JP2010253283A - Water-absorbing resin - Google Patents

Water-absorbing resin Download PDF

Info

Publication number
JP2010253283A
JP2010253283A JP2010136471A JP2010136471A JP2010253283A JP 2010253283 A JP2010253283 A JP 2010253283A JP 2010136471 A JP2010136471 A JP 2010136471A JP 2010136471 A JP2010136471 A JP 2010136471A JP 2010253283 A JP2010253283 A JP 2010253283A
Authority
JP
Japan
Prior art keywords
water
weight
absorbent resin
water absorption
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136471A
Other languages
Japanese (ja)
Other versions
JP5485805B2 (en
Inventor
Katsuichi Yamamori
勝一 山盛
Yasuhiro Nawata
康博 縄田
Masato Fujikake
正人 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2010136471A priority Critical patent/JP5485805B2/en
Publication of JP2010253283A publication Critical patent/JP2010253283A/en
Application granted granted Critical
Publication of JP5485805B2 publication Critical patent/JP5485805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-absorbing resin suitable for use in an absorber and an absorbent article which permit the thickness to be reduced without causing a problem in an actual use condition. <P>SOLUTION: The water-absorbing resin 9 shows a pressure absorption quantity of 10 g/g or below of artificial urine 30 seconds later from the start of absorption and shows a pressure absorption quantity of 20 g/g or above of the artificial urine 30 minutes later from the start of absorption. The water-absorbing resin 9 is combined with hydrophilic fibers to make the absorber. In the absorber, the water-absorbing resin 9 accounts for 30 wt.% or higher and lower than 100 wt.% of the total weight of the absorber. The absorber forms an absorbent article by being held between a liquid-permeable sheet and a liquid-impermeable sheet. The water-absorbing resin 9 is finished hydrophobic and preferably be given surface bridging in addition to the finish. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、紙おむつ、失禁パッド、生理用ナプキンなどの衛生材料に用いられる吸収体および吸収性物品に組み込むのに適した吸水性樹脂に関する。   The present invention relates to an absorbent body used for sanitary materials such as disposable diapers, incontinence pads, sanitary napkins, and a water absorbent resin suitable for incorporation into absorbent articles.

紙おむつ、失禁パッド、生理用ナプキンなどの吸収性物品は、身体に接触する側に配された柔軟な液体透過性シートと、身体と接触する反対側に配された液体不透過性シートとの間に、尿や体液などの水性液体を吸収・保持する吸収体が保持された構造を有している。   Absorbent articles such as disposable diapers, incontinence pads and sanitary napkins are placed between a flexible liquid-permeable sheet placed on the side in contact with the body and a liquid-impermeable sheet placed on the opposite side in contact with the body. Furthermore, it has a structure in which an absorber that absorbs and retains an aqueous liquid such as urine or body fluid is retained.

吸収体は、木材から得られる綿状パルプなどからなる親水性繊維と、吸水性樹脂から構成されている。水性液体は、不織布などからなる液体透過性シートを通過して吸収体に吸収される。吸収された水性液体は、親水性繊維で一時的に保持され、吸水性樹脂に移行して保持される。   The absorbent body is composed of hydrophilic fibers made of cotton-like pulp obtained from wood and a water-absorbing resin. The aqueous liquid passes through the liquid permeable sheet made of a nonwoven fabric or the like and is absorbed by the absorber. The absorbed aqueous liquid is temporarily held by the hydrophilic fiber, and is transferred to and held by the water absorbent resin.

吸収体における親水性繊維と吸水性樹脂とは、水性液体を吸収・保持する際に、それぞれ異なった役割を有している。   The hydrophilic fiber and the water-absorbent resin in the absorbent body have different roles in absorbing and holding the aqueous liquid.

まず、親水性繊維は、単位量あたりの吸水量が少なく、圧力がかかると吸収した水性液体を放出しやすいが、吸水速度が非常に速く液拡散性が良いといった特徴を有している。そのため、親水性繊維は、吸水性樹脂が水性液体を吸水するまでの水性液体の保持および吸収体中で水性液体を拡散させる役割を有している。さらに、膨潤した吸水性樹脂が変形して粒子間の隙間を塞ぎ、粒子間の隙間を通る液体の流れを妨げるゲルブロッキングを防ぐ役割も有している。   First, the hydrophilic fiber has a feature that the water absorption amount per unit amount is small and the absorbed aqueous liquid is easily released when pressure is applied, but the water absorption speed is very fast and the liquid diffusibility is good. Therefore, the hydrophilic fiber has a role of holding the aqueous liquid until the water absorbent resin absorbs the aqueous liquid and diffusing the aqueous liquid in the absorbent body. Furthermore, the swollen water-absorbing resin is deformed to close gaps between the particles, and also has a role of preventing gel blocking that hinders the flow of liquid through the gaps between the particles.

一方、吸水性樹脂は、単位量あたりの吸水量が多いといった特徴を有している。そのため、吸水性樹脂は、親水性繊維が保持して拡散させた水性液体を吸収・保持する役割を有している。   On the other hand, the water-absorbent resin is characterized by a large amount of water absorption per unit amount. Therefore, the water-absorbent resin has a role of absorbing and holding the aqueous liquid held and diffused by the hydrophilic fiber.

このような特徴の相違から、吸収体における親水性繊維と吸水性樹脂の比率が、水性液体の吸収・拡散性や、逆戻り量といった吸収体の吸水特性に大きく影響を及ぼす要因となっている。つまり、親水性繊維の割合が大きいとその吸収体は、水性液体の拡散性は良くなるが、吸水量が少なく、逆戻り量が多くなる。逆に、吸水性樹脂の割合が大きいと、吸水量が多く、逆戻り量が少なくなるが、吸水性樹脂によるゲルブロッキングが生じやすくなるために、水性液体の拡散性が悪くなり、吸収体を有効に利用できなくなる。   Due to the difference in characteristics, the ratio between the hydrophilic fiber and the water-absorbing resin in the absorbent body is a factor that greatly affects the water-absorbing characteristics of the absorbent body, such as the absorption / diffusibility of aqueous liquid and the amount of reversal. That is, when the ratio of the hydrophilic fibers is large, the absorbent body has good diffusibility of the aqueous liquid, but the water absorption amount is small and the reversion amount is large. Conversely, if the proportion of the water-absorbent resin is large, the amount of water absorption is large and the amount of reversal decreases, but gel blocking due to the water-absorbent resin is likely to occur, so the diffusibility of the aqueous liquid deteriorates and the absorber is effective Can no longer be used.

近年、紙おむつ、失禁パッド、生理用ナプキンなどの吸収性物品は、薄型化が進んでいる。つまり、親水性繊維と吸水性樹脂からなる吸収体において、嵩高く、水性液体の保持能力が低い親水性繊維の割合を小さくし、嵩が小さく、水性液体の保持能力の高い吸水性樹脂の割合を大きくすることにより、吸収性物品の吸水量を低下させることなく薄型化を可能にしている。   In recent years, absorbent articles such as paper diapers, incontinence pads, sanitary napkins and the like have been made thinner. That is, in the absorbent body composed of hydrophilic fibers and a water-absorbent resin, the proportion of hydrophilic fibers that are bulky and have a low ability to retain aqueous liquid is reduced, and the proportion of the water-absorbent resin that is small in volume and has a high ability to retain aqueous liquid. By increasing the thickness, it is possible to reduce the thickness of the absorbent article without reducing the water absorption amount.

しかしながら、吸収性物品の薄型化のため、吸収体中の吸水性樹脂の割合を大きくすると、上述の理由により、吸水開始から比較的早期にゲルブロッキングが生じやすく、水性液体の拡散性が悪くなって吸収体が有効に利用されにくくなり、吸収体における小さな領域でのみ水性液体が吸収される。このため、実際の使用状態においては、吸収体が吸収できる水性液体の総量が小さくなるために、吸収しきれずに逆戻り量が増えたり、尿が漏れる等の問題がある。   However, if the proportion of the water-absorbent resin in the absorbent body is increased to reduce the thickness of the absorbent article, gel blocking is likely to occur relatively early after the start of water absorption due to the above-described reason, and the diffusibility of the aqueous liquid deteriorates. Thus, the absorber becomes difficult to be effectively used, and the aqueous liquid is absorbed only in a small area of the absorber. For this reason, in the actual use state, since the total amount of the aqueous liquid that can be absorbed by the absorber becomes small, there is a problem that the amount of reversion increases without being absorbed and the urine leaks.

したがって、本発明は、実際の使用状態において問題を生じることなく薄型化を達成できる吸収体および吸収性物品に組み込むのに適した吸水性樹脂を提供することをその課題としている。   Therefore, an object of the present invention is to provide a water-absorbent resin suitable for incorporation into an absorbent body and an absorbent article that can achieve a reduction in thickness without causing problems in actual use conditions.

本発明者らは、上記した課題を解決すべく鋭意検討した結果、吸水開始初期の加圧吸水量および吸水後期の加圧吸水量と、吸収性物品の吸水特性との関係に着目し、吸水開始初期の加圧吸水量が特定値以下であり、吸水後期の加圧吸水量が特定値以上の吸水性樹脂を用いることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors paid attention to the relationship between the pressurized water absorption amount at the beginning of water absorption and the pressurized water absorption amount at the latter stage of water absorption, and the water absorption characteristics of the absorbent article. To find out that the above problems can be solved by using a water-absorbing resin having a pressurized water absorption amount at the start of the initial phase that is equal to or less than a specific value and that has a pressurized water absorption amount at or later than the specific value. It came.

すなわち、本発明では、吸水開始から30秒後における人工尿の加圧吸水量が10g/g以下であり、吸水開始から30分後における人工尿の加圧吸水量が20g/g以上である吸水性樹脂が提供される。   That is, in the present invention, the pressure water absorption amount of the artificial urine 30 seconds after the start of water absorption is 10 g / g or less, and the water absorption amount of the artificial urine 30 minutes after the start of water absorption is 20 g / g or more. A functional resin is provided.

本発明の吸水性樹脂は吸水開始から30秒後における人工尿の加圧吸水量を5g/g以下とし、吸水開始から30分後における人工尿の加圧吸水量を30g/g以上とするのが好ましく、また生理食塩水に対する飽和吸水量を40g/g以上とするのが好ましい。   In the water-absorbent resin of the present invention, the pressurized water absorption amount of the artificial urine 30 seconds after the start of water absorption is 5 g / g or less, and the pressurized water absorption amount of the artificial urine 30 minutes after the start of water absorption is 30 g / g or more. The saturated water absorption with respect to physiological saline is preferably 40 g / g or more.

また、本発明の吸水性樹脂の重量平均粒子径は、200〜600μmとするのが好ましい。   Moreover, it is preferable that the weight average particle diameter of the water absorbent resin of the present invention is 200 to 600 μm.

さらに、本発明の吸水性樹脂は、疎水処理を施しておくのが好ましく、疎水処理に加えて、表面架橋を施しておくことが好ましい。   Furthermore, the water-absorbing resin of the present invention is preferably subjected to a hydrophobic treatment, and in addition to the hydrophobic treatment, it is preferable to perform surface crosslinking.

本発明の吸水性樹脂を親水性繊維と組み合わせて吸収体を構成するにあたっては、吸水性樹脂の割合を吸収体の全体重量の30重量%以上100重量%未満の範囲とするのが好ましい。また、このような吸収体を用いて吸収性物品を構成するには、液体透過シートと液体不透過シートとの間に、上述した吸収体を保持させる。   In constructing an absorbent body by combining the water absorbent resin of the present invention with hydrophilic fibers, the proportion of the water absorbent resin is preferably in the range of 30% by weight or more and less than 100% by weight of the total weight of the absorbent body. Moreover, in order to comprise an absorbent article using such an absorber, the absorber described above is held between the liquid permeable sheet and the liquid impermeable sheet.

本発明の吸水性樹脂を組み込んだ吸収性物品(吸収体)では、吸水性樹脂が上述した特性を有するので、実際の使用状態において、拡散性に優れ、逆戻り量を抑制しつつ、吸収性物品(吸収体)の薄型化を達成することができるようになる。   In the absorbent article (absorber) incorporating the water-absorbent resin of the present invention, the water-absorbent resin has the above-described characteristics. Therefore, in an actual use state, the absorbent article has excellent diffusibility and suppresses the amount of reversion. Thinning of the (absorber) can be achieved.

すなわち、親水性繊維は、水性液体の吸水速度が非常に速く、拡散性に優れているが保持能力が少ない一方、吸水性樹脂は水性液体の保持能力に優れているが、拡散性に劣る。このため、吸収性物品が水性液体を吸収する特に初期段階において、親水性繊維が水性液体を吸収し、拡散させることが好ましく、吸水性樹脂は親水性繊維の吸収、拡散機能をできるだけ阻害しないことが望ましい。本発明の吸水性樹脂は、初期吸収速度が遅いために、初期吸収段階においては、親水性繊維を利用して水性液体を広く拡散させ、その後速やかに親水性繊維から水性液体を吸収する。このため、吸収性物品が水性液体を吸収する際の、親水性繊維の持つ早い吸収・拡散機能と、吸水性樹脂が持つ水性液体の高い保持能力を有効に利用できる。その結果、吸収性物品(吸収体)が非常に高い液拡散性および吸水量を保持するなどの優れた性能(吸水特性)を有するものとなり、実際の使用状態での問題の発生を抑制しつつも吸収性物品(吸収体)の薄型化を達成することができるようになる。   That is, the hydrophilic fiber has a very high water absorption rate for the aqueous liquid and is excellent in diffusibility but has a low retention capacity, while the water absorbent resin is excellent in the retention capacity of the aqueous liquid, but is inferior in diffusibility. For this reason, it is preferable that the hydrophilic fibers absorb and diffuse the aqueous liquid, particularly in the initial stage where the absorbent article absorbs the aqueous liquid, and the water absorbent resin does not impede the absorption and diffusion functions of the hydrophilic fibers as much as possible. Is desirable. Since the water-absorbing resin of the present invention has a low initial absorption rate, in the initial absorption stage, the aqueous liquid is diffused widely using hydrophilic fibers, and then the aqueous liquid is quickly absorbed from the hydrophilic fibers. For this reason, when the absorbent article absorbs the aqueous liquid, the quick absorption / diffusion function of the hydrophilic fiber and the high holding ability of the aqueous liquid of the water absorbent resin can be effectively used. As a result, the absorbent article (absorber) has excellent performance (water absorption characteristics) such as maintaining extremely high liquid diffusibility and water absorption, while suppressing the occurrence of problems in actual use conditions. In addition, it is possible to achieve a thinner absorbent article (absorber).

加圧吸水量を測定するための装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the apparatus for measuring pressurized water absorption.

以下に本発明の吸水性樹脂を用いた吸収体および吸収性物品について説明する。なお、吸収性物品としては、紙おむつ、失禁パッド、生理用ナプキンなどが挙げられるが、本発明では、これらのものには限定されない。   The absorbent body and absorbent article using the water absorbent resin of the present invention will be described below. Examples of absorbent articles include paper diapers, incontinence pads, sanitary napkins, and the like, but the present invention is not limited to these.

本発明の吸水性樹脂を組み込んだ吸収性物品は、水性液体を通過することのできる液体透過性シート(トップシート)と、水性液体を通過することのない液体不透過性シート(バックシート)との間に、水性液体を吸収・保持する吸収体を保持した構造を有している。液体透過性シートは、身体と接触する側に配されており、液体不透過性シートは、身体と接触することのない側に配されている。   The absorbent article incorporating the water-absorbent resin of the present invention includes a liquid-permeable sheet (top sheet) that can pass an aqueous liquid, and a liquid-impermeable sheet (back sheet) that does not pass an aqueous liquid. In between, it has the structure which hold | maintained the absorber which absorbs and hold | maintains an aqueous liquid. The liquid permeable sheet is disposed on the side that contacts the body, and the liquid impermeable sheet is disposed on the side that does not contact the body.

液体透過性シートとしては、たとえばポリエチレンやポリプロピレン、ポリエステル、ポリアミド等からなる不織布、あるいは多孔質の合成樹脂シートなどが挙げられるが、これらに限定されるものではない。   Examples of the liquid permeable sheet include, but are not limited to, a nonwoven fabric made of polyethylene, polypropylene, polyester, polyamide, or the like, or a porous synthetic resin sheet.

液体不透過性シートとしては、たとえばポリエチレンやポリプロピレン、ポリ塩化ビニルなどからなる合成樹脂フィルム、これら合成樹脂と不織布との複合材料からなるフィルムなどが挙げられるがこれらに限定されるものではない。   Examples of the liquid-impermeable sheet include, but are not limited to, synthetic resin films made of polyethylene, polypropylene, polyvinyl chloride, and the like, and films made of composite materials of these synthetic resins and nonwoven fabrics.

吸収体は、親水性繊維と吸水性樹脂から構成されている。吸収体における吸水性樹脂の割合は、吸収性物品の薄型化を達成すべく、吸収体の全体重量の30重量%以上100重量%未満、好ましくは40重量%以上100重量%未満、さらに好ましくは50重量%以上100重量%未満、最も好ましくは60重量%以上100重量%未満とされる。吸収体の構成としては、たとえば吸水性樹脂と親水性繊維を均一にブレンドしたミキシング構造、層状の親水性繊維の間に吸水性樹脂を保持したサンドイッチ構造、あるいは吸水性樹脂と親水性繊維とをティッシュでくるんだ構造などが挙げられるが、これらのものには限定されない。なお、吸収体においては、補強材として合成繊維を含んでいても良い。   The absorber is composed of a hydrophilic fiber and a water absorbent resin. The proportion of the water-absorbent resin in the absorbent body is 30% by weight or more and less than 100% by weight, preferably 40% by weight or more and less than 100% by weight, more preferably, in order to achieve thinning of the absorbent article. 50 wt% or more and less than 100 wt%, most preferably 60 wt% or more and less than 100 wt%. As the structure of the absorbent body, for example, a mixing structure in which a water-absorbing resin and a hydrophilic fiber are uniformly blended, a sandwich structure in which a water-absorbing resin is held between layered hydrophilic fibers, or a water-absorbing resin and a hydrophilic fiber are used. Examples include structures wrapped with tissue, but are not limited to these. In addition, in the absorber, the synthetic fiber may be included as a reinforcing material.

親水性繊維としては、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプなどのセルロース繊維、レーヨン、アセテートなどの人工セルロース繊維などが知られている。また、ポリアミドやポリエステル、ポリオレフィンなどの合成繊維を含有しても良い。親水性繊維は、これらに限定されるものではない。   Known hydrophilic fibers include cellulose fibers such as cotton-like pulp, mechanical pulp, chemical pulp, and semi-chemical pulp obtained from wood, and artificial cellulose fibers such as rayon and acetate. Moreover, you may contain synthetic fibers, such as polyamide, polyester, and polyolefin. The hydrophilic fiber is not limited to these.

本発明の吸水性樹脂は、吸水開始から30秒後における人工尿の加圧吸水量が10g/g以下、好ましくは5g/g以下、さらに好ましくは0.1〜5g/gであり、吸水開始から30分後における人工尿の加圧吸水量が20g/g以上、好ましくは30g/g以上、さらに好ましくは30〜70g/gである。本発明の吸水性樹脂では、生理食塩水に対する飽和吸水量が40g/g以上、好ましくは40〜100g/g、より好ましくは40〜90g/g、さらに好ましくは40〜80g/gである。吸水開始から一定時間経過後の加圧吸水量や飽和吸水量が低すぎると、吸収体の吸収量が低くなりすぎるため、本発明の目的を達成し得ないからである。   The water-absorbent resin of the present invention has a pressure water absorption amount of 10 g / g or less, preferably 5 g / g or less, more preferably 0.1 to 5 g / g after 30 seconds from the start of water absorption. 30 minutes after, the pressure water absorption amount of the artificial urine is 20 g / g or more, preferably 30 g / g or more, and more preferably 30 to 70 g / g. In the water absorbent resin of the present invention, the saturated water absorption amount with respect to physiological saline is 40 g / g or more, preferably 40 to 100 g / g, more preferably 40 to 90 g / g, and further preferably 40 to 80 g / g. This is because if the pressurized water absorption amount or saturated water absorption amount after a certain time has elapsed since the start of water absorption is too low, the absorption amount of the absorber becomes too low and the object of the present invention cannot be achieved.

ここで、本発明でいう人工尿に対する加圧吸水量や生理食塩水に対する飽和吸水量は、後述する方法で測定したものをさしている。また、本発明でいう人工尿は、蒸留水100重量部に対して、NaClを1重量部、CaCl2・2H2Oを0.03重量部、MgCl2・6H2Oを0.06重量部溶解させたものをいい、本発明でいう生理食塩水とは、0.9重量%塩化ナトリウム水溶液をいう。 Here, the pressurized water absorption amount for artificial urine and the saturated water absorption amount for physiological saline referred to in the present invention are those measured by the method described later. Moreover, the artificial urine in the present invention, with respect to 100 parts by weight of distilled water, 1 part by weight of NaCl, CaCl 2 · 2H 2 O 0.03 parts by weight, MgCl 2 · 6H 2 O 0.06 parts by weight The physiological saline referred to in the present invention refers to a 0.9% by weight sodium chloride aqueous solution.

吸水性樹脂は、主として紙おむつなどの吸収性物品に使用されるものであり、親水性繊維との複合体において水性液体の拡散を阻害することなく多量の水性液体を吸収する必要がある。また、吸収性物品の使用時には、吸水性樹脂に対していくらかの荷重が作用した状態とされているため、吸収性物品に使用される吸水性樹脂には、ある程度の加圧下において上述した性能が要求される。   The water-absorbent resin is mainly used for absorbent articles such as disposable diapers, and needs to absorb a large amount of aqueous liquid without inhibiting diffusion of the aqueous liquid in a composite with hydrophilic fibers. Moreover, since some load is applied to the water absorbent resin when the absorbent article is used, the water absorbent resin used for the absorbent article has the above-described performance under a certain amount of pressure. Required.

これに対して、本発明の吸水性樹脂は、吸水開始30秒後の加圧吸水量が比較的少ないためにゲルブロッキングが生じにくく、吸水開始直後では水性液体の拡散が支配的となり、吸水開始30分後には吸水が支配的となるような性能を有している。従って、吸収体は吸水性樹脂と親水性繊維との複合状態を勘案した評価に基づいて構成されたものであり、拡散性に優れ、逆戻りを抑制した極めて実用的なものとなっている。また、このような特性を有する結果、吸収体を吸収性物品に使用した場合、吸水性樹脂の割合を多くしても十分に水性液体を拡散・吸収することができるため、従来の問題を回避しつつ吸収性物品の薄型化を達成することができる。   In contrast, the water-absorbing resin of the present invention has a relatively small amount of pressurized water absorption 30 seconds after the start of water absorption, so that gel blocking is unlikely to occur. Immediately after the start of water absorption, diffusion of the aqueous liquid becomes dominant, and water absorption starts. After 30 minutes, the water absorption is dominant. Therefore, the absorber is configured based on an evaluation that takes into consideration the composite state of the water-absorbent resin and the hydrophilic fiber, and is extremely practical with excellent diffusibility and suppressed reversion. In addition, as a result of having such characteristics, when the absorber is used for absorbent articles, it is possible to sufficiently diffuse and absorb the aqueous liquid even if the proportion of the water absorbent resin is increased, thus avoiding the conventional problems However, it is possible to reduce the thickness of the absorbent article.

本発明の吸水性樹脂は、ゲルブロッキングの発生や使用者が感じる異物感の程度を抑制すべく、その重量平均粒子径を200〜600μmの範囲とするのが好ましく、300〜600μmの範囲とするのがさらに好ましい。吸水性樹脂の重量平均粒子径が200μmより小さいと、小粒子の存在割合が多くなり、粉立ちなどにより粉体の取り扱い性が悪化するばかりか、ゲルブロッキングが生じやすくなって本発明の目的を達成するのが困難となるために好ましくない。一方、吸水性樹脂の重量平均粒子径が600μmより大きいと、吸水性樹脂をおむつなどの吸収性物品に採用したときに使用者が異物感を感じて、吸収性物品を快適に使用することができなくなるために好ましくない。   The water-absorbent resin of the present invention preferably has a weight-average particle diameter in the range of 200 to 600 μm, and more preferably in the range of 300 to 600 μm, in order to suppress the occurrence of gel blocking and the degree of foreign material feeling felt by the user. Is more preferable. If the weight average particle diameter of the water-absorbent resin is smaller than 200 μm, the proportion of small particles increases, and not only the handling of the powder deteriorates due to powdering but also the gel blocking tends to occur. This is not preferable because it is difficult to achieve. On the other hand, if the weight average particle diameter of the water absorbent resin is larger than 600 μm, when the water absorbent resin is adopted in an absorbent article such as a diaper, the user feels a foreign object and can use the absorbent article comfortably. It is not preferable because it cannot be performed.

本発明の吸水性樹脂としては、たとえばポリアクリル酸部分中和物架橋体、澱粉−アクリル酸グラフト重合体の中和物、澱粉−アクリロニトリルグラフト重合体の加水分解物などが挙げられる。   Examples of the water-absorbing resin of the present invention include a crosslinked polyacrylic acid partial neutralized product, a neutralized product of starch-acrylic acid graft polymer, and a hydrolyzate of starch-acrylonitrile graft polymer.

このような吸水性樹脂は、たとえばアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸などの不飽和カルボン酸またはこれらの中和物から選ばれる1種類以上の単量体を重合若しくは共重合させた後、この重合体に対して必要に応じて粉砕・分級などの操作を行って、所望とする重量平均粒子径に調整することにより得られる。単量体としては、安価であり入手が容易なことからアクリル酸およびその中和物が好ましい。   Such a water-absorbing resin is, for example, one or more kinds of monocarboxylic acids selected from unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid and itaconic acid, or neutralized products thereof. After polymerizing or copolymerizing the polymer, the polymer is obtained by adjusting the polymer to a desired weight average particle diameter by performing operations such as pulverization and classification as necessary. As the monomer, acrylic acid and a neutralized product thereof are preferable because they are inexpensive and easily available.

