法はこれだけに限定さるものでないこ
とはいうまでもない。
It goes without saying that the above arrangement method is not limited to this.

第13図は第12図の0図、■図、0図に示す本発明の
コア柱Aと、同図の■図に示す通常のコア柱とに、第1
1図に示すような圧縮力をかけて、軸ひずみを測定した
結果を示したものであり、この結果から本発明のコア柱
Aは、通常のコア柱と比べ5倍以上の強度を有する。
FIG. 13 shows that the core column A of the present invention shown in FIG. 0, ■, and 0 in FIG.
Figure 1 shows the results of measuring the axial strain by applying the compressive force as shown in Figure 1. From these results, the core column A of the present invention has a strength five times or more compared to a normal core column.

また、第12図の0図、■図、0図、■図の直径は夫々
148 mm、180 am、202龍、100 am
であり、圧縮応力度σCは下記の式により算出したもの
である。
In addition, the diameters of Figure 0, ■, 0, and ■ in Figure 12 are 148 mm, 180 am, 202 mm, and 100 am, respectively.
The compressive stress degree σC is calculated using the following formula.

(発明の効果) 本発明は以上の様な構成にしたことにより下記の効果を
有する。
(Effects of the Invention) The present invention has the following effects by having the above configuration.

■ スパイラル筋を互いに密接して筒体を形成し、該筒
体の上端及び下端の少なくとも一方に支圧プレートを設
けると共に、筒体の内側に充填材を充填して形成したこ
とにより、コア柱下端部の支圧面積が増大するので、コ
ア柱の耐力が増大しても、該コア柱が基礎スラブに埋没
するのを防止することができる。
■ By forming a cylindrical body by placing spiral striations in close contact with each other, providing a bearing plate on at least one of the upper and lower ends of the cylindrical body, and filling the inside of the cylindrical body with a filler material, the core column is Since the bearing area of the lower end increases, even if the proof strength of the core column increases, it is possible to prevent the core column from being buried in the foundation slab.

■ スパイラル筋による3軸圧縮状態での拘束作用と、
スパイラル筋を互いに密接したことによる圧縮負担の作
用とで、コア柱が鋼管コンクリートと同様な圧縮耐力と
圧縮靭性を有する。
■ Constraint action in triaxial compression state by spiral muscles,
Due to the effect of compressive load due to the closeness of the spiral reinforcements, the core column has compressive strength and compressive toughness similar to steel pipe concrete.

さらに、充填材の材質強度を上げることにより、それに
伴ってコア柱の剛性が上昇し、より大きな力を負担する
ことができる。
Furthermore, by increasing the material strength of the filler, the rigidity of the core column increases accordingly, making it possible to bear a larger force.

■ コア柱における引張耐力は、スパイラル筋がコア柱
の材軸方向の引張力にほとんど抵抗しないため、筒体内
の充填材の引張強度程度しが有さない。
(2) The tensile strength of the core column is only as high as the tensile strength of the filler inside the cylinder because the spiral reinforcement hardly resists the tensile force in the axial direction of the core column.

■ スパイラル筋を密接してコア柱を形成したことによ
り、その外周面に凹凸ができるので、現場打ちコンクリ
ートとの付着に優れている。
■ By forming a core column with closely spaced spiral reinforcements, the outer circumferential surface is uneven, providing excellent adhesion to cast-in-place concrete.

