JP2006241315A - Rubber composition for pneumatic tire - Google Patents

Rubber composition for pneumatic tire Download PDF

Info

Publication number
JP2006241315A
JP2006241315A JP2005059180A JP2005059180A JP2006241315A JP 2006241315 A JP2006241315 A JP 2006241315A JP 2005059180 A JP2005059180 A JP 2005059180A JP 2005059180 A JP2005059180 A JP 2005059180A JP 2006241315 A JP2006241315 A JP 2006241315A
Authority
JP
Japan
Prior art keywords
weight
rubber composition
diethylene glycol
silica
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005059180A
Other languages
Japanese (ja)
Inventor
Sukeji Fujita
資二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005059180A priority Critical patent/JP2006241315A/en
Publication of JP2006241315A publication Critical patent/JP2006241315A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition which maintains a high wet braking performance and improves vulcanization productivity and fuel cost. <P>SOLUTION: This rubber composition for pneumatic tires, comprising (A) 100 pts.wt. of a dienic rubber containing an aromatic vinyl copolymer having a Tg of ≥-40°C in an amount of at least ≥40 wt%, (B) (i) 30 to 120 pts.wt. of silica having N<SB>2</SB>SA of 100 to 300 m<SP>2</SP>/g and (ii) carbon black having N<SB>2</SB>SA of 80 to 200 m<SP>2</SP>/g in a total amount of 50 to 120 pts.wt. with the silica, (C) 1 to 6 pts.wt. of diethylene glycol, and (D) a vulcanizing agent, is obtained by kneading the components excluding at least the vulcanizing agent and the diethylene glycol in a closed mixer at a releasing temperature of 140 to 165°C in the first process and then kneading the components comprising at least the vulcanizing agent and the diethylene glycol at a temperature of 80 to 110°C in the second process. The pneumatic tire using the same. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空気入りタイヤ用ゴム組成物に関し、更に詳しくは破断特性と耐熱老化性を損うことなく、高いウェット制動性能を維持するとともに、加硫生産性と燃費性を改良した空気入りタイヤ用ゴム組成物及びそれを用いた空気入りタイヤに関する。   The present invention relates to a rubber composition for a pneumatic tire, and more particularly, for a pneumatic tire that maintains high wet braking performance without impairing fracture characteristics and heat aging resistance, and has improved vulcanization productivity and fuel efficiency. The present invention relates to a rubber composition and a pneumatic tire using the same.

高性能タイヤ用キャップコンパウンドとしては、高いウェット性能、低燃費性及び耐摩耗性が高次元でバランスしたゴム組成物が求められているが、従来はシリカ配合量を高めたり、特定のポリマーを用いる配合設計で対応している。しかしながら、ゴム組成物中のシリカの配合量を多くすると、加硫速度が遅くなり、加硫時間が長くなって、生産性を悪化させたり、高価な加硫促進剤を増量しなければならなくなったりするため、これらの解決が実用上求められている。   As a high-performance tire cap compound, there is a demand for a rubber composition that balances high wet performance, low fuel consumption, and wear resistance at a high level. Conventionally, the amount of silica compounded is increased or a specific polymer is used. Corresponding with the compounding design. However, if the amount of silica compounded in the rubber composition is increased, the vulcanization speed becomes slower, the vulcanization time becomes longer, the productivity is deteriorated, and the amount of expensive vulcanization accelerator must be increased. Therefore, these solutions are required in practice.

前記加硫速度が遅くなる問題に対しては、加硫促進剤の添加量を増やしたり、特定の加硫促進剤を使用したりする例も見られるが、これはタイヤ内部のベルト層のコンパウンド/金属間の接着に悪影響を及ぼすおそれがある。また、グリコール類を活性剤として添加してシリカ表面をグリコール類で覆うことによって加硫促進剤のシリカへの吸着を防ぎ、加硫速度の低下を防止したりする例もあるが、加硫促進剤を加硫の遅れを十分に補う量配合すると、ゴムの破断特性が低下するという問題を伴なう。   For the problem of slowing down the vulcanization speed, there are cases where the addition amount of the vulcanization accelerator is increased or a specific vulcanization accelerator is used. This is a compound of the belt layer inside the tire. / May adversely affect adhesion between metals. There are also cases where glycols are added as an activator and the silica surface is covered with glycols to prevent adsorption of the vulcanization accelerator to silica and prevent a decrease in vulcanization speed. If the agent is blended in an amount that sufficiently compensates for the vulcanization delay, there is a problem in that the breaking properties of the rubber are lowered.