本発明の吸水性樹脂の製造方法として採用できる重合方法は、特に限定されるものではなく、逆相懸濁重合法や水溶液重合法などの一般的に知られた種々の重合法を採用することができる。   The polymerization method that can be employed as the method for producing the water-absorbent resin of the present invention is not particularly limited, and various generally known polymerization methods such as reverse phase suspension polymerization method and aqueous solution polymerization method should be adopted. Can do.

本発明の吸水性樹脂の製造の1例としての逆相懸濁重合法を以下に説明する。   The reverse phase suspension polymerization method as an example of the production of the water absorbent resin of the present invention will be described below.

逆相懸濁重合法では、分散安定剤の存在下で、有機溶媒中に単量体水溶液を分散させた状態で、たとえば重合開始剤を用いることにより重合が行われる。   In the reversed-phase suspension polymerization method, polymerization is performed by using, for example, a polymerization initiator in a state where an aqueous monomer solution is dispersed in an organic solvent in the presence of a dispersion stabilizer.

有機溶媒としては、炭化水素溶媒が用いられる。ここで用いられる炭化水素溶媒は、脂肪族炭化水素溶媒または脂環族炭化水素溶媒である。脂肪族炭化水素溶媒としては、たとえばn−ヘキサン、n−ヘプタンなどが挙げられる。脂環族炭化水素溶媒としては、たとえばシクロペンタン、メチルシクロペンタン、シクロヘキサンおよびメチルシクロヘキサンなどが挙げられる。これらの炭化水素溶媒のうち好ましいものは、工業的に品質が一定しておりかつ入手が容易で安価なn−ヘキサン、n−ヘプタン、シクロヘキサンである。なお、炭化水素溶媒は、2種以上を混合して用いてもよい。   A hydrocarbon solvent is used as the organic solvent. The hydrocarbon solvent used here is an aliphatic hydrocarbon solvent or an alicyclic hydrocarbon solvent. Examples of the aliphatic hydrocarbon solvent include n-hexane and n-heptane. Examples of the alicyclic hydrocarbon solvent include cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane. Among these hydrocarbon solvents, preferred are n-hexane, n-heptane, and cyclohexane, which are industrially constant in quality, easily available, and inexpensive. In addition, you may use a hydrocarbon solvent in mixture of 2 or more types.

単量体水溶液としては、不飽和カルボン酸水溶液が挙げられる。不飽和カルボン酸としては、たとえばアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、β−ヒドロキシアクリル酸、β−アクリルオキシプロピオン酸およびこれらの塩が挙げられる。単量体水溶液中の単量体の濃度は、たとえば10重量%〜飽和重量%とされ、さらに好ましくは25重量%〜飽和重量%とされる。   Examples of the monomer aqueous solution include an unsaturated carboxylic acid aqueous solution. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, β-hydroxyacrylic acid, β-acryloxypropionic acid, and salts thereof. The concentration of the monomer in the monomer aqueous solution is, for example, 10 wt% to saturated wt%, and more preferably 25 wt% to saturated wt%.

不飽和カルボン酸塩を構成する塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩などが挙げられるが、特に好ましくはナトリウム、カリウムなどのアルカリ金属塩が使用される。   Examples of the salt constituting the unsaturated carboxylate include alkali metal salts, alkaline earth metal salts, ammonium salts and the like, and alkali metal salts such as sodium and potassium are particularly preferably used.

不飽和カルボン酸水溶液は、不飽和カルボン酸単量体以外の共重合成分を含んでいてもよい。共重合成分としては、たとえば(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートなどのノニオン性親水性基含有単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノ基含有不飽和単量体やそれらの4級化物などを挙げることができるが、共重合成分については特に限定されない。また、これらの不飽和カルボン酸水溶液に、デンプン、セルロースおよびそれらの誘導体、水溶性ポリアクリル酸(塩)およびそれらの架橋体、ポリビニルピロリドン、ポリビニルアルコールなどの親水性高分子などを添加してもよい。   The unsaturated carboxylic acid aqueous solution may contain a copolymer component other than the unsaturated carboxylic acid monomer. Examples of the copolymer component include (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) ) Nonionic hydrophilic group-containing monomers such as acrylates; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, etc. An amino group-containing unsaturated monomer or a quaternized product thereof may be mentioned, but the copolymerization component is not particularly limited. Further, starch, cellulose and their derivatives, water-soluble polyacrylic acid (salt) and their cross-linked products, hydrophilic polymers such as polyvinyl pyrrolidone and polyvinyl alcohol may be added to these unsaturated carboxylic acid aqueous solutions. Good.

分散安定剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどの非イオン性界面活性剤が挙げられる。このような分散安定剤は、2種以上が混合して用いられてもよい。   Examples of the dispersion stabilizer include nonionic surfactants such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether. Two or more kinds of such dispersion stabilizers may be mixed and used.

分散安定剤とともに高分子分散助剤を用いてもよい。これらは、重合前に分散安定剤と併用して用いても、重合後に添加して用いてもよい。高分子分散助剤としては、たとえばエチルセルロース、エチルヒドロキシエチルセルロース、酸化変性ポリエチレン、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリブタジエン、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)などが用いられる。   A polymer dispersion aid may be used together with the dispersion stabilizer. These may be used in combination with a dispersion stabilizer before polymerization, or may be added after polymerization. Examples of the polymer dispersing aid include ethyl cellulose, ethyl hydroxyethyl cellulose, oxidation-modified polyethylene, maleic anhydride-modified polyethylene, maleic anhydride-modified polybutadiene, and maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer). .

なお、分散安定剤および/または高分子分散助剤の使用量は、通常、不飽和カルボン酸水溶液の0.1〜5重量%、好ましくは0.2〜3重量%である。使用量が0.1重量%未満の場合は、分散が不十分となる。逆に、5重量%を超えても、それに見合う効果が得られない。   The amount of the dispersion stabilizer and / or polymer dispersion aid used is usually 0.1 to 5% by weight, preferably 0.2 to 3% by weight, based on the unsaturated carboxylic acid aqueous solution. When the amount used is less than 0.1% by weight, dispersion is insufficient. On the contrary, even if it exceeds 5% by weight, an effect commensurate with it cannot be obtained.

重合開始剤としては、一般に使用される水溶性ラジカル重合開始剤である過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムなどが適し、これらと亜硫酸塩などを併用したレドックス系重合開始剤として用いることも可能である。これら重合開始剤の使用量は、 単量体に対して0.001モル%〜2モル%の範囲内が好ましく、0.01モル%〜0.5モル%の範囲内がより好ましい。   As the polymerization initiator, commonly used water-soluble radical polymerization initiators such as potassium persulfate, ammonium persulfate, and sodium persulfate are suitable, and they can be used as redox polymerization initiators using these in combination with sulfites. It is. The amount of the polymerization initiator used is preferably in the range of 0.001 mol% to 2 mol%, more preferably in the range of 0.01 mol% to 0.5 mol% with respect to the monomer.

重合温度は、使用する重合開始剤の種類によっても異なるが、通常、20〜110℃、好ましくは40〜80℃とされる。重合温度が20℃より低いと、重合速度が低下して重合時間が長くなるために経済的でない一方、重合温度が110℃より高い場合には重合熱を除去するのが困難となって円滑な重合反応を行うのが困難となる。   Although superposition | polymerization temperature changes also with the kind of polymerization initiator to be used, it is 20-110 degreeC normally, Preferably it is 40-80 degreeC. When the polymerization temperature is lower than 20 ° C., the polymerization rate is lowered and the polymerization time becomes longer, which is not economical. On the other hand, when the polymerization temperature is higher than 110 ° C., it is difficult to remove the heat of polymerization and smooth. It becomes difficult to carry out the polymerization reaction.

本発明の吸水性樹脂は、複数の重合性不飽和基や、複数の反応性基を有する架橋剤と反応または共重合させることにより、その内部が架橋されていることが好ましい。また、吸水性樹脂は、架橋剤を必要としない自己架橋型であってもよい。   The water-absorbent resin of the present invention is preferably cross-linked inside by reacting or copolymerizing with a plurality of polymerizable unsaturated groups or a crosslinking agent having a plurality of reactive groups. The water-absorbing resin may be a self-crosslinking type that does not require a crosslinking agent.

架橋剤としては、たとえば重合性架橋剤としては、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリンなどのポリオール類のジまたはトリ(メタ)アクリルエステル類;前記ポリオール類とマレイン酸、フマール酸などの不飽和酸類とを反応させて得られる不飽和ポリエステル類;N,N′−メチレンビス(メタ)アクリルアミドなどのビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネートなどのポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミンエステル類;アリル化デンプン、アリル化セルロース、ジアリルフタレート、N,N′,N″−トリアリルイソシアネレート、ジビニルベンゼンなどが挙げられる。   As the crosslinking agent, for example, as the polymerizable crosslinking agent, di- or tri (meth) acrylic esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin. Unsaturated polyesters obtained by reacting the above polyols with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxide and (meth) acrylic Ditri (meth) acrylic acid esters obtained by reacting with an acid; poly (isocyanates) such as tolylene diisocyanate and hexamethylene diisocyanate obtained by reacting hydroxyethyl (meth) acrylate Data) acrylic acid carbamic esters; allylated starch, allylated cellulose, diallyl phthalate, N, N ', N "- triallyl diisocyanate rate, and divinylbenzene.

これらの中でエチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ジアリルフタレート、N,N′,N″−トリアリルイソシアヌレート、N,N′−メチレンビスアクリルアミドなどが通常使用される。   Among these, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, propylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, diallyl phthalate, N, N ′, N ″ -triallyl isocyanurate, N N'-methylenebisacrylamide and the like are usually used.

一方、不飽和カルボン酸またはその重合体中のカルボキシル基との反応を利用した架橋剤としては、たとえばジグリシジルエーテル化合物、イソシアネート化合物、ハロエポキシ化合物などであり、これらの中では特にジグリシジルエーテル化合物が適している。   On the other hand, examples of the crosslinking agent utilizing the reaction with the unsaturated carboxylic acid or the carboxyl group in the polymer include a diglycidyl ether compound, an isocyanate compound, and a haloepoxy compound. Among these, the diglycidyl ether compound is particularly preferable. Is suitable.

ジグリシジルエーテル化合物の具体例としては、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルなどがあり、中でもポリエチレングリコールジグリシジルエーテルが最も好適な結果を与える。ハロエポキシ化合物としてはエピクロルヒドリン、エピブロムヒドリン、α―メチルエピクロルヒドリンなどが挙げられる。イソシアネート化合物としては、2,4―トリレンイソシアネート、ヘキサメチレンジイソシアネートなどが挙げられる。これら架橋剤は、単独で用いてもよく、また、2種類以上を混合して用いてもよい。例示した化合物のうち、複数の重合性不飽和基を有する化合物を架橋剤として用いることがより好ましい。   Specific examples of the diglycidyl ether compound include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. Among them, polyethylene glycol diglycidyl ether is the most suitable result. give. Examples of the haloepoxy compound include epichlorohydrin, epibromohydrin, α-methylepichlorohydrin, and the like. Examples of the isocyanate compound include 2,4-tolylene isocyanate and hexamethylene diisocyanate. These crosslinking agents may be used alone or in combination of two or more. Of the exemplified compounds, it is more preferable to use a compound having a plurality of polymerizable unsaturated groups as a crosslinking agent.

吸水性樹脂の内部を架橋する架橋剤の使用量は、吸水性樹脂を製造する際の単量体の合計に対して、0.001〜3重量%、好ましくは0.003〜2重量%、さらに好ましくは0.005〜1重量%である。架橋剤の使用量が0.001重量%より少なくなると吸水性樹脂の吸水時のゲル強度が低下し目的を達し得ない一方、3重量%を越えるようになると吸水量が極度に低下するので好ましくない。   The amount of the crosslinking agent used to crosslink the interior of the water absorbent resin is 0.001 to 3% by weight, preferably 0.003 to 2% by weight, based on the total amount of monomers when producing the water absorbent resin. More preferably, it is 0.005 to 1 weight%. When the amount of the crosslinking agent used is less than 0.001% by weight, the gel strength at the time of water absorption of the water-absorbent resin is lowered and cannot be achieved. On the other hand, when the amount exceeds 3% by weight, the water absorption is extremely reduced. Absent.

本発明の吸水性樹脂には、疎水処理を施し、あるいは疎水処理に加えて、表面架橋を施しておくのが好ましい。   The water-absorbent resin of the present invention is preferably subjected to a hydrophobic treatment or surface crosslinking in addition to the hydrophobic treatment.

