JP3560409B2 - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP3560409B2
JP3560409B2 JP06512596A JP6512596A JP3560409B2 JP 3560409 B2 JP3560409 B2 JP 3560409B2 JP 06512596 A JP06512596 A JP 06512596A JP 6512596 A JP6512596 A JP 6512596A JP 3560409 B2 JP3560409 B2 JP 3560409B2
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
rubber composition
tire tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06512596A
Other languages
Japanese (ja)
Other versions
JPH09235416A (en
Inventor
盛一郎 岩船
健司 松尾
幸則 前山
淳 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP06512596A priority Critical patent/JP3560409B2/en
Publication of JPH09235416A publication Critical patent/JPH09235416A/en
Application granted granted Critical
Publication of JP3560409B2 publication Critical patent/JP3560409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はタイヤトレッド用ゴム組成物に関し、詳しくは高性能空気入りタイヤの超高速、高負荷時の耐トレッドセパレーション性、すなわち耐トレッドリービングベルト性(以下「耐TLB性」と略記する)を向上させたタイヤトレッド用ゴム組成物に関する。
【0002】
【従来の技術】
従来、高性能タイヤのトレッド用ゴム組成物には加硫剤として、加硫の著しく速いテトラメチルチウラムジスルフィド(TT)や、TTよりもスコーチが少なく安全性の高いテトラメチルチウラムモノスルフィド(TS)などが使用されてきた。特に、TTはモノサルファイド結合を多く作るため、その使用は耐熱性を確保するには極めて有効な手段であり、広く用いられてきた。
【0003】
また、加硫剤としては、通常の加硫温度で分解して活性硫黄を放出する有機加硫剤、例えば4,4’−ジチオ−ビス−ジモルフォリンなどが使用されてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の加硫促進剤や加硫剤は加硫中にニトロソアミンやモルフォリンを発生し、環境問題上、使用は好ましいものではなかった。
【0005】
一方、上述の加硫促進剤TTに代わる、環境上使用に不都合のない非ニトロソアミン系加硫促進剤はTTに対し反応性が乏しく、同等の耐熱性を確保するためには共使用する加硫促進剤も含め数倍の量を必要とし、これが耐TLB性を悪化させる原因となっていた。
【0006】
そこで本発明の目的は、環境上問題のない加硫促進剤と加硫剤とをトレッド用ゴム組成物に用いて、高性能空気入りタイヤにおいて要求される耐熱性と耐TLB性とを確保し、超高速、高負荷時においても安全に走行できるようにすることにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、共に使用に際して環境上問題のない非ニトロソアミン系加硫促進剤と非モルフォリン系加硫剤とを併用することにより、耐熱性と耐TLB性とを良好に両立させることができることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明のタイヤトレッド用ゴム組成物は、加硫可能なゴムに対して、加硫促進剤として非ニトロソアミン系加硫促進剤と、加硫剤として非モルフォリン系加硫剤とが配合されてなることを特徴とするものである。
【0009】
また、上記タイヤトレッド用ゴム組成物は、好ましくはゴム成分100重量部に対して、0.1〜10重量部の前記非ニトロソアミン系加硫促進剤と、0.1〜10重量部の、前記非モルフォリン系加硫剤のうち活性硫黄放出型とが配合されてなる。
【0010】
【発明の実施の形態】
本発明において使用する加硫促進剤としての非ニトロソアミン系加硫促進剤としては、例えば、テトラキス(2−エチルヘキシル)チウラムジスルフィド(TOT)、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド(CZ)およびN−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(NS)等、またはこれらの組み合わせが挙げられる。
【0011】
この非ニトロソアミン系加硫促進剤は、ゴム成分100重量部に対して、好ましくは0.1〜10重量部、さらに好ましくは2.0〜5.0重量部配合する。かかる配合量が0.1重量部未満であると耐熱性を確保する上で不利であり、一方10重量部を超えると耐TLB性を悪化させることになる。
【0012】
また、加硫剤としての非モルフォリン系加硫剤としては、例えば、p−ベンゾキノンジオキシム(バルノックGM)、p,p’−ジベンゾイルキノンジオキシム(バルノックDGM)、ポリ−p−ジニトロソベンゼンを含む加硫剤(バルノックDNB)等を使用することができるが、活性硫黄放出型、例えば、ジチオジカプロラクタム(レノキュアS)、テトラエトキシフォスフォリルトリスルフィド、またはこれらのブレンド(レノキュアS/G)等が好ましい。その理由は、活性硫黄放出型は300%Mod、HBUをともに向上させる特性をもつからである。
【0013】
この非モルフォリン系加硫剤は、ゴム成分100重量部に対して、好ましくは0.1〜10重量部、さらに好ましくは2.0〜5.0重量部配合する。かかる配合量が0.1重量部未満であると非ニトロソアミン系加硫促進剤の割合が多くなり耐TLB性が悪化し、一方10重量部を超えるとスコーチ性が強く作用するため、好ましくない。
【0014】
本発明のゴム組成物の原料ゴムとしては、天然ゴム、ポリスチレンブタジエンゴム、ポリイソプレンゴム、ニトリルゴム、ポリブタジエンゴム、ブチルゴム等、もしくはこれらの混合物が挙げられ、特に制限されるべきものではない。
【0015】
また、本発明のゴム組成物には、通常ゴム組成物に配合されるカーボンブラック、シリカ等の補強剤、アロマ油、スピンドル油等の軟化剤、樹脂、老化防止剤、加硫促進助剤等を適当量適宜配合することができ、また上記以外の加硫剤および加硫促進剤も環境問題を生じない範囲内で使用することができる。
【0016】
本発明のタイヤトレッド用ゴム組成物は、高性能空気入りタイヤの超高速、高負荷に耐え得るために、好ましくは以下の配合系とする。
すなわち、スチレン成分含有率が25〜60重量%であるスチレン−ブタジエン共重合体ゴム40重量部以上を含有するゴム成分100重量部に対して、120〜250m/gのセチルトリメチルアンモニウムブロマイド比表面積(CTAB)および80〜200ml/100gのジブチルフタレート吸油量(DBP)を有するカーボンブラック50〜200重量部が配合されてなる系が好ましい。上記スチレン−ブタジエン共重合体ゴムが40重量部未満であると、トレッドの耐摩耗性が悪化し、高グリップ性能が得られない。また上記CTABが120m/g未満ではトレッドの摩耗係数が低下し、一方250m/gを超えると混練、ロール作業性が悪化し、好ましくない。さらにDBPが80ml/100g未満であるとトレッドの摩耗係数が低下し、一方200ml/100gを超えると混練、ロール作業性が悪化し、好ましくない。さらにまた、上記カーボンブラックの配合量が50重量部未満であるとトレッドの耐摩耗性が悪化し、一方200重量部を超えると高グリップ性が得られず、よって耐摩耗性と高グリップ性を両立させる上で上記範囲内の配合量が好ましい。
【0017】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
下記の表1に示す配合内容(重量部)にてゴム組成物を調製し、各種スラブシートを製造した。表1に示す配合剤以外の配合剤としては、スチレン成分含有率が35重量%であるスチレン−ブタジエン共重合体ゴム100重量部、155m/gのCTABおよび135ml/100gのDBPを有するカーボンブラック100重量部、ステアリン酸1.0重量部、軟化剤(アロマティックオイル)70重量部、亜鉛華3.0重量部、老化防止剤(IPPD)1.0重量部を用いた。
【0018】
得られたゴム組成物について、トレッドゴムの剥離抗力、硬度(Hd)、破壊強度(Tb)、300%伸長時の弾性率(300%Mod)およびヒート・ビルド・アップ(HBU)を測定した。各測定方法以下に示す。
(イ)剥離抗力
JIS K6301の方法に準拠して145℃×45分の条件で加硫し、100℃の雰囲気下でピーク接着抗力を測定した。評価は、比較例(コントロール)の結果を100として指数にて表示した。数値が大きい程剥離抗力が大きいことを表している。
なお、剥離抗力▲1▼と▲2▼ではベルトコーティングゴムが異なっている。
【0019】
(ロ)硬度(Hd)
25℃および100℃にて、JIS K6301の方法に準拠して測定した。夫々の温度において、比較例の結果を100として指数にて表示した。数値が大きい程硬度(Hd)が高いことを表している。
【0020】
(ハ)破壊強度(Tb)および弾性率(300%Mod)
JIS K6301の方法に準拠して、引張速度50mm/分、試験温度100℃にて測定した。比較例の結果を100として指数にて表示した。数値が大きい程破壊強度(Tb)および弾性率(300%Mod)が高いことを表している。
【0021】
(ニ)ヒート・ビルド・アップ(HBU)
サンプルは145℃×45分の条件で加硫して得た。このサンプルをフレクソメーター(商品名)にて一定荷重下で所定の振動を加えて発熱させ、この発熱によって気泡が発生するまでの時間と温度を測定した。数値が大きい程、耐熱性が高いことを表わしている。評価は、比較例の温度および時間の結果を夫々100として指数にて表示した。夫々数値が大きい程HBUの温度が高く、また時間が長いことを表している。
得られた結果を下記の表1に併記する。
【0022】
【表1】

Figure 0003560409
1)テトラキス(2−エチルヘキシル)チウラムジスルフィド
2)N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド
3)N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド
【0023】
上記表1から以下のことが確かめられた。
実施例1を比較例と比較した場合、Hd、Tb、300%ModおよびHBUに大きな差は認められないが、剥離抗力は▲1▼、▲2▼ともに50%以上の増加が観られ、相手のベルトコーティングゴムの種類に関係なく剥離抗力の上昇が達成できた。
【0024】
実施例2では、レノキュアS/Gを半減させているため、300%Modが若干低下し、HBUの時間も低下しているが、この点については配合オイルで調整可能である。しかし、この配合オイルによっては剥離抗力の値は調整できず、レノキュアS/Gの使用によって初めて剥離抗力の値を向上させることができた。
【0025】
実施例3では、硫黄を減らしており実施例2以上に300%Mod、HBUにおいて不利であるが、この点も実施例2と同様に配合オイルで調整可能であり、剥離抗力は、レノキュアS/Gの使用によって値を向上させることができた。
【0026】
【発明の効果】
以上述べてきたように、本発明のタイヤトレッド用ゴム組成物においては、非ニトロソアミン系加硫促進剤と非モルフォリン系加硫剤とを併用したことにより、非モルフォリン系加硫剤を使わない加硫系に比べ薬品量が少ないにもかかわらず、剥離抗力を向上させることができた。これによって高性能空気入りタイヤの超高速、高負荷時の耐TLB性を改良でき、より安全なタイヤを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a rubber composition for a tire tread, and more particularly, to an improvement in tread separation resistance, that is, tread-leaving belt resistance (hereinafter abbreviated as “TLB resistance”) of a high-performance pneumatic tire at ultra-high speed and high load. And a rubber composition for a tire tread.
[0002]
[Prior art]
Conventionally, a rubber composition for a tread of a high-performance tire is used as a vulcanizing agent as tetramethylthiuram disulfide (TT), which is remarkably fast vulcanized, or tetramethylthiuram monosulfide (TS), which has less scorch and higher safety than TT. Etc. have been used. In particular, since TT makes many monosulfide bonds, its use is a very effective means for securing heat resistance and has been widely used.
[0003]
As the vulcanizing agent, an organic vulcanizing agent which decomposes at a normal vulcanizing temperature to release active sulfur, for example, 4,4'-dithio-bis-dimorpholine has been used.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned vulcanization accelerators and vulcanizing agents generate nitrosamine and morpholine during vulcanization, and their use is not preferable in terms of environmental problems.
[0005]
On the other hand, non-nitrosamine-based vulcanization accelerators which are not environmentally inconvenient in place of the above-mentioned vulcanization accelerator TT have poor reactivity to TT, and vulcanization co-used to ensure the same heat resistance. It required several times the amount, including the accelerator, which caused the TLB resistance to deteriorate.
[0006]
Therefore, an object of the present invention is to use a vulcanizing accelerator and a vulcanizing agent having no environmental problem in a rubber composition for a tread to secure heat resistance and TLB resistance required for a high performance pneumatic tire. Another object of the present invention is to make it possible to drive safely even at a high speed and a high load.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a non-nitrosamine-based vulcanization accelerator and a non-morpholine-based vulcanization agent which are both environmentally friendly at the time of use together, heat resistance and They have found that TLB resistance can be satisfactorily compatible, and have completed the present invention.
[0008]
That is, the rubber composition for a tire tread of the present invention comprises a non-nitrosamine-based vulcanization accelerator as a vulcanization accelerator and a non-morpholine-based vulcanization agent as a vulcanization agent for a vulcanizable rubber. It is characterized by being done.
[0009]
Further, the rubber composition for a tire tread is preferably 0.1 to 10 parts by weight of the non-nitrosamine-based vulcanization accelerator and 0.1 to 10 parts by weight of A non-morpholine vulcanizing agent is mixed with an active sulfur releasing type.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the non-nitrosamine-based vulcanization accelerator used as the vulcanization accelerator used in the present invention include tetrakis (2-ethylhexyl) thiuram disulfide (TOT) and N-cyclohexyl-2-benzothiazyl sulfenamide (CZ). And N-tert-butyl-2-benzothiazolylsulfenamide (NS) and the like, or a combination thereof.
[0011]
The non-nitrosamine vulcanization accelerator is preferably blended in an amount of 0.1 to 10 parts by weight, more preferably 2.0 to 5.0 parts by weight, based on 100 parts by weight of the rubber component. If the amount is less than 0.1 part by weight, it is disadvantageous in securing heat resistance. On the other hand, if it exceeds 10 parts by weight, TLB resistance is deteriorated.
[0012]
As the non-morpholine-based vulcanizing agent as a vulcanizing agent, for example, p- benzoquinone dioxime (Vulnoc GM), p, p'-dibenzoyl quinone dioxime (Vulnoc DGM), poly -p- di Vulcanizing agents containing nitrosobenzene (Barnock DNB) and the like can be used, but active sulfur releasing types such as dithiodicaprolactam (Lenocure S), tetraethoxyphosphoryl trisulfide, or a blend thereof (Lenocure S / G) and the like are preferred. The reason is that the active sulfur release type has a property of improving both 300% Mod and HBU.
[0013]
The non-morpholine vulcanizing agent is preferably added in an amount of 0.1 to 10 parts by weight, more preferably 2.0 to 5.0 parts by weight, based on 100 parts by weight of the rubber component. If the amount is less than 0.1 part by weight, the proportion of the non-nitrosamine-based vulcanization accelerator increases and TLB resistance deteriorates. On the other hand, if it exceeds 10 parts by weight, scorch properties are strongly exerted, which is not preferable.
[0014]
Examples of the raw material rubber for the rubber composition of the present invention include natural rubber, polystyrene butadiene rubber, polyisoprene rubber, nitrile rubber, polybutadiene rubber, butyl rubber, and the like, and mixtures thereof, and are not particularly limited.
[0015]
In addition, the rubber composition of the present invention includes carbon black, a reinforcing agent such as silica, a softening agent such as aroma oil and spindle oil, a resin, an antioxidant, and a vulcanization accelerating agent which are usually added to the rubber composition. And vulcanizing agents and vulcanization accelerators other than those described above can be used within a range that does not cause environmental problems.
[0016]
The rubber composition for a tire tread of the present invention is preferably the following compounding system in order to withstand the ultrahigh speed and high load of a high performance pneumatic tire.
That is, the specific surface area of cetyltrimethylammonium bromide of 120 to 250 m 2 / g with respect to 100 parts by weight of a rubber component containing 40 parts by weight or more of a styrene-butadiene copolymer rubber having a styrene component content of 25 to 60% by weight. (CTAB) and 50 to 200 parts by weight of carbon black having a dibutyl phthalate oil absorption (DBP) of 80 to 200 ml / 100 g are preferred. If the amount of the styrene-butadiene copolymer rubber is less than 40 parts by weight, the abrasion resistance of the tread deteriorates, and high grip performance cannot be obtained. If the CTAB is less than 120 m 2 / g, the abrasion coefficient of the tread decreases, while if it exceeds 250 m 2 / g, kneading and roll workability deteriorate, which is not preferable. Further, if the DBP is less than 80 ml / 100 g, the abrasion coefficient of the tread decreases, while if it exceeds 200 ml / 100 g, kneading and roll workability deteriorate, which is not preferable. Furthermore, if the amount of the carbon black is less than 50 parts by weight, the abrasion resistance of the tread is deteriorated. On the other hand, if it exceeds 200 parts by weight, high grip properties cannot be obtained. A blending amount within the above range is preferable for achieving both.
[0017]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Rubber compositions were prepared according to the blending contents (parts by weight) shown in Table 1 below, and various slab sheets were produced. As a compounding agent other than the compounding agents shown in Table 1, carbon black having 100 parts by weight of a styrene-butadiene copolymer rubber having a styrene content of 35% by weight, CTAB of 155 m 2 / g, and DBP of 135 ml / 100 g was used. 100 parts by weight, stearic acid 1.0 part by weight, a softener (aromatic oil) 70 parts by weight, zinc white 3.0 parts by weight, and an antioxidant (IPPD) 1.0 part by weight were used.
[0018]
With respect to the obtained rubber composition, the peeling resistance, hardness (Hd), breaking strength (Tb), elastic modulus at 300% elongation (300% Mod), and heat build-up (HBU) of the tread rubber were measured. Each measurement method is described below.
(A) Peeling Resistance Based on the method of JIS K6301, vulcanization was performed at 145 ° C. for 45 minutes, and the peak adhesive resistance was measured in an atmosphere at 100 ° C. The evaluation was indicated by an index with the result of the comparative example (control) taken as 100. The larger the value, the greater the peeling resistance.
Note that the belt coating rubber is different between the peeling resistances (1) and (2).
[0019]
(B) Hardness (Hd)
It was measured at 25 ° C. and 100 ° C. according to the method of JIS K6301. At each temperature, the result of the comparative example was represented by an index with the result being 100. The higher the numerical value, the higher the hardness (Hd).
[0020]
(C) Breaking strength (Tb) and elastic modulus (300% Mod)
According to the method of JIS K6301, the measurement was performed at a tensile speed of 50 mm / min and a test temperature of 100 ° C. The result of the comparative example was represented by an index with 100 being set. The larger the numerical value, the higher the breaking strength (Tb) and the elastic modulus (300% Mod).
[0021]
(D) Heat build up (HBU)
The sample was obtained by vulcanization under the conditions of 145 ° C. × 45 minutes. The sample was heated by applying a predetermined vibration under a constant load using a flexometer (trade name), and the time and temperature until bubbles were generated by the generated heat were measured. The higher the value, the higher the heat resistance. In the evaluation, the results of the temperature and the time of the comparative examples were indicated by indices, each being 100. The higher the numerical value, the higher the HBU temperature and the longer the time.
The results obtained are shown in Table 1 below.
[0022]
[Table 1]
Figure 0003560409
1) Tetrakis (2-ethylhexyl) thiuram disulfide 2) N-cyclohexyl-2-benzothiazylsulfenamide 3) N-tert-butyl-2-benzothiazolylsulfenamide
The following was confirmed from Table 1 above.
When Example 1 was compared with Comparative Example, there was no significant difference in Hd, Tb, 300% Mod and HBU, but the peeling resistance increased by more than 50% in both (1) and (2). Irrespective of the type of belt coating rubber, increased peeling resistance was achieved.
[0024]
In Example 2, since the renocure S / G was reduced by half, the 300% Mod was slightly reduced and the HBU time was also reduced, but this point can be adjusted with the blended oil. However, the value of the peeling resistance could not be adjusted with this compounded oil, and the value of the peeling resistance could be improved for the first time by using Renocure S / G.
[0025]
In Example 3, sulfur was reduced, which was disadvantageous in comparison with Example 2 in 300% Mod and HBU. However, this point can also be adjusted with the blended oil in the same manner as in Example 2, and the peeling resistance was Lenocure S / The value could be improved by using G.
[0026]
【The invention's effect】
As described above, in the rubber composition for a tire tread of the present invention, by using a non-nitrosamine-based vulcanization accelerator and a non-morpholine-based vulcanizing agent together, a non-morpholine-based vulcanizing agent is used. Although the amount of chemicals was smaller than that of a vulcanized system, the peeling resistance could be improved. This makes it possible to improve the TLB resistance of a high-performance pneumatic tire at ultra-high speed and under a high load, and to provide a safer tire.

Claims (6)

加硫可能なゴムに対して、加硫促進剤としてテトラキス(2−エチルヘキシル)チウラムジスルフィドと、加硫剤としてp−ベンゾキノンジオキシム、p,p’−ジベンゾイルキノンジオキシム、ポリ−p−ジニトロソベンゼン、ジチオジカプロラクタム、テトラエトキシフォスフォリルトリスルフィドまたはこれらのブレンドが配合されてなることを特徴とするタイヤトレッド用ゴム組成物。For a vulcanizable rubber, tetrakis (2-ethylhexyl) thiuram disulfide as a vulcanization accelerator and p-benzoquinone dioxime, p, p'-dibenzoylquinone dioxime, poly-p-di nitrosobenzene, dithiodicaprolactam, tetraethoxy phosphoryl Le trisulfide or tire tread rubber composition which is characterized in that with these blends, is blended. ゴム成分100重量部に対して、0.1〜10重量部の前記加硫促進剤と、0.1〜10重量部の、ジチオジカプロラクタム、テトラエトキシフォスフォリルトリスフィドまたはこれらのブレンドとが配合されてなる請求項1記載のタイヤトレッド用ゴム組成物。