JPS6117542B2 - - Google Patents

Info

Publication number
JPS6117542B2
JPS6117542B2 JP55036845A JP3684580A JPS6117542B2 JP S6117542 B2 JPS6117542 B2 JP S6117542B2 JP 55036845 A JP55036845 A JP 55036845A JP 3684580 A JP3684580 A JP 3684580A JP S6117542 B2 JPS6117542 B2 JP S6117542B2
Authority
JP
Japan
Prior art keywords
water
crosslinked
powder
absorbing agent
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036845A
Other languages
Japanese (ja)
Other versions
JPS56133028A (en
Inventor
Tsuneo Tsubakimoto
Tadao Shimomura
Yoshio Irie
Yoshihiko Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3684580A priority Critical patent/JPS56133028A/en
Publication of JPS56133028A publication Critical patent/JPS56133028A/en
Publication of JPS6117542B2 publication Critical patent/JPS6117542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は吸水剤組成物に関するものである。さ
らに詳しくは、粉体状吸収剤として用いる場合
に、粉体としての流動性が良好で、吸湿による粘
着性に起因する作業性の低下もなく、しかも吸
水、保水性にも優れた吸水剤組成物に関するもの
である。 従来、生理綿や紙おむつ等の衛生材料、農園芸
用保水剤などに水膨潤性樹脂を一構成物として用
いる試みがなされている。衛生材料分野に用いら
れる場合、水膨潤性樹脂はシート状に成形されて
用いられることが多い。成形方法としては粉体状
の水膨潤性樹脂を2枚の吸収紙の間にはさみこん
だのちプレスを行なつて吸収シートとする方法、
綿状のパルプと混合する方法、さらには綿状のパ
ルプと水膨潤性樹脂の混合物を吸収紙あるいは不
織布の間にはさみこんだのちプレスを行なつて吸
収シートとする方法などがある。また農園芸用保
水剤として用いる場合は、水膨潤性樹脂粉体を手
まきあるいは粉散布機により土壌、砂等にまいた
のちスコツプ、鍬、耕運機等により混合して用い
る事が行なわれている。粉体状の水膨潤性樹脂を
用いて衛生材料用の吸収シートを成形する場合、
定量供給機、混合機、散布装置、乾式抄紙機、ロ
ール型プレス機などを用いて取り扱う場合が多
い。この際水膨潤性樹脂は大気中の湿気を吸収し
て粉体粒子が粘着性をおびるため、粒子どうしが
粘着して粉体の一部又は全部が塊状となつて流動
性を失なつたり、使用する機械の壁面や接触部に
付着するなどのトラブルが生じやすい。また農園
芸用保水剤として使用する場合にも、土壌や砂と
混合する時に水膨潤性樹脂が各機械に付着した
り、土壌などの水分をすぐ吸収して分散混合する
前に塊状となる傾向がある。このような吸湿によ
る粒子どうしや機械等への粘着を防止する方法が
いくつか考えられている。このような方法の一つ
として水膨潤性樹脂の粉体の表面を疎水性物で覆
う表面処理を施すことにより吸湿性そのものを少
なくして粉体の流動性を保つ方法が提案されてい
るが、この様な方法では吸水剤として使用した時
に吸水速度が極端に小さくなつてしまう。また、
粉体の流動性を保つために粉体を顆粒状に成型し
たり、あるいは分級して微粉状のものを取りのぞ
く方法では、煩雑な工程を必要とし、しかも微分
状のものを取りのぞく場合には歩留まりが悪くな
る。 本発明者らは、従来知られている水膨潤性樹脂
の有している上記の如き問題を解決すべく鋭意研
究を重ねた結果、架橋構造を有する水膨潤性樹脂
粉体と特定の疎水性超微粒子状シリカとを特定比
率で混合して得られる吸水剤組成物が、上記の如
き問題点を解決し、しかもすぐれた吸水能を有す
る事を見出して本発明を完成するに至つた。 即ち本発明の吸水剤組成物は、架橋構造を有す
る水膨潤性樹脂(A)粉体と平均粒子径が0.05μ以下
で且つブルナウアー・エメツト・テーラー
(Brunaur、Emmett、Teller)法(以下、BET法
という。)により測定された比表面積が約50m2/g
以上の疎水性超微粒子状シリカ(B)とからなり、(A)
100重量部に対して(B)0.05〜5重量部の混合比率
であることを特徴とするものである。 本発明において使用される架橋構造を有する水
膨潤性樹脂(A)は、共有結合又はイオン結合等によ
り分子間に架橋構造を有している合成又は半合成
の高分子である。このような架橋構造を有する水
膨潤性樹脂(A)としては、デンプン−アクリル酸塩
グラフト重合体架橋物、ポリアクリル酸塩架橋
物、アクリル酸塩−アクリル酸エステル共重合体
架橋物、アクリル酸エステル−酢酸ビニル共重合
体架橋物のケン化物、アクリル酸塩−アクリルア
ミド共重合体架橋物及びポリアクリロニトリル架
橋物の加水分解物などからなる群より選ばれた1
種又は2種以上が好ましい。 これらの共重合体架橋物あるいは共重合体架橋
物の加水分解物は、公知の方法により得られたも
のや市販のものを用いることができる。 このような架橋構造を有する水膨潤性樹脂(A)の
粉体としては、粒子径が通常10メツシユ以下のも
のが用いられる。粉砕の方法及び装置としては、
従来公知の方法及び装置を適宜用いることができ
る。 本発明に用いられる疎水性超微粒子状シリカ(B)
は、表面のシラノール基をジメチルジクロルシラ
ン等と反応させてアルキル基を導入して疎水化さ
れた、平均粒子径が0.05μ以下で且つBET法によ
る比表面積が約50m2/g以上のものである。 平均粒子径が0.05μを超えたりBET法による比
表面積が50m2/g未満時には、得られる吸水剤組
成物の吸湿条件下での流動性の保持が不充分とな
る。 架橋構造を有する水膨潤性樹脂(A)粉体と疎水性
超微粒子状シリカ(B)との混合比率は、該水膨潤性
樹脂(A)粉体100重量部に対して疎水性超微粒子状
シリカ(B)0.05〜5重量部、好ましくは0.1〜2重
量部の比率である。疎水性超微粒子状シリカ(B)の
量が0.05重量部未満のときは、充分な効果が得ら
れない。また5重量部を超えるときには、添加量
に見合つた効果が得られないだけでなく、微粉塵
の発生や吸水速度の低下が起こる。 架橋構造を有する水膨潤性樹脂(A)粉体と疎水性
微粒子状シリカ(B)とを混合するには、公知の方法
及び装置を用いることができるが、混合するに従
つて流動性が向上するため比較的短時間に充分混
合を行うことができる。 このようにして得られた本発明の吸水剤組成物
は、架橋構造を有する水膨潤性樹脂(A)粉体の粒子
表面に疎水性微粒子状シリカ(B)が均一に、しかも
比較的少ない量付着しており、そのため吸湿条件
下に放置しても、吸湿はするが粒子どうしや機械
等への粘着はほとんどない。 本発明の吸水剤組成物を衛生材料用の吸収剤と
して用いると、吸収シート作成時に吸湿による粘
着のための作業性の低下がなく、定量散布が容易
となる。しかも、水膨潤性樹脂(A)粉体と疎水性微
粒子状シリカ(B)との特定の組合わせにより、水性
物質と接した時に“ままこ”になるのを防止して
初期吸収性が向上する利点を有している。また、
農園芸用の保水剤として用いた場合でも、水分を
含んだ土壌や砂との混合時に塊状となる事が少な
くなり、農園芸用保水剤として有効に効果を発揮
する。 本発明の吸水剤組成物に対して特開昭52−
59086号発明はポリアクリル酸ナトリウムやザン
サンガムの様な非架橋の水溶性高分子物質を、該
水溶性高分子物質に対して10〜200重量%(実施
例では100重量%)という多量の無機系微粒子物
中に分散させて吸収能を向上させることを目的と
したものであり、従つて、架橋構造を有する水膨
潤性樹脂(A)粉体と比較的少量の疎水性超微粒子状
シリカ(B)とを組合わせることにより吸水剤組成物
の流動性及び粘着性を改良した本発明とは、本質
的に異なるものである。 以下、実施例により本発明を更に詳細に説明す
るが、本発明の範囲がこれらの実施例により限定
されるものではない。 実施例 1 市販のデンプン−アクリル酸ナトリウムグラフ
ト重合体架橋物粉体(“サンウエツトIM−300”
三洋化成工業社製)1000gと“アエロジル
(AEROSIL)R−972”(日本アエロジル(株)製、
疎水性シリカ、平均粒子径0.016μ、BET法によ
る比表面積120±30m2/g)3gとを卓上型ニーダ
ーで5分間混合して吸水剤組成物(1)を調整した。
なお吸水剤組成物(1)の粒度分布は次の通りであつ
た。