特許文献1には、溶液重合ジエン系ゴムに重量平均分子量200〜20000のポリアルキレングリコールを混練り最高温度120〜170℃で混合して、低燃費性を向上させ、加硫速度を早くさせることが記載されているが、ポリアルキレングリコールを加硫速度の改良に十分な量配合すると、ゴムの破断特性が低下するおそれがあり好ましくない。   In Patent Document 1, a polyalkylene glycol having a weight average molecular weight of 200 to 20000 is kneaded with a solution-polymerized diene rubber and mixed at a maximum temperature of 120 to 170 ° C. to improve fuel efficiency and increase the vulcanization speed. However, if polyalkylene glycol is blended in an amount sufficient to improve the vulcanization rate, the breaking properties of the rubber may be lowered, which is not preferable.

特許文献2には特定のSIBRを含むジエン系ゴムにポリエチレングリコールを配合し、ウェット性能/低燃費性/加工性を改善することが提案されているが、混合方法も普通で、ポリエチレングリコールを加硫速度の改良に十分な量配合すると、ゴムの破断特性が低下するおそれがあり、好ましくない。   Patent Document 2 proposes that polyethylene glycol is blended with a diene rubber containing a specific SIBR to improve wet performance / low fuel consumption / processability, but the mixing method is also normal, and polyethylene glycol is added. If a sufficient amount is added to improve the vulcanization speed, the breaking properties of the rubber may be lowered, which is not preferable.

特許文献3には、ジエン系ゴムにポリエチレングリコールと無機充填材を予め混合して加硫促進剤のシリカへの吸着を防ぐことにより、加工性に優れ、かつウェットグリップ、低燃費性に優れたゴムが得られる旨記載されているが、これもポリエチレングリコールを加硫速度の改良に十分な量配合すると、ゴムの破断特性が低下するおそれがあるので好ましくない。   In Patent Document 3, polyethylene glycol and an inorganic filler are mixed in advance with diene rubber to prevent adsorption of the vulcanization accelerator to silica, thereby providing excellent workability and excellent wet grip and low fuel consumption. Although it is described that a rubber can be obtained, it is not preferable to add polyethylene glycol in an amount sufficient to improve the vulcanization speed because the rubber breaking property may be lowered.

特許文献4には、ゴム中に、ポリエチレングリコールを、特にゴム/シリカ/カップリング剤を130〜140℃で混合する工程1とポリエチレングリコールを150〜170℃で混合する工程2とイオウ/加硫促進剤を混合する工程3とからなる方法でゴム組成物中にポリエチレングリコールを配合することにより加工性(粘度)とウェットグリップ、低燃費性の向上がはかれる旨開示されている。   In Patent Document 4, polyethylene glycol, particularly rubber / silica / coupling agent, is mixed in rubber at 130 to 140 ° C., polyethylene glycol is mixed at 150 to 170 ° C., and sulfur / vulcanized. It is disclosed that processability (viscosity), wet grip, and low fuel consumption can be improved by blending polyethylene glycol into the rubber composition by a method comprising Step 3 of mixing an accelerator.

特開平9−3245号公報Japanese Patent Laid-Open No. 9-3245 特開2002−88193号公報JP 2002-88193 A 特開平11−343366号公報Japanese Patent Laid-Open No. 11-343366 特開2002−121327号公報JP 2002-121327 A

従って、本発明の目的は、破断特性及び耐熱老化性を損なうことなく、高いウェット制動性能を維持すると共に、加硫生産性と燃費性を改良した空気入りタイヤ用ゴム組成物及びそれを用いた空気入りタイヤを提供することにある。   Accordingly, an object of the present invention is to maintain a high wet braking performance without impairing fracture characteristics and heat aging resistance, and to use a rubber composition for a pneumatic tire with improved vulcanization productivity and fuel efficiency, and the same. It is to provide a pneumatic tire.

本発明に従えば、(A)ガラス転移点(Tg)が−40℃以上の芳香族ビニル共重合体を少なくとも40重量%以上含むジエン系ゴム100重量部、(B)(i)窒素吸着比表面積(N2SA)が100〜300m2/gのシリカ30〜120重量部及び(ii)窒素吸着比表面積(N2SA)が80〜200m2/gのカーボンブラックをシリカとの合計量で50〜120重量部、(C)ジエチレングリコール1〜6重量部並びに(D)加硫系配合剤を含むゴム組成物であって、第1工程で少なくとも加硫系配合剤及びジエチレングリコールを除く成分を140℃〜165℃の放出温度で密閉式混合機で混練し、次に第2工程で前記の少なくとも加硫系配合剤及びジエチレングリコールを含む成分を80℃〜110℃の温度で混練して得られる空気入りタイヤ用ゴム組成物及びそれを用いた空気入りタイヤが提供される。 According to the present invention, (A) 100 parts by weight of a diene rubber containing at least 40% by weight or more of an aromatic vinyl copolymer having a glass transition point (Tg) of −40 ° C. or higher, (B) (i) a nitrogen adsorption ratio 30 to 120 parts by weight of silica having a surface area (N 2 SA) of 100 to 300 m 2 / g and (ii) carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 80 to 200 m 2 / g in total amount with silica A rubber composition containing 50 to 120 parts by weight, (C) 1 to 6 parts by weight of diethylene glycol and (D) a vulcanizing compound, and at least 140 components excluding the vulcanizing compound and diethylene glycol in the first step. Obtained by kneading in a closed mixer at a release temperature of 165 ° C. to 165 ° C., and then kneading the components containing at least the vulcanizing compound and diethylene glycol at a temperature of 80 ° C. to 110 ° C. in the second step. Pneumatic tire rubber composition and a pneumatic tire using the same are provided.

本発明者らは、前記課題を解決すべく、特定のジエン系ゴムに、特定のシリカ/カーボンブラックを規定量配合し、加硫系配合物及びジエチレングリコールを除く成分を140〜165℃で第一の工程で混合した後、加硫系配合剤及びジエチレングリコールを第二の工程で投入することにより、加硫生産性、破断特性及び耐熱老化性を低下させることなく、高いウェット性能と低燃費性能を有するゴム組成物を得ることができることを見出した。   In order to solve the above problems, the inventors of the present invention blend a specific amount of specific silica / carbon black with a specific diene rubber, and first add components other than the vulcanized compound and diethylene glycol at 140 to 165 ° C. After mixing in this step, by adding the vulcanizing compound and diethylene glycol in the second step, high wet performance and low fuel consumption performance can be achieved without reducing vulcanization productivity, rupture properties and heat aging resistance. It has been found that a rubber composition can be obtained.

前述の如く、本発明によれば、ガラス転移点(Tg)が−40℃以上の芳香族ビニル共重合体(例えばスチレン−ブタジエン共重合体、スチレン−イソプレン−ブタジエン共重合体などの少なくとも一種)を少なくとも40重量%以上含むジエン系ゴム(A)100重量部に、(B)窒素吸着比表面積(N2SA)が100〜300m2/g(好ましくは110〜250m2/g)のシリカ30〜120重量部と窒素吸着比表面積(N2SA)が80〜200m2/g(好ましくは100〜250m2/g)のカーボンブラックをシリカとの合計量で50〜120重量部(好ましくは60〜100重量部)、(C)ジエチレングリコールを1〜6重量部(好ましくは1.5〜4重量部)及び(D)加硫系配合剤、好ましくはイオウ/加硫促進剤の比率が1/1.2〜1/1.7(更に好ましくは1/1.2〜1/1.5(重量比)であるイオウ及び少なくとも一種の加硫促進剤からなる加硫系配合剤を配合してなるゴム組成物を、第1工程で、少なくとも加硫系配合剤とジエチレングリコールとを除いた、ゴム、シリカ、カーボン、その他の配合剤を密閉式混練機を用いて140〜165℃の放出温度で混練し、次に少なくとも加硫系配合剤及びジエチレングリコールを含む成分を80℃〜110℃の温度での混練りする工程2を経て製造することにより所望のゴム組成物を得ることができる。 As described above, according to the present invention, an aromatic vinyl copolymer having a glass transition point (Tg) of −40 ° C. or higher (for example, at least one of a styrene-butadiene copolymer, a styrene-isoprene-butadiene copolymer, etc.). Silica 30 having (B) nitrogen adsorption specific surface area (N 2 SA) of 100 to 300 m 2 / g (preferably 110 to 250 m 2 / g) in 100 parts by weight of diene rubber (A) containing at least 40% by weight 50 to 120 parts by weight (preferably 60 to 120 parts by weight) of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 80 to 200 m 2 / g (preferably 100 to 250 m 2 / g) and silica. To 100 parts by weight), (C) 1 to 6 parts by weight (preferably 1.5 to 4 parts by weight) of diethylene glycol, and (D) a vulcanizing compound, preferably sulfur / vulcanization acceleration. A vulcanization blend comprising sulfur having a ratio of 1 / 1.2 to 1 / 1.7 (more preferably 1 / 1.2 to 1 / 1.5 (weight ratio)) and at least one vulcanization accelerator. In the first step, the rubber composition obtained by blending the agent with rubber, silica, carbon, and other compounding agents excluding at least the vulcanizing compounding agent and diethylene glycol is 140 to 165 using a closed kneader. To obtain a desired rubber composition by kneading at a release temperature of 0 ° C., followed by step 2 of kneading at least a component containing a vulcanizing compound and diethylene glycol at a temperature of 80 ° C. to 110 ° C. Can do.

本発明において成分(A)として使用するゴムはガラス転移点(Tg)が−40℃以上、好ましくは−35℃〜−15℃(Tgはデュポン製示差熱分析計(DSC)を用い、ASTMD3418−82に従い、昇温速度10℃/minにて測定)の芳香族ビニル共重合体を40重量%以上、好ましくは45〜80重量%含むジエン系ゴムである。成分(A)として用いるTgが−40℃以上の芳香族ビニル共重合体としてはスチレン−ブタジエン共重合体ゴム(SBR)、スチレン−イソプレン−ブタジエン共重合体(SIBR)などを単独又は2種以上の任意の混合物として用いることができる。他のジエン系ゴムとしては天然ゴム(NR)、ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、Tgが−40℃未満のSBRなどを用いることができ、これらも単独又は任意の2種以上の混合物として用いることができる。Tgが−40℃以上の芳香族ビニル共重合体の配合量が少な過ぎるとウェット制動性能が発揮できないので好ましくない。   In the present invention, the rubber used as component (A) has a glass transition point (Tg) of -40 ° C or higher, preferably -35 ° C to -15 ° C (Tg is a DuPont differential thermal analyzer (DSC), ASTM D3418- A diene rubber containing 40% by weight or more, preferably 45 to 80% by weight of an aromatic vinyl copolymer at a temperature rising rate of 10 ° C./min. As an aromatic vinyl copolymer having a Tg of −40 ° C. or higher used as the component (A), a styrene-butadiene copolymer rubber (SBR), a styrene-isoprene-butadiene copolymer (SIBR) or the like may be used alone or in combination. Can be used as any mixture of As other diene rubbers, natural rubber (NR), polyisoprene rubber (IR), various polybutadiene rubbers (BR), SBR having a Tg of less than -40 ° C, etc. can be used. It can be used as a mixture of the above. If the amount of the aromatic vinyl copolymer having a Tg of −40 ° C. or higher is too small, the wet braking performance cannot be exhibited, which is not preferable.

本発明においては、成分(B)として窒素吸着比表面積(N2SA)が100〜300m2/g、好ましくは110〜250m2/gのシリカ30〜120重量部、好ましくは30〜80重量部と、窒素吸着比表面積(N2SA)が80m2/g以上、好ましくは100〜250m2/gのカーボンブラックをシリカとの合計量で50〜120重量部、好ましくは60〜100重量部配合する。前記N2SAの範囲は破断特性を維持するために必要であり、またシリカの配合量が少な過ぎるとウェット制動性能が低下するので好ましくなく、逆に多過ぎると混練時の加工性が悪化するので好ましくない。一方、カーボンブラックは少なすぎると補強性が低下し、多すぎると、シリカと同様に混練時の加工性が悪化するので好ましくない。 In the present invention, the component (B) has a nitrogen adsorption specific surface area (N 2 SA) of 100 to 300 m 2 / g, preferably 110 to 250 m 2 / g of silica, 30 to 120 parts by weight, preferably 30 to 80 parts by weight. When the nitrogen adsorption specific surface area (N 2 SA) of 80 m 2 / g or more, preferably 50 to 120 parts by weight of carbon black 100 to 250 m 2 / g in a total amount of silica, preferably 60 to 100 parts by weight blended To do. The range of N 2 SA is necessary for maintaining the fracture characteristics. If the blending amount of silica is too small, wet braking performance deteriorates, which is not preferable. Conversely, if it is too large, workability during kneading deteriorates. Therefore, it is not preferable. On the other hand, if the amount of carbon black is too small, the reinforcing property is lowered, and if it is too large, the workability at the time of kneading deteriorates like silica, which is not preferable.

本発明のゴム組成物には成分(C)としてジエチレングリコールを、ジエン系ゴム100重量部に対し、1〜6重量部、好ましくは1.5〜4重量部配合する。この配合量が少な過ぎると加硫促進効果が小さくなるので好ましく、逆に多過ぎると破断特性が低下するので好ましくない。   In the rubber composition of the present invention, diethylene glycol is added as component (C) in an amount of 1 to 6 parts by weight, preferably 1.5 to 4 parts by weight, per 100 parts by weight of the diene rubber. If this amount is too small, the effect of accelerating vulcanization will be small, and conversely if too large, the fracture characteristics will be reduced, which is not preferable.

本発明のゴム組成物には、常法に従って、例えばイオウと少なくとも1種の加硫促進剤を加硫系配合剤として配合する。使用する加硫系配合剤の組成及び使用量には特に限定はないが、イオウ/加硫促進剤の比率(重量比)で1/1.2〜1/1.7が好ましく、1/1.2〜1/1.5が更に好ましい。この比率で硫黄の量が少な過ぎると加硫速度が遅くなるので好ましくなく、逆に多過ぎると耐熱老化性が低下するので好ましくない。使用する加硫促進剤には特に限定はなく、例えばN−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、ジフェニルグアニジン等を単体あるいはブレンドして使用することができる。   In the rubber composition of the present invention, for example, sulfur and at least one vulcanization accelerator are blended as a vulcanizing compound in accordance with a conventional method. Although there is no limitation in particular in the composition and usage-amount of the vulcanization | cure type | system | group compounding agent to be used, the ratio (weight ratio) of sulfur / vulcanization accelerator is preferably 1 / 1.2 to 1 / 1.7, 1/1 2 to 1 / 1.5 is more preferable. If the amount of sulfur is too small at this ratio, the vulcanization rate is slow, which is not preferable. On the other hand, if the amount is too large, the heat aging resistance deteriorates, which is not preferable. The vulcanization accelerator to be used is not particularly limited. For example, N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, diphenylguanidine or the like is used alone or in a blend. can do.

本発明に係るゴム組成物は、混合に際し、先ず、第1段階(即ち工程1)として、加硫系配合剤とジエチレングリコールを除いた成分、即ちゴム、シリカ、カーボンブラック及びその他の配合剤を140〜165℃、好ましくは145〜160℃の放出温度で密閉式混練機(例えばバンバリーミキサー)で混練し、次に工程2で、少なくとも加硫系配合剤及びジエチレングリコールを含む成分を加えて、80℃〜110℃、好ましくは90〜100℃の温度で混練りする。尚、ジエチレングリコールは常温で液体のため、予め上記加硫系配合剤とは別に一部のシリカ又はカーボンブラック等と混合しておいて使用するのが好ましい。   When mixing the rubber composition according to the present invention, first, as a first step (ie, step 1), 140 components of a vulcanizing compound and a component excluding diethylene glycol, ie, rubber, silica, carbon black and other compounding agents are added. Kneading in a closed kneading machine (for example, Banbury mixer) at a discharge temperature of ˜165 ° C., preferably 145 ° C. to 160 ° C., and then adding a component containing at least a vulcanizing compound and diethylene glycol in step 2 to 80 ° C. It knead | mixes at the temperature of -110 degreeC, Preferably it is 90-100 degreeC. In addition, since diethylene glycol is liquid at normal temperature, it is preferable to mix it with some silica or carbon black or the like separately from the above vulcanizing compound.

本発明に係るゴム組成物には、前記した必須成分に加えて、カーボンブラック及びシリカ以外の他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the above-described essential components, the rubber composition according to the present invention includes other reinforcing agents (fillers) other than carbon black and silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, and anti-aging. Various additives that are generally blended for tires such as additives and plasticizers, and other general rubbers can be blended, and such additives are kneaded and vulcanized by a general method to obtain a composition. Can be used to vulcanize or crosslink. The blending amounts of these additives may be conventional conventional blending amounts as long as the object of the present invention is not adversely affected.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

実施例1〜3及び比較例1〜3
サンプルの調製
表Iに示す配合においてジエチレングリコール、加硫促進剤及び硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、160〜165℃に達したときに放出してマスターバッチを得た。このマスターバッチにジエチレングリコール、加硫促進剤及び硫黄をオープンロールで100〜105℃の温度で混練し、ゴム組成物を得た。このゴム組成物を用いて以下に示す試験法で未加硫物性を評価した。結果は表Iに示す。
Examples 1-3 and Comparative Examples 1-3
Sample preparation In the formulation shown in Table I, the components excluding diethylene glycol, vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed mixer, and when reaching 160 to 165 ° C, the master batch was released. Obtained. Diethylene glycol, a vulcanization accelerator and sulfur were kneaded with this master batch at a temperature of 100 to 105 ° C. with an open roll to obtain a rubber composition. Using this rubber composition, unvulcanized physical properties were evaluated by the following test methods. The results are shown in Table I.

次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で20分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表Iに示す。   Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 20 minutes to prepare a vulcanized rubber sheet. The physical properties of the vulcanized rubber were measured by the following test methods. It was measured. The results are shown in Table I.

ゴム物性評価試験法
加硫速度T95:東洋精機製のRLRIII型を用い、160℃にて測定し、比較例1の値を100とした指数表示した。この数字が小さい方が加硫速度が早いことを示す。
破断伸び:JIS6301に準拠し、破断伸びを測定。比較例1の値を100とした指数表示した。この数字が大きい方が破断特性が良いことを示す。
tanδ(40℃)(指数):東洋精機の粘弾性スペクトロメーターを用い、初期歪み10%、動歪み2%の測定条件にて測定し、比較例1の値を100とした指数表示した。この数字が小さいほうが、低燃費性に優れることを示す。
Rubber physical property evaluation test method Vulcanization rate T95: Measured at 160 ° C. using RLRIII type manufactured by Toyo Seiki Co., Ltd. The smaller this number, the faster the vulcanization rate.
Elongation at break: Elongation at break was measured according to JIS6301. The index was displayed with the value of Comparative Example 1 as 100. Larger numbers indicate better fracture characteristics.
tan δ (40 ° C.) (index): Measured under measuring conditions of initial strain 10% and dynamic strain 2% using Toyo Seiki's viscoelasticity spectrometer. Smaller numbers indicate better fuel economy.

ウェット制動性能(指数):実施例及び比較例のゴム組成物を使用したキャップトレッドに使用したタイヤ(サイズ:205/60R15)を作り、100km/hからの湿潤路面での制動距離を測定し、比較例1の値を100として指数表示した。この数字が大きいほうが制動距離が短く、ウェット性能に優れることを示す。   Wet braking performance (index): tires (size: 205 / 60R15) used for cap treads using the rubber compositions of Examples and Comparative Examples were measured, and braking distances on wet road surfaces from 100 km / h were measured. The value of Comparative Example 1 was taken as 100 and displayed as an index. Larger numbers indicate shorter braking distances and better wet performance.

Figure 2006241315
Figure 2006241315

表I脚注
*1:SBR−1 Bayel社製VSL5025(Tg=−21℃、油展37.5phr)
*2:SBR−2 日本ゼオン(株)製NIPOL1712(Tg=−51℃、油展37.5phr)
*3:NR TSR
*4:BR 日本ゼオン(株)製BR1220
*5:シリカ−2 RHODIA社製165GR(NSA=140m2/g)
*6:カーボンブラック 昭和キャボット(株)製N234(NSA=112m2/g)
*7:ジエチレングリコール 日本触媒(株)製 ジエチレングリコール
*8:シランカップリング剤 DEGUSSA社製のカップリング剤Si69
*9:亜鉛華 正同化学工業(株)製 酸化亜鉛3種
*10:ステアリン酸 日本油脂(株)製工業用ステアリン酸
*11:老化防止剤 フレキシス(株)製SANTOFLEX 6PPD
*12:WAX 日本精蝋製(株)製パラフィンワックス
*13:オイル 昭和シェル石油(株)製アロマオイル
*14:イオウ 鶴見化学(株)製5%油入り微分硫黄
*15:加硫促進剤 フレキシス社製N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド
Table I footnote * 1: VBR5025 manufactured by SBR-1 Bayel (Tg = -21 ° C., oil exhibition 37.5 phr)
* 2: SBR-2 NIPOL 1712 manufactured by Nippon Zeon Co., Ltd. (Tg = −51 ° C., oil exhibition 37.5 phr)
* 3: NR TSR
* 4: BR1220 manufactured by BR Nippon Zeon Co., Ltd.
* 5: Silica-2 165GR manufactured by RHODIA (N 2 SA = 140 m 2 / g)
* 6: Carbon black N234 manufactured by Showa Cabot Co., Ltd. (N 2 SA = 112 m 2 / g)
* 7: Diethylene glycol Diethylene glycol manufactured by Nippon Shokubai Co., Ltd. * 8: Silane coupling agent Coupling agent Si69 manufactured by DEGUSSA
* 9: Zinc Hana 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd. * 10: Stearic acid Industrial stearic acid manufactured by Nippon Oil & Fats Co., Ltd. * 11: Anti-aging agent SANTOFLEX 6PPD manufactured by Flexis Co., Ltd.
* 12: Paraffin wax manufactured by Wax Nippon Seiwa Co., Ltd. * 13: Oil Aroma oil manufactured by Showa Shell Sekiyu KK * 14: Sulfur Differential Sulfur with 5% oil manufactured by Tsurumi Chemical Co., Ltd. * 15: Vulcanization accelerator N-cyclohexyl-2-benzothiazolylsulfenamide manufactured by Flexis

表Iに示す通り、比較例1は、配合は本発明の範囲内であるが、ジエチレングリコールの投入工程が工程1であるため、加硫速度が遅く、改善をしたい。   As shown in Table I, in Comparative Example 1, the blending is within the scope of the present invention, but the charging step of diethylene glycol is step 1, so the vulcanization rate is slow and improvement is desired.

これに対し、実施例1はジエチレングリコールの投入ステップを工程2にしたので、加硫速度を早くすることができている。更に工程2でジエチレングリコールを投入することにより配合量を減らすことができ、破断伸びも向上している。実施例2はジエチレングリコールの配合量を増やすことで、低燃費性を更に向上させることができることを示し、実施例3は加硫促進剤に対しイオウの量を増やしたものであるが、破断伸びは更に向上するが、耐熱老化性(M300変化率)が若干低下傾向を示してくる。   On the other hand, in Example 1, since the charging step of diethylene glycol was set to process 2, the vulcanization speed could be increased. Further, by adding diethylene glycol in step 2, the blending amount can be reduced, and the elongation at break is also improved. Example 2 shows that the fuel efficiency can be further improved by increasing the blending amount of diethylene glycol. Example 3 is an example in which the amount of sulfur is increased with respect to the vulcanization accelerator. Although further improved, the heat aging resistance (M300 change rate) tends to decrease slightly.

一方、比較例2はジエチレングリコールを過剰に配合すると、破断伸びの低下を伴うことを示し、比較例3はジエチレングリコールの量及び投入が本願発明の範囲内であっても、使用するゴム成分が本発明の範囲から外れると、ウェット性能が発揮されないことを示す。   On the other hand, Comparative Example 2 shows that excessive addition of diethylene glycol is accompanied by a decrease in elongation at break, and Comparative Example 3 shows that the rubber component used is the present invention even if the amount and input of diethylene glycol are within the scope of the present invention. If it is out of the range, the wet performance is not exhibited.

本発明に係るゴム組成物は加硫生産性やコンパウンドの破断特性、更には耐熱老化性を低下させること無く、高いウェット性能と低燃費性を有するゴム組成物を得ることができるのでタイヤトレッド用ゴム組成物などとして使用するのに有用である。   Since the rubber composition according to the present invention can provide a rubber composition having high wet performance and low fuel consumption without deteriorating vulcanization productivity, compound breaking characteristics, and heat aging resistance, it can be used for tire treads. It is useful for use as a rubber composition or the like.

Claims (3)