■ コア柱の全体の径の大きさ及び長さ、スパイラル筋
の鉄筋径及び強度、充填材の圧縮強度等を自由に選択す
ることができるので、設計に応じたコア柱を使用するこ
とが可能であり、設計の自由度を広げることができる。
■ You can freely select the overall diameter and length of the core column, the diameter and strength of the spiral reinforcement, the compressive strength of the filler, etc., so you can use the core column that suits your design. Therefore, the degree of freedom in design can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコア柱の斜視図、第2図の0図は補強
筋を配設しない状態の平面図、同図の■図及び0図は補
強筋を配設した状態の平面図、第3図は縦断面図、第4
図は使用状態を示す横断面図、第5図の0図及び■図は
使用状態を示す縦断面図、第6図の0〜0図、第7図の
0図、■図及び第8図は他の使用状態を示す横断面図、
第9図は上下端に支圧プレートを設けたコア柱の正面面
、第10図は同平面図、第11図は荷重をがけな状態を
示す正面図、第12図の0図、■図、0図は径の異なる
コア柱の横断面図、同図の■図は従来のコア柱の横断面
図、第13図は第12図の0図、■図、0図、■図のコ
ア柱の軸ひずみを測定した測定図である。 尚、図中、 A:コア柱 1:スパイラル筋 2:筒体 3:支圧プレート 4:充填材 である。
Figure 1 is a perspective view of the core column of the present invention, Figure 0 in Figure 2 is a plan view without reinforcing bars, and Figures ■ and 0 in the same figure are plan views with reinforcing bars installed. , Figure 3 is a vertical cross-sectional view, Figure 4
The figure is a cross-sectional view showing the state of use, Figure 5, figure 0, and figure ■ are longitudinal cross-sectional views, showing the state of use, figure 6, figure 0 to 0, figure 7, figure 0, figure ■, and figure 8. is a cross-sectional view showing other usage conditions,
Figure 9 is the front view of the core column with bearing plates at the upper and lower ends, Figure 10 is the same plan view, Figure 11 is the front view showing the state with no load applied, Figure 12 is Figure 0, Figure ■. , Figure 0 is a cross-sectional view of core columns with different diameters, ■ figure in the same figure is a cross-sectional view of a conventional core column, Figure 13 is the core of figure 0, ■ figure, figure 0, ■ figure in figure 12. FIG. 3 is a measurement diagram showing the axial strain of a column. In the figure, A: Core column 1: Spiral muscle 2: Cylindrical body 3: Bearing plate 4: Filler.

Claims (1)

【特許請求の範囲】[Claims] スパイラル筋を互いに密接して筒体を形成し、該筒体の
上端及び下端の少なくとも一方に支圧プレートを設ける
と共に、筒体の内側に充填材を充填して形成したことを
特徴とするコア柱。
A core characterized in that a cylindrical body is formed by forming spiral striations in close contact with each other, a bearing plate is provided on at least one of the upper end and the lower end of the cylindrical body, and a filler is filled inside the cylindrical body. Pillar.
JP11169990A 1990-05-01 1990-05-01 Core pillar Expired - Fee Related JPH07107302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11169990A JPH07107302B2 (en) 1990-05-01 1990-05-01 Core pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11169990A JPH07107302B2 (en) 1990-05-01 1990-05-01 Core pillar

Publications (2)

Publication Number Publication Date
JPH0414551A true JPH0414551A (en) 1992-01-20
JPH07107302B2 JPH07107302B2 (en) 1995-11-15

Family

ID=14567915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11169990A Expired - Fee Related JPH07107302B2 (en) 1990-05-01 1990-05-01 Core pillar

Country Status (1)

Country Link
JP (1) JPH07107302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272198A (en) * 1992-03-24 1993-10-19 Penta Ocean Constr Co Ltd Core column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251036B (en) * 2013-06-27 2016-08-10 贵州中建建筑科研设计院有限公司 The manufacture method of a kind of reinforced concrete sandwich beam and combinations thereof formula sandwich parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272198A (en) * 1992-03-24 1993-10-19 Penta Ocean Constr Co Ltd Core column

Also Published As

Publication number Publication date
JPH07107302B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US11293183B2 (en) Precast column base joint and construction method therefor
Takeuchi et al. Study on a concrete filled structure for nuclear power plants
Sheppard Seismic design of prestressed concrete piling
CN106337512B (en) Bottom reinforced steel pipe concrete frame high-strength concrete compound shear wall and production method
Teran et al. Reinforced concrete jacketing of existing structures
JPH0414551A (en) Core column
JP2729129B2 (en) Core pillar
RU2167985C1 (en) Pre-stressed tubular-concrete member with fan reinforcement
CN212271674U (en) Anti-seismic reinforcing structure for frame shear wall filler wall body
JPH0381442A (en) Core column made of precast concrete
JPH05272197A (en) Prestressed concrete member
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JP3014987U (en) Reinforcement equipment for existing buildings
JPH0960194A (en) Precast concrete structure
JPH0674620B2 (en) Reinforced concrete columns covered with steel pipes
JP7393816B2 (en) Structural base material, structural member, structure, and construction method of structural member
JP6968047B2 (en) Seismic retrofitting
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof
JPH0749732B2 (en) Multi-story earthquake-resistant wall structure in high-rise building
JP2000291001A (en) Multi-directional x-shaped bar arrangement reinforced cast-in-place concrete pile partially coated with steel pipe
JPS6035700Y2 (en) reinforced concrete column
JPH08338104A (en) Reinforced concrete pillar and its reinforcing method
JPH05272196A (en) Reinforced concrete column for high axial force
JP2006249916A (en) Structure and manufacturing method of structure
JPH0730598B2 (en) Building equipment with precast concrete columns

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees