JPS61176648A - Rubber composition for inner liner of tire - Google Patents

Rubber composition for inner liner of tire

Info

Publication number
JPS61176648A
JPS61176648A JP60016461A JP1646185A JPS61176648A JP S61176648 A JPS61176648 A JP S61176648A JP 60016461 A JP60016461 A JP 60016461A JP 1646185 A JP1646185 A JP 1646185A JP S61176648 A JPS61176648 A JP S61176648A
Authority
JP
Japan
Prior art keywords
butyl rubber
weight
parts
rubber
aromatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016461A
Other languages
Japanese (ja)
Inventor
Kazuo Miyasaka
和夫 宮坂
Kunihiro Ozawa
小澤 邦宏
Takao Muraki
孝夫 村木
Kazuyoshi Kayama
和義 加山
Seiichi Doi
土井 誠一
Hiroshi Hirakawa
平川 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP60016461A priority Critical patent/JPS61176648A/en
Publication of JPS61176648A publication Critical patent/JPS61176648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled composition having improved impermeability to air, adhesiveness, and thermal aging resistance, obtained by blending regenerated butyl rubber with an aromatic hydrocarbon resin having an average molecular weight, a softening point, and an iodine absorption amount in specific ranges in a specified ratio. CONSTITUTION:(A) >=30pts.wt., preferably 30-70pts.wt. calculated as polymer component of regenerated butyl rubber is blended with (B) 2-15pts.wt. aromatic hydrocarbon resin having 30-1,500 average molecular weight, 50-160 deg.C softening point, and >=20g/100g iodine absorption amount to give a composition. Improved adhesiveness can be maintained only by adding <=1.8pts.wt. sulfur as a vulcanizing agent, and curing during thermal aging and release of splice part can be prevented when the composition is used as an inner liner of tire.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、再生ブチルゴムからなるゴム組成物に関し、
さらに詳しくは、空気不透過性、接着性、耐熱老化性に
優れたタイヤのインナーライナー用ゴム組成物に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a rubber composition made of recycled butyl rubber,
More specifically, the present invention relates to a rubber composition for tire inner liners that has excellent air impermeability, adhesive properties, and heat aging resistance.

〔従来技術〕[Prior art]

従来、省資源の観点から再生ブチルゴムの使用法が種々
検討されているが、空気に直接触れて比較的高温になり
かつ耐屈曲性が要求されるような部位への使用は、その
耐熱老化性のわるさおよび他の部位との接着性のわるさ
等のため制限を受けている。したがって、トラック・バ
ス用タイヤ等の高負荷走行タイヤあるいは高温地域で使
用されるタイヤのインナーライナーには再生ブチルゴム
の使用がなされていないのが現状である。
Conventionally, various ways to use recycled butyl rubber have been studied from the perspective of resource conservation, but its use in parts that come into direct contact with air, reach relatively high temperatures, and require bending resistance is difficult due to its heat aging resistance. It is limited due to its stiffness and poor adhesion to other parts. Therefore, at present, recycled butyl rubber is not used in the inner liners of high-load running tires such as truck and bus tires or tires used in high-temperature regions.

〔発明の目的〕[Purpose of the invention]

本発明は、再生ブチルゴムからなるゴム組成物であって
、あらゆるタイヤのインナーライナーに使用することが
できる、空気不透過性、接着性、耐熱老化性に優れたゴ
ム組成物を提供することを目的とする。
An object of the present invention is to provide a rubber composition made of recycled butyl rubber, which can be used for the inner liner of any tire and has excellent air impermeability, adhesiveness, and heat aging resistance. shall be.

〔発明の構成〕[Structure of the invention]

このため、本発明は、再生ブチルゴムと平均分子量30
0〜1500、軟化点50〜160℃、ヨウ素吸着量2
0g /100g以上の芳香族炭化水素樹脂とからなり
、前記再生ブチルゴムの配合量をポリマー分換算で30
重量部以上とし、前記芳香族炭化水素樹脂の配合量を2
〜15重量部としたことを特徴とするタイヤのインナー
ライナー用ゴム組成物を要旨とするものである。
For this reason, the present invention uses recycled butyl rubber and an average molecular weight of 30.
0-1500, softening point 50-160℃, iodine adsorption amount 2
0g/100g or more of aromatic hydrocarbon resin, and the amount of recycled butyl rubber is 30% in terms of polymer content.
The amount of the aromatic hydrocarbon resin is 2 parts by weight or more.
The gist of the present invention is a rubber composition for an inner liner of a tire, characterized in that the amount is 15 parts by weight.