(A)ガラス転移点(Tg)が−40℃以上の芳香族ビニル共重合体を少なくとも40重量%以上含むジエン系ゴム100重量部、(B)(i)窒素吸着比表面積(N2SA)が100〜300m2/gのシリカ30〜120重量部及び(ii)窒素吸着比表面積(N2SA)が80〜200m2/gのカーボンブラックをシリカとの合計量で50〜120重量部、(C)ジエチレングリコール1〜6重量部並びに(D)加硫系配合剤を含むゴム組成物であって、第1工程で少なくとも加硫系配合剤及びジエチレングリコールを除く成分を140℃〜165℃の放出温度で密閉式混合機で混練し、次に第2工程で前記の少なくとも加硫系配合剤及びジエチレングリコールを含む成分を80℃〜110℃の温度で混練して得られる空気入りタイヤ用ゴム組成物。 (A) 100 parts by weight of a diene rubber containing at least 40% by weight or more of an aromatic vinyl copolymer having a glass transition point (Tg) of −40 ° C. or higher, (B) (i) a nitrogen adsorption specific surface area (N 2 SA) 30 to 120 parts by weight of silica having a molecular weight of 100 to 300 m 2 / g and (ii) 50 to 120 parts by weight of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 80 to 200 m 2 / g in total with silica, (C) A rubber composition containing 1 to 6 parts by weight of diethylene glycol and (D) a vulcanizing compound, and at least a component excluding the vulcanizing compound and diethylene glycol is released at 140 ° C. to 165 ° C. in the first step. Pneumatic tire obtained by kneading in a closed mixer at a temperature, and then kneading at least a vulcanizing compound and a component containing diethylene glycol at a temperature of 80 to 110 ° C. in the second step Rubber composition. 加硫系配合剤がイオウと少なくとも一種の加硫促進剤とをイオウ/加硫促進剤の比率1/1.2〜1/1.7(重量比)で含む請求項1に記載のゴム組成物。   The rubber composition according to claim 1, wherein the vulcanizing compound contains sulfur and at least one vulcanization accelerator in a sulfur / vulcanization accelerator ratio of 1 / 1.2 to 1 / 1.7 (weight ratio). object. 請求項1又は2に記載のゴム組成物を用いた空気入りタイヤ。   A pneumatic tire using the rubber composition according to claim 1.
JP2005059180A 2005-03-03 2005-03-03 Rubber composition for pneumatic tire Pending JP2006241315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059180A JP2006241315A (en) 2005-03-03 2005-03-03 Rubber composition for pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059180A JP2006241315A (en) 2005-03-03 2005-03-03 Rubber composition for pneumatic tire

Publications (1)

Publication Number Publication Date
JP2006241315A true JP2006241315A (en) 2006-09-14

Family

ID=37048037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059180A Pending JP2006241315A (en) 2005-03-03 2005-03-03 Rubber composition for pneumatic tire

Country Status (1)

Country Link
JP (1) JP2006241315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297513A (en) * 2007-06-04 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2011148898A (en) * 2010-01-21 2011-08-04 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
CN109988345A (en) * 2019-03-05 2019-07-09 中国航发北京航空材料研究院 A kind of low temperature resistant vibration damping butadiene-styrene rubber sizing material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297513A (en) * 2007-06-04 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2011148898A (en) * 2010-01-21 2011-08-04 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
CN109988345A (en) * 2019-03-05 2019-07-09 中国航发北京航空材料研究院 A kind of low temperature resistant vibration damping butadiene-styrene rubber sizing material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1690895B1 (en) Rubber composition and tire having tread comprising thereof
JP2006249188A (en) Rubber composition for tire tread
JP2010126672A (en) Rubber composition for tire tread
JP5497254B2 (en) Rubber composition and pneumatic tire using the same
JP5286642B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2011105789A (en) Rubber composition for studless tire and studless tire
JP2005298804A (en) Rubber composition and pneumatic tire obtained using the same
JP2008019334A (en) Rubber composition for tire tread
JP2008138086A (en) Rubber composition for tire tread
EP3287486A1 (en) Tyre composition
JP5353050B2 (en) Rubber composition for bead filler
JP2005146115A (en) Tire tread rubber composition
JP2011246563A (en) Rubber composition for tire and pneumatic tire using the same
JP2008169298A (en) Rubber composition and pneumatic tire using same
JP2005272630A (en) Rubber composition
JP2009084485A (en) Rubber composition for tire tread
JP4088290B2 (en) Rubber composition for tire tread and tire comprising the same
JP2006188571A (en) Rubber composition and tire formed out of the same
JP2009286897A (en) Rubber composition for tire, and method for producing the same
JP2006241315A (en) Rubber composition for pneumatic tire
JP2009114367A (en) Rubber composition for tire tread and pneumatic tire having tread using it
JP2009007422A (en) Rubber composition and tire
JP2006307039A (en) Rubber composition and radial-ply tire for passenger car
JP2005047968A (en) Silica-compounded rubber composition
JP2017082122A (en) Rubber composition for tire for heavy load