ここで、疎水処理を施した場合には、吸水性樹脂が初期吸水時においては膨潤しにくく、ゲルブロッキングが生じにくくなるために水性液体の拡散性が向上する。一方、表面架橋とは、吸水性樹脂の粒子の表層を架橋し、内層に比べて表層の架橋度を大きくすることをいう。このため、表面架橋が施された粒子は、表面架橋を施していないものに比べて表層部の強度が強くなるため、粒子内に液体を取り込んだ場合においても変形しにくく、ゲルブロッキングが生じにくくなって吸水時の拡散性を良好なものとでき、吸収体を有効に利用でき逆戻り量を小さくできる。したがって、疎水処理や表面架橋を施せば、吸水開始初期の段階では、液体の拡散を支配的にできるとともに、吸水開始から一定時間(たとえば30分)経過後における加圧吸水量や飽和吸水量を大きく確保できるようになる。   Here, when the hydrophobic treatment is performed, the water-absorbent resin is less likely to swell during initial water absorption, and gel blocking is less likely to occur, so that the diffusibility of the aqueous liquid is improved. On the other hand, the surface cross-linking means that the surface layer of the water-absorbent resin particles is cross-linked and the degree of cross-linking of the surface layer is increased as compared with the inner layer. For this reason, the surface-crosslinked particles have higher surface layer strength than those not surface-crosslinked, so that even when liquid is taken into the particles, they are not easily deformed and gel blocking is unlikely to occur. Therefore, the diffusibility at the time of water absorption can be improved, the absorber can be used effectively, and the amount of reversion can be reduced. Therefore, if hydrophobic treatment or surface cross-linking is applied, at the initial stage of water absorption, diffusion of liquid can be dominant, and the amount of pressurized water absorption and saturation water absorption after a certain time (for example, 30 minutes) has elapsed since the start of water absorption. A large amount can be secured.

疎水処理は、たとえば疎水性材料を各種溶剤に溶解した溶液、あるいは加熱により溶融させて、吸水性樹脂に噴霧・乾燥してコーティングすることにより、あるいは吸水性樹脂の製造の際に、疎水性材料の存在下で重合してコーティングすることにより行うことができる。本発明においては、疎水処理の方法は、これらに限定されるものではない。   Hydrophobic treatment is performed by, for example, dissolving a hydrophobic material in various solvents, or by melting it by heating, spraying and drying the water-absorbent resin, or coating the hydrophobic material, or manufacturing the water-absorbent resin. It can carry out by superposing | polymerizing and coating in presence of. In the present invention, the method of hydrophobic treatment is not limited to these.

上記疎水性材料の添加量は、種類により異なるが、吸水性樹脂100重量部に対し、0.001〜10重量部の範囲が好ましい。使用量が0.001重量部未満の場合は、効果が不充分となり、逆に10重量部を超えると、それに見合う経済的な効果が見られない。   The amount of the hydrophobic material added varies depending on the type, but is preferably in the range of 0.001 to 10 parts by weight with respect to 100 parts by weight of the water absorbent resin. When the amount used is less than 0.001 part by weight, the effect is insufficient. Conversely, when it exceeds 10 parts by weight, an economic effect corresponding to the amount is not seen.

疎水性材料としては、実質的に水に不溶な材料、例えば、n−ドデカン、n−ヘキサデカン、n−ヘプタデカン等の高級脂肪族炭化水素、ドデカン−1−オール、ヘキサデカン−1−オール等の高級脂肪族アルコール、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ショ糖脂肪酸エステル等の高級脂肪酸エステル類等の高級脂肪族化合物;ラウリン酸アミド、オレイン酸アミド、エルカ酸アミド等の高級脂肪酸アミド;ポリエチレン、ポリプロピレン、エチレン/酢酸ビニル共重合体、酸化変性ポリエチレン、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリブタジエン、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)等のポリオレフィン類;ナイロン等のポリアミド類;ポリエチレンテレフタレート等のポリエステル類;セルロースアセテート、セルロースプロピオネート、セルロースブチレート、エチルセルロース、ベンジルセルロース、エチルヒドロキシエチルセルロース等のセルロース類誘導体;疎水性シリカ等の疎水化された無機粉末等が挙げられる。これらのものは、単独で用いても良く、2種類以上を併用して用いることもできる。なかでも、脂肪酸エステル類が好ましく、とりわけHLBが5以下、好ましくはHLBが4以下、さらに好ましくはHLBが3以下の脂肪酸エステル類が好ましい。   Examples of the hydrophobic material include substantially water-insoluble materials such as higher aliphatic hydrocarbons such as n-dodecane, n-hexadecane, and n-heptadecane, and higher grades such as dodecan-1-ol and hexadecan-1-ol. Higher aliphatic compounds such as fatty alcohols, higher fatty acid esters such as sorbitan fatty acid esters, polyglycerin fatty acid esters, sorbitol fatty acid esters, and sucrose fatty acid esters; higher fatty acid amides such as lauric acid amide, oleic acid amide, and erucic acid amide Polyolefins such as polyethylene, polypropylene, ethylene / vinyl acetate copolymer, oxidation modified polyethylene, maleic anhydride modified polyethylene, maleic anhydride modified polybutadiene, maleic anhydride modified EPDM (ethylene propylene diene terpolymer); Polyamides such as polyethylene terephthalate; Cellulose derivatives such as cellulose acetate, cellulose propionate, cellulose butyrate, ethyl cellulose, benzyl cellulose, ethyl hydroxyethyl cellulose; Hydrophobized inorganic powder such as hydrophobic silica, etc. Is mentioned. These may be used alone or in combination of two or more. Of these, fatty acid esters are preferable, and fatty acid esters having HLB of 5 or less, preferably HLB of 4 or less, and more preferably HLB of 3 or less are particularly preferable.

表面架橋剤としては、吸水性樹脂中のカルボキシル基と反応し得るものが用いられる。たとえば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロゲン化エポキシ化合物;(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,3−プロパンジオール、(ポリ)グリセリン、ジオール類、ペンタンジオール類、ヘキサンジオール類、シクロヘキサンジオール類、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン、ポリアミドポリアミン等の多価アミン化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2−エチレンビスオキサゾリン等の多価オキサゾリン化合物;γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等のシランカップリング剤;アルミニウム、マグネシウム、チタン等の水酸化物及び塩化物等の多価金属化合物等が挙げられるが、特に限定されるものではない。   As the surface cross-linking agent, one capable of reacting with a carboxyl group in the water-absorbent resin is used. For example, epoxy compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether, (poly) propylene glycol diglycidyl ether, glycidol; epichlorohydrin, epibromhydrin, α-methyl epichlorohydride Halogenated epoxy compounds such as phosphorus; (poly) ethylene glycol, (poly) propylene glycol, 1,3-propanediol, (poly) glycerin, diols, pentanediols, hexanediols, cyclohexanediols, trimethylolpropane , Diethanolamine, triethanolamine, polyoxypropylene, pentaerythritol, sorbitol and other polyhydric alcohol compounds; ethylenediamine, diethylenetriamine, triethylenete Polyamines such as lamin, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, polyamidepolyamine; polyisocyanate compounds such as 2,4-tolylene diisocyanate, hexamethylene diisocyanate; 1,2-ethylenebisoxazoline, etc. Polyvalent oxazoline compounds; silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-aminopropyltrimethoxysilane; hydroxides such as aluminum, magnesium, titanium, and polyvalent metal compounds such as chloride Although it is mentioned, it is not particularly limited.