以下、本発明の構成について詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明において用いる再生ブチルゴムは、ブチルゴムを
使用後に再生したものであって公知のものであり、特定
されるものではない。
The recycled butyl rubber used in the present invention is recycled butyl rubber after use, is a known rubber, and is not specified.

また、本発明で用いる芳香族炭化水素樹脂は、平均分子
量300〜1500、軟化点50〜160℃、ヨウ素吸
着量20g /100g以上のものである。この樹脂と
しては、例えば、フッコールレジン(商品名、富士興産
社製)が挙げられる。
Further, the aromatic hydrocarbon resin used in the present invention has an average molecular weight of 300 to 1500, a softening point of 50 to 160°C, and an iodine adsorption amount of 20 g/100 g or more. Examples of this resin include Fukol resin (trade name, manufactured by Fuji Kosan Co., Ltd.).

本発明のゴム組成物は、上記再生ブチルゴムと上記芳香
族炭化水素樹脂とからなるものである。再生ブチルゴム
の配合量は、ポリマー分換算で30重量部以上、好まし
くは30〜70重量部である。30重量部未満では空気
透過係数が初期の目的値達しないからである。また、芳
香族炭化水素樹脂の配合量は、2〜15重量部である。
The rubber composition of the present invention comprises the recycled butyl rubber described above and the aromatic hydrocarbon resin described above. The amount of recycled butyl rubber blended is 30 parts by weight or more, preferably 30 to 70 parts by weight in terms of polymer content. This is because if it is less than 30 parts by weight, the air permeability coefficient will not reach the initial target value. Further, the blending amount of the aromatic hydrocarbon resin is 2 to 15 parts by weight.

2重量部未満では接着の改善効果が期待できないからで
あり、一方、15重量部を越えると発熱性が大きくなる
からである。
This is because if it is less than 2 parts by weight, no improvement in adhesion can be expected, while if it exceeds 15 parts by weight, heat generation will increase.

加硫剤として添加する硫黄の量は、1.8重量部以下で
よい。このように硫黄の量が少ないと本来、接着低下が
生じ易いのであるが、本発明では芳香族炭化水素樹脂を
2〜15重量部配置部ているため良好な接着性を保持す
ることができる。なお、加硫剤としては、硫黄の代りに
他の加硫剤を用いるか又は硫黄と共に他の加硫剤を併用
してもよい。
The amount of sulfur added as a vulcanizing agent may be 1.8 parts by weight or less. If the amount of sulfur is small as described above, adhesion tends to deteriorate, but in the present invention, since the aromatic hydrocarbon resin is used in an amount of 2 to 15 parts by weight, good adhesion can be maintained. Note that as the vulcanizing agent, other vulcanizing agents may be used in place of sulfur, or other vulcanizing agents may be used in combination with sulfur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のゴム組成物は、再生ブチル
ゴムと芳香族炭化水素樹脂とを特定の割合で配合してな
るため、空気不透過性、接着性、および耐熱老化性に優
れており、このためタイヤのインナーライナーに使用し
た場合にはインナーライナーの熱老化時の硬化を防ぐこ
とができるうえにスプライス部の剥離をも防止すること
ができる。さらに、本発明は、省資源の立場からみて再
生ブチルゴムの有効利用の可能性を拡大するものである
ということができる。
As explained above, since the rubber composition of the present invention is made by blending recycled butyl rubber and aromatic hydrocarbon resin in a specific ratio, it has excellent air impermeability, adhesiveness, and heat aging resistance. Therefore, when used in the inner liner of a tire, it is possible to prevent the inner liner from hardening during heat aging, and also to prevent peeling at the splice portion. Furthermore, it can be said that the present invention expands the possibility of effective use of recycled butyl rubber from the standpoint of resource conservation.

以下に実施例を示して本発明の効果を具体的に説明する
EXAMPLES The effects of the present invention will be specifically explained below with reference to Examples.