The present invention relates to a water absorbent composition. More specifically, when used as a powder absorbent, the water absorbent composition has good fluidity as a powder, does not reduce workability due to stickiness due to moisture absorption, and has excellent water absorption and water retention properties. It is about things. Conventionally, attempts have been made to use water-swellable resins as a component in sanitary materials such as sanitary cotton and disposable diapers, water retention agents for agriculture and horticulture, and the like. When used in the field of sanitary materials, water-swellable resins are often molded into sheet shapes. The molding method involves sandwiching a powdered water-swellable resin between two sheets of absorbent paper and then pressing it to form an absorbent sheet.
There is a method of mixing it with cotton-like pulp, and a method of sandwiching a mixture of cotton-like pulp and water-swellable resin between absorbent paper or nonwoven fabric and then pressing it to form an absorbent sheet. When used as a water retention agent for agriculture and horticulture, water-swellable resin powder is sprinkled on soil, sand, etc. by hand or using a powder spreader, and then mixed with a shovel, hoe, cultivator, etc. . When molding absorbent sheets for sanitary materials using powdered water-swellable resin,
It is often handled using quantitative feeders, mixers, spreaders, dry paper machines, roll presses, etc. At this time, the water-swellable resin absorbs moisture in the atmosphere and the powder particles become sticky, so the particles stick together and some or all of the powder becomes lumpy and loses fluidity. Problems such as adhesion to the walls and contact parts of the machines used are likely to occur. Also, when used as a water retention agent for agriculture and horticulture, the water-swellable resin tends to adhere to each machine when mixed with soil or sand, or it tends to absorb moisture from the soil and form lumps before being dispersed and mixed. There is. Several methods have been considered to prevent particles from adhering to each other or to machines due to moisture absorption. As one such method, a method has been proposed in which the surface of water-swellable resin powder is treated with a hydrophobic material to reduce its hygroscopicity and maintain the fluidity of the powder. However, in such a method, when used as a water absorbing agent, the water absorption rate becomes extremely low. Also,
Methods such as molding powder into granules to maintain its fluidity or classifying to remove fine powder require complicated processes, and it is difficult to remove fine powder when removing fine particles. will result in poor yield. The present inventors have conducted extensive research to solve the above-mentioned problems of conventionally known water-swellable resins, and have discovered water-swellable resin powder having a crosslinked structure and The present invention was completed by discovering that a water absorbent composition obtained by mixing ultrafine particulate silica in a specific ratio solves the above-mentioned problems and has excellent water absorbing ability. That is, the water-absorbing agent composition of the present invention comprises a water-swellable resin (A) powder having a crosslinked structure, an average particle size of 0.05μ or less, and a water-absorbing agent composition prepared by the Brunauer-Emmett-Teller method (hereinafter referred to as BET). The specific surface area is approximately 50m 2 /g as measured by
(A)
It is characterized by a mixing ratio of 0.05 to 5 parts by weight of (B) to 100 parts by weight. The water-swellable resin (A) having a crosslinked structure used in the present invention is a synthetic or semi-synthetic polymer having a crosslinked structure between molecules through covalent bonds, ionic bonds, or the like. Water-swellable resins (A) having such a crosslinked structure include starch-acrylate graft polymer crosslinked products, polyacrylate crosslinked products, acrylate-acrylic acid ester copolymer crosslinked products, acrylic acid 1 selected from the group consisting of saponified products of ester-vinyl acetate copolymer crosslinked products, acrylate-acrylamide copolymer crosslinked products, hydrolyzed products of polyacrylonitrile crosslinked products, etc.
One species or two or more species are preferred. As these crosslinked copolymers or hydrolyzates of crosslinked copolymers, those obtained by known methods or commercially available products can be used. As the powder of the water-swellable resin (A) having such a crosslinked structure, one having a particle size of usually 10 mesh or less is used. The crushing method and equipment are as follows:
Conventionally known methods and devices can be used as appropriate. Hydrophobic ultrafine particulate silica (B) used in the present invention
are hydrophobicized by reacting the silanol groups on the surface with dimethyldichlorosilane, etc. to introduce alkyl groups, and have an average particle diameter of 0.05 μ or less and a specific surface area of approximately 50 m 2 /g or more by the BET method. It is. When the average particle diameter exceeds 0.05 μm or when the specific surface area measured by the BET method is less than 50 m 2 /g, the resulting water-absorbing agent composition will not maintain fluidity sufficiently under hygroscopic conditions. The mixing ratio of the water-swellable resin (A) powder having a crosslinked structure and the hydrophobic ultrafine particulate silica (B) is 100 parts by weight of the water-swellable resin (A) powder. The proportion of silica (B) is from 0.05 to 5 parts by weight, preferably from 0.1 to 2 parts by weight. When the amount of hydrophobic ultrafine particulate silica (B) is less than 0.05 parts by weight, sufficient effects cannot be obtained. If the amount exceeds 5 parts by weight, not only the effect commensurate with the added amount cannot be obtained, but also the generation of fine dust and a decrease in the water absorption rate. Known methods and equipment can be used to mix the water-swellable resin (A) powder having a crosslinked structure and the hydrophobic fine particulate silica (B), but the fluidity improves as they are mixed. Therefore, sufficient mixing can be carried out in a relatively short time. The water-absorbing agent composition of the present invention obtained in this way has hydrophobic fine particulate silica (B) uniformly distributed on the particle surface of the water-swellable resin (A) powder having a crosslinked structure, and in a relatively small amount. Therefore, even if it is left under hygroscopic conditions, it will absorb moisture but will hardly stick to particles or machines. When the water-absorbing agent composition of the present invention is used as an absorbent for sanitary materials, there is no decrease in workability due to adhesion due to moisture absorption when producing an absorbent sheet, and quantitative spraying becomes easy. Moreover, the specific combination of water-swellable resin (A) powder and hydrophobic fine particulate silica (B) prevents "stickiness" when coming into contact with aqueous substances and improves initial absorbency. It has the advantage of Also,
Even when used as a water retention agent for agriculture and horticulture, it is less likely to form lumps when mixed with moist soil or sand, and is effective as a water retention agent for agriculture and horticulture. Unexamined Japanese Patent Application Publication No. 52-1981 for the water-absorbing agent composition of the present invention.
The No. 59086 invention combines a non-crosslinked water-soluble polymer material such as sodium polyacrylate or xanthan gum with a large amount of inorganic material of 10 to 200% by weight (100% by weight in the examples) based on the water-soluble polymer material. The purpose is to improve the absorption capacity by dispersing it in fine particles, and therefore it consists of a water-swellable resin (A) powder with a crosslinked structure and a relatively small amount of hydrophobic ultrafine particulate silica (B). ) is essentially different from the present invention, which improves the fluidity and adhesion of the water absorbent composition by combining the above. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited by these Examples. Example 1 Commercially available starch-sodium acrylate graft polymer crosslinked powder (“Sunwet IM-300”)
Sanyo Chemical Industries Co., Ltd.) 1000g and “AEROSIL R-972” (Nippon Aerosil Co., Ltd.) 1000g
A water-absorbing agent composition (1) was prepared by mixing 3 g of hydrophobic silica (average particle size: 0.016 μm, specific surface area: 120±30 m 2 /g) by BET method for 5 minutes in a tabletop kneader.
The particle size distribution of water absorbent composition (1) was as follows.