Per 100 parts by weight of the rubber component, before Symbol vulcanization accelerator from 0.1 to 10 parts by weight, of 0.1 to 10 parts by weight, dithiodicaprolactam, tetraethoxy phosphoryl Le tris Fi de or blends The rubber composition for a tire tread according to claim 1, further comprising: ゴム成分100重量部に対して、スチレン成分含有率が25〜60重量%であるスチレン−ブタジエン共重合体ゴムを40重量部以上を含有する請求項1または2記載のタイヤトレッド用ゴム組成物。The rubber composition for a tire tread according to claim 1 or 2, further comprising 40 parts by weight or more of a styrene-butadiene copolymer rubber having a styrene component content of 25 to 60% by weight based on 100 parts by weight of the rubber component. ゴム成分100重量部に対して、カーボンブラックが100〜200重量部配合されている請求項1〜3のうちいずれか一項記載のタイヤトレッド用ゴム組成物。The rubber composition for a tire tread according to any one of claims 1 to 3, wherein 100 to 200 parts by weight of carbon black is blended with respect to 100 parts by weight of the rubber component. ゴム成分100重量部に対して、2.0〜5.0重量部の前記加硫促進剤と、2.0〜5.0重量部の前記加硫剤とが配合されている請求項1〜4のうちいずれか一項記載のタイヤトレッド用ゴム組成物。2. The rubber composition according to claim 1, wherein 2.0 to 5.0 parts by weight of the vulcanization accelerator and 2.0 to 5.0 parts by weight of the vulcanizing agent are blended with respect to 100 parts by weight of the rubber component. 5. The rubber composition for a tire tread according to any one of the items 4. 請求項1〜5のうちいずれか一項記載のタイヤトレッド用ゴム組成物をトレッドに用いたことを特徴とする高性能タイヤ。A high-performance tire using the rubber composition for a tire tread according to any one of claims 1 to 5 for a tread.
JP06512596A 1996-02-28 1996-02-28 Rubber composition for tire tread Expired - Lifetime JP3560409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06512596A JP3560409B2 (en) 1996-02-28 1996-02-28 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06512596A JP3560409B2 (en) 1996-02-28 1996-02-28 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JPH09235416A JPH09235416A (en) 1997-09-09
JP3560409B2 true JP3560409B2 (en) 2004-09-02

Family

ID=13277851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06512596A Expired - Lifetime JP3560409B2 (en) 1996-02-28 1996-02-28 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP3560409B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102892A1 (en) * 2001-06-15 2002-12-27 Daikin Industries, Ltd. Ethylene/hexafluoropropylene elastomer composition
KR20030033682A (en) * 2001-10-24 2003-05-01 금호산업 주식회사 The nitrosoamine free rim flange compound
KR20030033681A (en) * 2001-10-24 2003-05-01 금호산업 주식회사 The nitrosoamine free undertread compound
JP6075987B2 (en) * 2012-07-24 2017-02-08 住友ゴム工業株式会社 Rubber composition for tread of high performance dry tire and high performance dry tire
JP2017222811A (en) * 2016-06-17 2017-12-21 株式会社ブリヂストン Rubber composition and method for producing the same

Also Published As

Publication number Publication date
JPH09235416A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
AU723875B2 (en) Mixture of organosilanepolysulphanes and a process for the production of rubber compounds containing these mixtures
JP2978249B2 (en) Tire / tread composition
JP2007154130A (en) Rubber composition for tire and its manufacturing method
JP2007197677A (en) Rubber composition for coating textile cord and tire using the same
JP3599215B2 (en) Rubber composition
JP2006282830A (en) Rubber composition
JP2008222845A (en) Rubber composition for tire
WO1991005005A1 (en) Tire compounds
JP3560409B2 (en) Rubber composition for tire tread
JP2009084485A (en) Rubber composition for tire tread
JP5211489B2 (en) Rubber composition for tire tread
JP2009286897A (en) Rubber composition for tire, and method for producing the same
JP2006265400A (en) Method of manufacturing rubber composition and pneumatic tire using the same
JP2005105007A (en) Rubber composition and pneumatic tire
JP4074164B2 (en) tire
JP2001049047A (en) Rubber composition and pneumatic tire
JP3770701B2 (en) High performance tire tread rubber composition
JP2913897B2 (en) Rubber composition suitable for use in tires and method for producing the same
JPS61238501A (en) Pneumatic tire improved in durability
JP2009263585A (en) Rubber composition and pneumatic tire using the same
JP2006241315A (en) Rubber composition for pneumatic tire
JP2003073502A (en) Rubber composition
JP2008274170A (en) Rubber composition for tire tread
JPH06122788A (en) Rubber composition for tire
JP2000290433A (en) Rubber composition and pneumatic tire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term