実施例 (a)  天然ゴムと再生ブチルゴムとの配合割合を種
々変化させた表−1に示す配合内容(重量部)の各種ゴ
ム組成物を調製し、加硫後、空気不透過性について評価
した。この結果を第1図に示す。
Example (a) Various rubber compositions with the blending contents (parts by weight) shown in Table 1 were prepared with various blending ratios of natural rubber and recycled butyl rubber, and after vulcanization, air impermeability was evaluated. . The results are shown in FIG.

第1図は、天然ゴムと再生ブチルゴムの配合量と気体透
過係数(ml−cm/ ci−sec、 ・cnHg)
(60℃)との関係をグラフで示した説明図である。再
生ブチルゴム量はポリマー分換算したものである。図中
の破線aは、対比のためのもので、現在要求されている
タイヤのインナーライナーの気体透過係数の上限を表わ
す。なお、第1図における気体透過係数の測定方法は、
それぞれのゴム組成物を0.4mm±0 、05mm厚
のシートとし、ワールブルグ検圧計を用いる容積法によ
って求めた。
Figure 1 shows the blending amounts of natural rubber and recycled butyl rubber and the gas permeability coefficient (ml-cm/ci-sec, ・cnHg)
(60° C.) is an explanatory diagram showing a graph of the relationship between the temperature and the temperature. The amount of recycled butyl rubber is calculated in terms of polymer content. The dashed line a in the figure is for comparison and represents the currently required upper limit of the gas permeability coefficient of the tire inner liner. The method for measuring the gas permeability coefficient in Figure 1 is as follows:
Each rubber composition was made into a sheet with a thickness of 0.4 mm±0 and 0.5 mm, and was determined by a volumetric method using a Warburg manometer.

第1図から、再生ブチルゴムの配合量は、ポリマー分換
算で30重量部以上であればよいことが判る。
From FIG. 1, it can be seen that the amount of recycled butyl rubber blended should be 30 parts by weight or more in terms of polymer content.

(本頁以下余白) 注): (1)NRR5S#4  。(Margins below this page) note): (1) NRR5S#4.

(2)ポリマー分は55%とする(JIS )。(2) The polymer content is 55% (JIS).

(3)N 660  (ダイアブラックG)。(3) N 660 (Dia Black G).

(4)カオリンクレー(Suprex C1ay )。(4) Kaolin clay (Suprex C1ay).

(5)富士興産社製芳香族炭化水素樹脂(平均分子量4
00〜800、軟化点70〜150℃、ヨウ素価20〜
40g /100g、25℃における比重1.12〜1
.14、固定炭素20〜35%)。
(5) Aromatic hydrocarbon resin manufactured by Fuji Kosan Co., Ltd. (average molecular weight 4
00~800, softening point 70~150℃, iodine value 20~
40g/100g, specific gravity 1.12-1 at 25℃
.. 14, fixed carbon 20-35%).

(6ン正同化学製3号亜鉛華。(No. 3 Zinc White manufactured by Seido Chemical.

(7)N−シクロヘキシル−2−ベンゾチアジルスルフ
ェンアミド。
(7) N-cyclohexyl-2-benzothiazylsulfenamide.

(b)  クロロブチルゴムと再生ブチルゴムとの配合
割合を種々変化させた表−2に示す配合内容(重量部)
の各種ゴム組成物を調製し、加硫後において、老化後の
弾性率E”(MP^〕を評価した(硫黄配合量を抑えた
ため硬化度は小さい)。この結果を第2図に示す。
(b) Compounding contents (parts by weight) shown in Table 2 with various blending ratios of chlorobutyl rubber and recycled butyl rubber
Various rubber compositions were prepared, and after vulcanization, the elastic modulus E'' (MP^) after aging was evaluated (the degree of curing was small because the amount of sulfur compounded was suppressed). The results are shown in FIG.