【表】 吸水剤組成物(1)5gを径が10cmのステンレス製
円筒状容器の底面に均一にひろげ、20℃、相対湿
度65%の条件下に静置して流動性およびステンレ
スに対する粘着性を調べた。この結果を第1表に
示した。また、調整後の吸水剤組成物(1)0.2gを
不織布製のテイーバツグ式袋(40mm×150mm)に
均一に入れ、0.9重量%食塩水に浸漬し、3分後
及び5分後の重量をそれぞれ測定した。テイーバ
ツグ式袋のみを浸漬した場合の吸収重量をブラン
クとし、次式に従つて吸水剤組成物の膨潤倍率を
求めた。この結果を第1表に示した。 膨潤倍率=吸収後の重量(g)−ブランク(g)/吸水
剤組成物の重量(g) なお、比較のため“アエロジル(AEROSIL)
R−972”を添加しないデンプン−アクリル酸ナ
トリウムグラフト重合体架橋物粉体のみを比較吸
水剤(1)として粉体の流動性、粘着性、及び膨潤倍
率を測定して第1表に示した。第1表に示した如
く吸水剤組成物(1)は吸湿条件化に於ても流動性を
長期間保持し、金属面に対する付着もほとんどな
かつた。また吸水剤組成物(1)を吸湿した砂と混合
しても塊状とならず、均一に混合できた。比較吸
水剤(1)を同様に吸湿した砂と混合すると、塊状な
る部分が生じ、分散性が悪かつた。 実施例 2 アクリル酸ナトリウム65.8g、アクリル酸21.6
g、グリセリン0.7g、過硫酸アンモン0.05g、
亜硫酸水素ナトリウム0.05g、ポリオキシエチレ
ンノニルフエニルエーテル1g及び水132gから
なる混合物を40℃に加熱して静置状態で水溶液重
合を行なつた。得られた含水ゲルを細かく細断
し、200℃で乾燥し、紛砕してポリアクリル酸部
分ナトリウム塩架橋物の粉体を得た。このポリア
クリル酸部分ナトリウム塩架橋物粉体1000gと
“QUSO WR50”(フイラデルフイアクオーツ社
製、疎水性沈殿シリカ、平均粒子径0.015μ、
BET法による比表面積150m2/g)7gとを、実
施例1と同じ方法により混合して吸水剤組成物(2)
とした。なお、吸水剤組成物(2)の粒度分布は次の
通りであつた。
[Table] Spread 5 g of water-absorbing agent composition (1) uniformly on the bottom of a stainless steel cylindrical container with a diameter of 10 cm, and leave it at 20°C and 65% relative humidity to test its fluidity and adhesion to stainless steel. I looked into it. The results are shown in Table 1. In addition, 0.2 g of the adjusted water-absorbing agent composition (1) was uniformly placed in a T-bag type bag (40 mm x 150 mm) made of non-woven fabric, immersed in 0.9 wt% saline solution, and the weight was measured after 3 minutes and 5 minutes. Each was measured. Using the absorbed weight obtained when only the T-bag type bag was immersed as a blank, the swelling ratio of the water-absorbing agent composition was determined according to the following formula. The results are shown in Table 1. Swelling ratio = Weight after absorption (g) - Blank (g) / Weight of water absorbent composition (g) For comparison, "AEROSIL"
Using only a crosslinked starch-sodium acrylate graft polymer powder without the addition of "R-972" as a water absorbing agent (1), the fluidity, tackiness, and swelling ratio of the powder were measured and are shown in Table 1. As shown in Table 1, the water-absorbing agent composition (1) maintained its fluidity for a long period of time even under hygroscopic conditions, and hardly adhered to metal surfaces. Even when mixed with sand that had absorbed moisture, it did not form lumps and could be mixed uniformly. When comparative water absorbing agent (1) was mixed with sand that had absorbed moisture in the same way, lumpy portions were formed and the dispersibility was poor. Example 2 Sodium acrylate 65.8g, acrylic acid 21.6
g, glycerin 0.7g, ammonium persulfate 0.05g,
A mixture consisting of 0.05 g of sodium bisulfite, 1 g of polyoxyethylene nonyl phenyl ether, and 132 g of water was heated to 40° C. and allowed to stand still for aqueous solution polymerization. The obtained hydrogel was finely chopped, dried at 200°C, and crushed to obtain a powder of partially crosslinked polyacrylic acid sodium salt. 1000 g of this polyacrylic acid partially cross-linked sodium salt powder and "QUSO WR50" (manufactured by Philadelphia Quartz Co., Ltd., hydrophobic precipitated silica, average particle size 0.015μ,
A water-absorbing agent composition (2) was prepared by mixing 7 g of specific surface area (150 m 2 /g) according to the BET method in the same manner as in Example 1.
And so. The particle size distribution of the water absorbent composition (2) was as follows.

【表】 吸水剤組成物(2)を用い、実施例1と同様にして
粉体の流動性、粘着性及び膨潤倍率を測定し、第
1表に示した。 なお、比較のため“QUSO WR50”を添加し
ないでポリアクリル酸部分ナトリウム塩架橋物粉
体のみを比較吸水剤(2)として同様の性能測定を行
ない、結果を第1表に示した。第1表に示した如
く、吸水剤組成物(2)は吸湿条件下でも粉体として
の流動性を長期間保持し、金属面に対する付着が
ほとんどなかつた。また、吸水剤組成物(2)を吸湿
した砂と混合しても塊状とならず、均一に混合で
きた。比較吸水剤(2)を同様に吸湿した砂と混合す
ると、塊状となる部分が生じ、分散性が悪かつ
た。 実施例 3 内容積1のセパラブルフラスコにノルマルヘ
キサン300ml、アクリル酸ナトリウム75モル%と
アクリル酸25モル%とからなるアクリル酸塩系単
量体の水容液100g(モノマー濃度40重量%)、ソ
ルビタンモノステアレート2g及び過硫酸アンモ
ン0.05gを入れ、混合して逆相懸濁させたのち窒
素雰囲気下で撹拌しながら62℃に加熱し、逆相懸
濁重合を行なつた。6時間後、生成した懸濁液を
過し、ノルマルヘキサンで洗浄したのち減圧乾
燥した。 このようにして得られた自己架橋型アクリル酸
ナトリウム塩重合体の粉体1000gと“アエロジル
(AEROSIL)017”(日本アエロジル(株)製、疎水
性シリカ、平均粒子径0.018μ、BET法による比
表面積110±30m2/g)10gとを、実施例1と同様
にして混合し、吸水剤組成物(3)とした。なお、吸
水剤組成物(3)の粒度分布は次の通りであつた。
[Table] Using the water-absorbing agent composition (2), the fluidity, tackiness, and swelling ratio of the powder were measured in the same manner as in Example 1, and the results are shown in Table 1. For comparison, similar performance measurements were conducted using only the partially crosslinked polyacrylic acid sodium salt powder as the comparative water absorbing agent (2) without adding "QUSO WR50", and the results are shown in Table 1. As shown in Table 1, the water-absorbing agent composition (2) maintained its fluidity as a powder for a long period of time even under moisture-absorbing conditions, and had almost no adhesion to metal surfaces. Further, even when the water-absorbing agent composition (2) was mixed with moisture-absorbed sand, no lumps were formed, and the mixture could be uniformly mixed. When the comparative water absorbing agent (2) was mixed with sand that had similarly absorbed moisture, lumpy portions were formed and the dispersibility was poor. Example 3 In a separable flask with an internal volume of 1, 300 ml of normal hexane, 100 g of an aqueous solution of an acrylate monomer consisting of 75 mol% sodium acrylate and 25 mol% acrylic acid (monomer concentration 40% by weight), 2 g of sorbitan monostearate and 0.05 g of ammonium persulfate were added, mixed to form a reverse phase suspension, and then heated to 62° C. with stirring under a nitrogen atmosphere to carry out reverse phase suspension polymerization. After 6 hours, the resulting suspension was filtered, washed with normal hexane, and then dried under reduced pressure. A comparison between 1000 g of the self-crosslinked acrylic acid sodium salt polymer powder thus obtained and "AEROSIL 017" (manufactured by Nippon Aerosil Co., Ltd., hydrophobic silica, average particle size 0.018μ, BET method) (surface area: 110±30 m 2 /g) were mixed in the same manner as in Example 1 to obtain a water absorbent composition (3). The particle size distribution of the water absorbent composition (3) was as follows.

【表】 この吸水剤組成物(3)を用いて実施例1と同様に
して粉体の流動性、粘着性及び膨潤倍率を測定
し、結果を第1表に示した。第1表に示したごと
く、吸水剤組成物(3)は吸湿条件下でも良好な流動
性の保持を示した。また、“アエロジル
(AEROSIL)D17”を添加しないで、自己架橋型
アクリル酸ナトリウム塩重合体の粉体のみを比較
吸水剤(3)とし、同様に性能測定を行なうと、粉体
としての流動性の保持が悪く、ステンレス容器へ
の付着も多かつた。 実施例 4 アクリル酸ナトリウム70.5g、アクリル酸18
g、ペンタエリスリトールトリアクリレート0.2
g、過硫酸アンモン0.05g、亜硫酸水素ナトリウ
ム0.05g、ポリオキシエチレンソルビタンモノラ
ウレート1g及び水132gからなる混合物を40℃
に加熱して静置状態で水溶液重合を行なつた。得
られた含水ゲルを細かく細断し、200℃で乾燥
し、紛砕してポリアクリル酸部分ナトリウム塩架
橋物粉体を得た。このポリアクリル酸部分ナトリ
ウム塩架橋物粉体1000gと“アエロジル
(AEROSIL)R972”5gとを実施例1と同様に
して混合し、吸水剤組成物(4)とした。吸水剤組成
物4の粒度分布は次の通りであつた。
[Table] Using this water-absorbing agent composition (3), the fluidity, tackiness, and swelling ratio of the powder were measured in the same manner as in Example 1, and the results are shown in Table 1. As shown in Table 1, water absorbent composition (3) exhibited good fluidity retention even under moisture absorption conditions. In addition, when performing performance measurements in the same manner using only the powder of self-crosslinking sodium acrylic acid salt polymer as the comparative water absorbing agent (3) without adding "AEROSIL D17", the fluidity of the powder was retention was poor, and there was a lot of adhesion to stainless steel containers. Example 4 Sodium acrylate 70.5g, acrylic acid 18
g, pentaerythritol triacrylate 0.2
A mixture of 0.05 g of ammonium persulfate, 0.05 g of sodium bisulfite, 1 g of polyoxyethylene sorbitan monolaurate, and 132 g of water was heated at 40°C.
The aqueous solution polymerization was carried out by heating the solution to a temperature of 100°C and leaving it to stand still. The obtained water-containing gel was finely chopped, dried at 200°C, and crushed to obtain a partially crosslinked polyacrylic acid sodium salt powder. 1000 g of this polyacrylic acid partially crosslinked sodium salt powder and 5 g of "AEROSIL R972" were mixed in the same manner as in Example 1 to obtain a water absorbent composition (4). The particle size distribution of water absorbent composition 4 was as follows.

【表】 吸水剤組成物(4)を用い、実施例1と同様にして
粉体の流動性、粘着性及び膨潤倍率を測定し、結
果を第1表に示した。第1表に示したごとく、吸
水剤組成物(4)は良好な流動性の保持を示した。ま
た、比較のため“アエロジル(AEROSIL)
R972”を添加しないで、ポリアクリル酸部分ナ
トリウム塩架橋物粉体のみを比較吸水剤(4)とし
て、同様に流動性、粘着性及び膨潤倍率を測定し
たところ、粉体の流動性の低下が早かつた。
[Table] Using the water-absorbing agent composition (4), the fluidity, tackiness, and swelling ratio of the powder were measured in the same manner as in Example 1, and the results are shown in Table 1. As shown in Table 1, water absorbent composition (4) exhibited good fluidity retention. Also, for comparison, “AEROSIL”
When the fluidity, tackiness, and swelling ratio were similarly measured using only the polyacrylic acid partially crosslinked sodium salt powder as the comparative water absorbing agent (4) without adding "R972", it was found that the fluidity of the powder decreased. It was early.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 架橋構造を有する水膨潤性樹脂(A)粉体と平均
粒子径が0.05μ以下で且つブルナウアー・エメツ
ト・テーラー(Brunaur、Emmett、Teller)法
により測定された比表面積が約50m2/g以上の疎
水性超微粒子状シリカ(B)とからなり、(A)100重量
部に対して(B)0.05〜5重量部の混合比率であるこ
とを特徴とする吸水剤組成物。 2 架橋構造を有する水膨潤性樹脂(A)がデンプン
−アクリル酸塩グラフト重合体架橋物、ポリアク
リル酸塩架橋物、アクリル酸塩−アクリル酸エス
テル共重合体架橋物、アクリル酸エステル−酢酸
ビニル共重合体架橋物のケン化物、アクリル酸塩
−アクリルアミド共重合体架橋物及びポリアクリ
ロニトリル架橋物の加水分解物からなる群より選
ばれた1種又は2種以上である特許請求の範囲第
1項記載の吸収剤組成物。
[Claims] 1. A water-swellable resin (A) powder having a crosslinked structure and an average particle size of 0.05μ or less and a specific surface area measured by the Brunauer-Emmett-Teller method. A water-absorbing agent composition comprising hydrophobic ultrafine particulate silica (B) of approximately 50 m 2 /g or more, and having a mixing ratio of 0.05 to 5 parts by weight of (B) to 100 parts by weight of (A). thing. 2 The water-swellable resin (A) having a crosslinked structure is a starch-acrylate graft polymer crosslinked product, a polyacrylate crosslinked product, an acrylate-acrylic acid ester copolymer crosslinked product, an acrylic acid ester-vinyl acetate Claim 1: One or more selected from the group consisting of a saponified product of a crosslinked copolymer, a crosslinked acrylate-acrylamide copolymer, and a hydrolyzate of a crosslinked polyacrylonitrile product. The absorbent composition described.
JP3684580A 1980-03-25 1980-03-25 Composition of water absorbent Granted JPS56133028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3684580A JPS56133028A (en) 1980-03-25 1980-03-25 Composition of water absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3684580A JPS56133028A (en) 1980-03-25 1980-03-25 Composition of water absorbent

Publications (2)

Publication Number Publication Date
JPS56133028A JPS56133028A (en) 1981-10-17
JPS6117542B2 true JPS6117542B2 (en) 1986-05-08

Family

ID=12481090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3684580A Granted JPS56133028A (en) 1980-03-25 1980-03-25 Composition of water absorbent

Country Status (1)

Country Link
JP (1) JPS56133028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038124A (en) * 2000-04-13 2002-02-06 Bristol Myers Squibb Co Absorbent material and method of its manufacture
JP2003088551A (en) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd Absorber and absorptive article using it
JP2007525568A (en) * 2003-10-31 2007-09-06 ビーエーエスエフ アクチェンゲゼルシャフト Hydrogels that absorb blood and / or body fluids
JP2010253283A (en) * 2010-06-15 2010-11-11 Sumitomo Seika Chem Co Ltd Water-absorbing resin
JP2011080069A (en) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd Water-absorbing resin

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR76888B (en) * 1981-08-07 1984-09-04 Unilever Nv
JPS6084360A (en) * 1983-08-31 1985-05-13 Sumitomo Chem Co Ltd Highly water-absorptive high-molecular material composition
JPS6160927U (en) * 1984-09-26 1986-04-24
JPS61141760A (en) * 1984-12-13 1986-06-28 Miyata Kogyo Kk Gelling agent for aqueous solution
GR890100525A (en) * 1989-08-24 1991-12-30 John Bethune Kenneth Absorbents
US5668078A (en) * 1994-10-05 1997-09-16 Sanyo Chemical Industries, Ltd. Water-absorbent resin particles and the production thereof
CN1443092A (en) 2000-07-18 2003-09-17 三洋化成工业株式会社 Absorbents and process for producing same, absorbable constructs and absorbable articles
JP3987348B2 (en) * 2001-01-26 2007-10-10 株式会社日本触媒 Manufacturing method of water-absorbing agent
BR0313517A (en) 2002-08-23 2005-06-14 Basf Ag Superabsorbent particles, method of absorbing an aqueous medium, absorbent article, diaper, and method of making superabsorbent-clay polymer particles
JP4640923B2 (en) * 2003-09-05 2011-03-02 株式会社日本触媒 Method for producing particulate water-absorbing resin composition
JP4564499B2 (en) * 2004-05-12 2010-10-20 株式会社日本触媒 Waste liquid solidifying agent, production method thereof and use thereof
TWI353360B (en) 2005-04-07 2011-12-01 Nippon Catalytic Chem Ind Production process of polyacrylic acid (salt) wate
JP5074734B2 (en) * 2005-09-30 2012-11-14 大王製紙株式会社 Absorbent articles
TWI394789B (en) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind Water-absorbent resin composition, method of manufacturing the same, and absorbent article
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
EP2010316B1 (en) 2006-03-27 2021-10-13 Nippon Shokubai Co.,Ltd. Water absorbing agent and water absorbent core using the agent
JP2009167371A (en) * 2008-01-21 2009-07-30 Sanyo Chem Ind Ltd Solidifying agent for solidifying waste fluid containing body fluid
CN105771945A (en) 2009-09-29 2016-07-20 株式会社日本触媒 Particulate water absorbent and process for production thereof
JP6412298B2 (en) 2012-07-27 2018-10-24 株式会社リブドゥコーポレーション Absorbent articles
KR101538725B1 (en) * 2013-12-03 2015-07-24 주식회사 엘지화학 Super Absorbent Polymer Resin
KR101910098B1 (en) 2015-01-05 2018-10-19 주식회사 엘지화학 Preparation method of improved superabsorbent polymer(sap) treated with aqueous dispersion comprising nanoparticles and superabsorbent polymer(sap) prepared thereby
JP2020168058A (en) * 2019-04-01 2020-10-15 花王株式会社 Laminate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508475A (en) * 1973-05-19 1975-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508475A (en) * 1973-05-19 1975-01-28

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038124A (en) * 2000-04-13 2002-02-06 Bristol Myers Squibb Co Absorbent material and method of its manufacture
JP2003088551A (en) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd Absorber and absorptive article using it
JP2007525568A (en) * 2003-10-31 2007-09-06 ビーエーエスエフ アクチェンゲゼルシャフト Hydrogels that absorb blood and / or body fluids
JP2010253283A (en) * 2010-06-15 2010-11-11 Sumitomo Seika Chem Co Ltd Water-absorbing resin
JP2011080069A (en) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd Water-absorbing resin

Also Published As

Publication number Publication date
JPS56133028A (en) 1981-10-17

Similar Documents

Publication Publication Date Title
JPS6117542B2 (en)
KR900001551B1 (en) Water absorbing agent
JP4758669B2 (en) Amorphous crushed particulate water-absorbing agent
US6300275B1 (en) Resilient superabsorbent compositions
US7157141B2 (en) Pulverulent polymers crosslinked on the surface
US4058124A (en) Disposable absorbent articles containing particulate, free-flowing, insoluble swellable polymers
AU2005226425B2 (en) Particulate water absorbing agent with irregularly pulverized shape
KR100858387B1 (en) Particulate water absorbing agent and method for production thereof, and water absorbing article
JP4587327B2 (en) Swellable hydrogel-forming polymer with high permeability
CA2482394C (en) Particulate water absorbent containing water absorbent resin as a main component
JP5527916B2 (en) Powdered cross-linked polymer that absorbs aqueous liquids and blood
JPH0710923B2 (en) Super absorbent polymer granulation method
JP2002523526A (en) Superabsorbent polymer with anti-caking properties
US5980879A (en) Deodorant resin composition and process for production thereof
CN101155870A (en) Particulate water absorbing agent, water-absorbent core and absorbing article
CA2403966A1 (en) Pulverulent polymers crosslinked on the surface
JPH043411B2 (en)
JPH02284927A (en) Granulation of highly water-absorbing resin
JP6861619B2 (en) Manufacturing method of water-absorbent resin particles
JP2004305141A (en) Treating material for animal excrement
JPS61101536A (en) Granulation of highly water-absorptive resin powder
JPH0323574B2 (en)
JPS5986657A (en) Highly absorptive resin composition
JPH0121164B2 (en)
JP3459201B2 (en) Method for producing improved water absorbent resin particles