第2図は、クロロブチルゴムと再生ブチルゴムの配合量
と老化後の弾性率E” (MPA )との関係をグラフ
で示した説明図である。再生ブチルゴム量はポリマー分
換算したものである。図中、bはそれぞれのゴム組成物
を120℃、72時間ギヤーオーブン中で老化させた場
合であり、Cはそれぞれのゴム組成物を120℃、48
時間ギヤーオープン中で老化させた場合であり、dは 
゛来者化の場合である。なお、第2図における弾性率は
、それぞれのゴム組成物を粘弾性スペクトロメータ(岩
本製作所製VH5−R3”)を用いて、20℃、20H
z 、10±2%振幅にて測定した。
FIG. 2 is an explanatory diagram showing the relationship between the compounding amounts of chlorobutyl rubber and recycled butyl rubber and the elastic modulus E" (MPA) after aging. The amount of recycled butyl rubber is calculated in terms of polymer content. Among them, b is the case where each rubber composition was aged in a gear oven at 120°C for 72 hours, and C is the case where each rubber composition was aged at 120°C for 48 hours.
This is the case when aging is performed with the time gear open, and d is
This is a case of alienation. In addition, the elastic modulus in FIG. 2 is calculated using a viscoelasticity spectrometer (VH5-R3'' manufactured by Iwamoto Manufacturing Co., Ltd.) at 20°C for 20 hours.
z, measured at 10±2% amplitude.

第2図から、再生ブチルゴムを使用する場合がクロロブ
チルゴムを使用する場合に比して弾性率の上昇が大きい
ことが判る。
From FIG. 2, it can be seen that the elastic modulus increases more when recycled butyl rubber is used than when chlorobutyl rubber is used.

(本頁以下余白) (C1硫黄の配合割合を種々変化させた表−3に示す配
合内容(重量部)の各種ゴム組成物を調製し、加硫後に
おいて、老化後の弾性率EwI(MPA )を評価した
。この結果を第3図に示す。
(Margins below this page) (Various rubber compositions with the compounding contents (parts by weight) shown in Table 3 in which the compounding ratio of C1 sulfur was varied were prepared, and after vulcanization, the elastic modulus after aging EwI (MPA ) was evaluated.The results are shown in Figure 3.

第3図は、硫黄の配合量と老化後の弾性率Ell(MP
A )との関係をグラフで示した説明図である。図中、
eはそれぞれのゴム組成物を120℃×72時間ギヤー
オープン中で老化させた場合であり、fはそれぞれのゴ
ム組成物を120℃×48時間ギヤーオーブン中で老化
させた場合であり、gは未老化の場合である。なお、第
3図における弾性率の測定方法は、それぞれのゴム組成
物を粘弾性スペクトロメータ(岩本製作所製VHS−H
S )を用いて、20℃、20Hz 、10±2%振幅
にて測定することによった。
Figure 3 shows the amount of sulfur blended and the elastic modulus after aging Ell (MP
It is an explanatory diagram showing a relationship with A) in a graph. In the figure,
e is the case when each rubber composition was aged in a gear open for 72 hours at 120°C, f is the case when each rubber composition was aged in a gear oven at 120°C for 48 hours, and g is the case when each rubber composition was aged in a gear oven for 48 hours at 120°C This is the case when the patient is not aged. The method of measuring the elastic modulus in FIG. 3 is to measure each rubber composition using a viscoelastic spectrometer (VHS-H manufactured by Iwamoto
S ) at 20° C., 20 Hz, and 10±2% amplitude.

第3図から、硫黄の配合量が1.8重量部以下であれば
弾性率の変化を比較的小さく抑え得ることが判る。
From FIG. 3, it can be seen that if the amount of sulfur added is 1.8 parts by weight or less, changes in the elastic modulus can be kept relatively small.

(本頁以下余白) (d)  芳香族炭化水素樹脂(フンコールレジン)の
配合割合を種々変化させた表−4に示す配合内容(重量
部)の各種ゴム組成物を調製し、天然ゴムを原料とする
表−5に示す配合内容のゴム組成物と貼合わせ、加硫し
た後、剥離力(kg/cII+)を測定した。この結果
を第4図に示す。
(Margins below this page) (d) Various rubber compositions with the blending contents (parts by weight) shown in Table 4 were prepared in which the blending ratio of aromatic hydrocarbon resin (Funcor resin) was varied, and natural rubber was mixed. After laminating with a rubber composition having the formulation shown in Table 5 as a raw material and vulcanizing it, the peel force (kg/cII+) was measured. The results are shown in FIG.

第4図は、芳香族炭化水素樹脂の配合量と剥離力(kg
/cm)との関係をグラフで示した説明図である。なお
、第4図における剥離力の測定方法は、それぞれのゴム
組成物をJIS K 6301に準拠して行い、寸法は
幅25.0±0.51ItoI、長さ150n+mで、
補強材を両面に貼合わせた厚み6mmの短冊状試験片を
引張速度50mm/winでオートグラフにて180 
 °剥離試験を行った。
Figure 4 shows the blending amount of aromatic hydrocarbon resin and peeling force (kg
/cm) is an explanatory diagram showing a graph of the relationship between In addition, the method of measuring the peel force in FIG. 4 was performed based on JIS K 6301 for each rubber composition, and the dimensions were 25.0 ± 0.51 I to I in width and 150 n + m in length.
A strip-shaped test piece with a thickness of 6 mm with reinforcing material laminated on both sides was 180 mm using an autograph at a tensile speed of 50 mm/win.
° A peel test was conducted.

第4図から、フッコールレジンの配合量が2〜15重量
部の場合に剥離力が大幅に増大することが判る。
From FIG. 4, it can be seen that the peeling force increases significantly when the amount of fluorocarbon resin blended is 2 to 15 parts by weight.

(本頁以下余白) 表−5 天然ゴム(R5S #4 )     100重量部酸
化亜鉛          10重量部カーボンブラン
ク(HAP )55重量部アロマ系オイル      
  3重量部加硫促進剤(OBS )      0.
8重量部硫黄             2重量部
(Margins below this page) Table 5 Natural rubber (R5S #4) 100 parts by weight Zinc oxide 10 parts by weight Carbon blank (HAP) 55 parts by weight Aroma oil
3 parts by weight Vulcanization accelerator (OBS) 0.
8 parts by weight Sulfur 2 parts by weight

【図面の簡単な説明】[Brief explanation of drawings]

第1図は天然ゴムと再生ブチルゴムの配合量と気体透過
係数との関係をグラフで示した説明図、第2図はクロロ
ブチルゴムと再生ブチルゴムの配合量と老化後の弾性率
との関係をグラフで示した説明図、第3図は硫黄の配合
量と老化後の弾性率との関係をグラフで示した説明図、
第4図は芳香族炭化水素樹脂の配合量と剥離力との関係
をグラフで示した説明図である。
Figure 1 is a graph showing the relationship between the blending amounts of natural rubber and recycled butyl rubber and the gas permeability coefficient, and Figure 2 is a graph showing the relationship between the blending amounts of chlorobutyl rubber and recycled butyl rubber and the elastic modulus after aging. Figure 3 is an explanatory diagram showing the relationship between the amount of sulfur blended and the elastic modulus after aging.
FIG. 4 is an explanatory diagram showing the relationship between the blending amount of aromatic hydrocarbon resin and peeling force in a graph.

Claims (1)

【特許請求の範囲】[Claims] 再生ブチルゴムと平均分子量300〜1500、軟化点
50〜160℃、ヨウ素吸着量20g/100g以上の
芳香族炭化水素樹脂とからなり、前記再生ブチルゴムの
配合量をポリマー分換算で30重量部以上とし、前記芳
香族炭化水素樹脂の配合量を2〜15重量部としたこと
を特徴とするタイヤのインナーライナー用ゴム組成物。
It consists of recycled butyl rubber and an aromatic hydrocarbon resin with an average molecular weight of 300 to 1500, a softening point of 50 to 160°C, and an iodine adsorption amount of 20 g/100 g or more, and the amount of the recycled butyl rubber blended is 30 parts by weight or more in terms of polymer content, A rubber composition for an inner liner of a tire, characterized in that the aromatic hydrocarbon resin is blended in an amount of 2 to 15 parts by weight.
JP60016461A 1985-02-01 1985-02-01 Rubber composition for inner liner of tire Pending JPS61176648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016461A JPS61176648A (en) 1985-02-01 1985-02-01 Rubber composition for inner liner of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016461A JPS61176648A (en) 1985-02-01 1985-02-01 Rubber composition for inner liner of tire

Publications (1)

Publication Number Publication Date
JPS61176648A true JPS61176648A (en) 1986-08-08

Family

ID=11916886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016461A Pending JPS61176648A (en) 1985-02-01 1985-02-01 Rubber composition for inner liner of tire

Country Status (1)

Country Link
JP (1) JPS61176648A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231202A (en) * 1989-03-02 1990-09-13 Sumitomo Rubber Ind Ltd Pneumatic tire
KR20000046696A (en) * 1998-12-31 2000-07-25 조충환 Inner-liner rubber composition for air-contained tire
JP2004035690A (en) * 2002-07-02 2004-02-05 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2007320992A (en) * 2006-05-30 2007-12-13 Yokohama Rubber Co Ltd:The Rubber composition for tire inner liner
JP2008126634A (en) * 2006-11-24 2008-06-05 Sumitomo Rubber Ind Ltd Manufacturing method of rubber composition for recycled inner liners
JP2010043257A (en) * 2008-08-08 2010-02-25 Exxonmobile Chemical Patents Inc Elastomeric composition comprising hydrocarbon polymer additive and having improved impermeability
JP2012040831A (en) * 2010-08-23 2012-03-01 Yokohama Rubber Co Ltd:The Method for recovering air barrier properties of tire
JP2014084430A (en) * 2012-10-25 2014-05-12 Sumitomo Rubber Ind Ltd Rubber composition for inner liner and pneumatic tire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151402A (en) * 1981-03-13 1982-09-18 Bridgestone Corp Pneumatic tyre
JPS58157875A (en) * 1982-03-15 1983-09-20 Koyo Sangyo Kk Self-tack soundproofing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151402A (en) * 1981-03-13 1982-09-18 Bridgestone Corp Pneumatic tyre
JPS58157875A (en) * 1982-03-15 1983-09-20 Koyo Sangyo Kk Self-tack soundproofing material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231202A (en) * 1989-03-02 1990-09-13 Sumitomo Rubber Ind Ltd Pneumatic tire
KR20000046696A (en) * 1998-12-31 2000-07-25 조충환 Inner-liner rubber composition for air-contained tire
JP2004035690A (en) * 2002-07-02 2004-02-05 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2007320992A (en) * 2006-05-30 2007-12-13 Yokohama Rubber Co Ltd:The Rubber composition for tire inner liner
JP2008126634A (en) * 2006-11-24 2008-06-05 Sumitomo Rubber Ind Ltd Manufacturing method of rubber composition for recycled inner liners
JP2010043257A (en) * 2008-08-08 2010-02-25 Exxonmobile Chemical Patents Inc Elastomeric composition comprising hydrocarbon polymer additive and having improved impermeability
JP2012040831A (en) * 2010-08-23 2012-03-01 Yokohama Rubber Co Ltd:The Method for recovering air barrier properties of tire
JP2014084430A (en) * 2012-10-25 2014-05-12 Sumitomo Rubber Ind Ltd Rubber composition for inner liner and pneumatic tire
US9254715B2 (en) 2012-10-25 2016-02-09 Sumitomo Rubber Industries, Ltd. Inner liner rubber composition and pneumatic tire

Similar Documents

Publication Publication Date Title
EP0478274B1 (en) Rubber composition
JP4847978B2 (en) High damping rubber composition and damping member
JP2007197677A (en) Rubber composition for coating textile cord and tire using the same
JPS61176648A (en) Rubber composition for inner liner of tire
JPH03258840A (en) Rubber composition for vibration-insulating rubber
JPH0741603A (en) High-damping rubber composition blended with silica
Poh et al. Fatigue, resilience and hardness properties of unfilled SMR L/ENR 25 and SMR L/SBR blends
JP5556600B2 (en) Silane coupling agent and tire rubber composition using the same
JPH10195237A (en) Adhesive rubber composition
JP2009007422A (en) Rubber composition and tire
JPH0551491A (en) Rubber composition
JP2004161139A (en) Pneumatic tire
JP3560409B2 (en) Rubber composition for tire tread
US4764565A (en) Rubber with nickel dithiocarbates
JPS5833423B2 (en) toothed belt
JP3612160B2 (en) Pneumatic tire
JPH10219033A (en) Rubber composition for high-attenuation support
JP2676380B2 (en) Adhesive composition for glass tensile member for belt
KR20200055173A (en) Rubber composition for suspention bush of automobile having improved heat resistance and rubber for suspention bush of automobile using the same
JPH11153169A (en) High damping rubber composition
JP3652031B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JPH04247935A (en) Damping sheet
JP4647758B2 (en) Pneumatic tire
JPH02225540A (en) Vibration-damping material
JP4680234B2 (en) Rubber composition for covering carcass cord and tire having carcass using the same