上記の表面架橋剤のうち、エポキシ化合物、多価アルコール化合物がより好ましく用いられる。これら表面架橋剤は、単独で用いてもよく、2種類以上を併用してもよい。   Of the above surface cross-linking agents, epoxy compounds and polyhydric alcohol compounds are more preferably used. These surface crosslinking agents may be used alone or in combination of two or more.

表面架橋剤の使用量は、上記単量体の合計量に対して、0.01〜5重量%、好ましくは0.02〜4重量%、さらに好ましくは0.03〜3重量%である。架橋剤の使用量が0.01重量%より少なくなると吸水性樹脂の吸水時のゲル強度が低下し目的を達し得ないおそれがある。一方、5重量%より多いと吸水量が極度に低下するおそれがあり好ましくない。   The amount of the surface cross-linking agent used is 0.01 to 5% by weight, preferably 0.02 to 4% by weight, more preferably 0.03 to 3% by weight, based on the total amount of the monomers. If the amount of the crosslinking agent used is less than 0.01% by weight, the gel strength at the time of water absorption of the water-absorbent resin may be lowered and the purpose may not be achieved. On the other hand, if it exceeds 5% by weight, the amount of water absorption may be extremely reduced, which is not preferable.

表面架橋剤の添加時期については、単量体の重合終了後であれば特に限定されないが、水の存在下で添加することが好ましい。水の量については、吸水性樹脂固形分100重量部に対して、1〜300重量部、好ましくは5〜200重量部であることが望ましい。   The timing for adding the surface crosslinking agent is not particularly limited as long as it is after the polymerization of the monomer, but it is preferable to add it in the presence of water. About the quantity of water, it is 1-300 weight part with respect to 100 weight part of water-absorbing-resin solid content, Preferably it is desirable that it is 5-200 weight part.

表面架橋剤の添加方法は、例えば重合終了直後の含水ポリマーから一定量の水分を留去した後に添加する方法、あるいは粉体の吸水性樹脂に少量の水に分散させた表面架橋剤を噴霧するなどして均一に添加する方法等が挙げられるが、特に限定されるものではない。   The method for adding the surface cross-linking agent is, for example, a method in which a certain amount of water is distilled off from the water-containing polymer immediately after completion of the polymerization, or a surface cross-linking agent dispersed in a small amount of water is sprayed on a powdered water absorbent resin. However, it is not particularly limited.

以下、本発明を実施例、比較例とともに説明するとともに、各実施例および比較例での測定項目についてその測定方法を説明する。   Hereinafter, while describing this invention with an Example and a comparative example, the measuring method is demonstrated about the measurement item in each Example and a comparative example.

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが13.1のヘキサグリセリルモノベヘニレート1.38gを添加して分散させ、50℃まで昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 1.38 g of hexaglyceryl monobehenylate having an HLB of 13.1 was added and dispersed, and the mixture was heated to 50 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを用意し、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。さらに、ヒドロキシエチルセルロース0.46gを添加し、2時間攪拌溶解した。その後、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを単量体水溶液とした。   On the other hand, a 500 ml Erlenmeyer flask was prepared, and 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. Furthermore, 0.46 g of hydroxyethyl cellulose was added and dissolved by stirring for 2 hours. Thereafter, 50.3 g of water and 0.11 g of potassium persulfate as a polymerization initiator were added to obtain an aqueous monomer solution.

次に、上記単量体水溶液を、上記五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で充分置換した後、70℃に昇温し1時間重合反応を行った。重合終了後、含水状ゲル状物から水分をn−ヘプタンと共沸させて留去した。脱水した含水状ゲル状物に4.6gの水に溶解したエチレングリコールジグリシジルエーテル92.0mgを添加し、80℃で2時間保持した。その後、50mlのn−ヘプタンに分散した粉末状のエチルセルロースを0.92g添加し、さらに1時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(A)を得た。   Next, the monomer aqueous solution is added to and dispersed in the five-necked cylindrical round bottom flask under stirring, and the system is sufficiently substituted with nitrogen. Went. After completion of the polymerization, water was distilled off from the hydrated gel by azeotroping with n-heptane. 92.0 mg of ethylene glycol diglycidyl ether dissolved in 4.6 g of water was added to the dehydrated hydrous gel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, 0.92 g of powdery ethylcellulose dispersed in 50 ml of n-heptane was added, and the mixture was further maintained for 1 hour. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (A).

エチルセルロースに代えて粉末状の無水マレイン酸変成ポリエチレン0.92gを用いた以外は、実施例1と同様の操作を行い、吸水性樹脂(B)を得た。   A water-absorbent resin (B) was obtained in the same manner as in Example 1 except that 0.92 g of powdered maleic anhydride-modified polyethylene was used instead of ethyl cellulose.

エチルセルロースに代えてHLBが1.8のソルビタントリオレート0.92gを用いた以外は、実施例1と同様な操作を行い、吸水性樹脂(C)を得た。   A water absorbent resin (C) was obtained in the same manner as in Example 1 except that 0.92 g of sorbitan trioleate having an HLB of 1.8 was used instead of ethyl cellulose.

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが13.1のヘキサグリセリルモノペヘニレート1.38gを添加して分散させ、50℃に昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 1.38 g of hexaglyceryl monopehenylate having an HLB of 13.1 was added and dispersed, heated to 50 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを2つ用意し、まず、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。さらに、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを1段目重合用の単量体水溶液(a)とした。次いで、別の500ml容の三角フラスコに、80重量%アクリル酸水溶液119.1gを加え、上記のごとく冷却しつつ、30重量%水酸化ナトリウム水溶液132.2gを滴下して、75モル%の中和を行い、さらに水27.4g過硫酸カリウム0.14gを添加し、これを2段目重合用の単量体水溶液(b)とした。   On the other hand, two 500 ml Erlenmeyer flasks were prepared, and first, 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. Further, 50.3 g of water and 0.11 g of polymerization initiator potassium persulfate were added to obtain a monomer aqueous solution (a) for the first stage polymerization. Next, 119.1 g of 80 wt% aqueous acrylic acid solution was added to another 500 ml Erlenmeyer flask, and 132.2 g of 30 wt% aqueous sodium hydroxide solution was added dropwise while cooling as described above. After the addition, 27.4 g of water and 0.14 g of potassium persulfate were added to obtain a monomer aqueous solution (b) for the second stage polymerization.

次に、上記五つ口円筒型丸底フラスコに、攪拌下で1段目重合用の単量体水溶液(a)を全量加えて分散させ、系内を窒素で十分に置換した後、70℃に昇温し1時間重合反応を行った。その後、重合スラリー液を40℃に冷却し、2段目重合用の単量体水溶液(b)を添加した。全量添加後、再び系内を窒素で十分に置換した後、70℃に昇温し2段目の重合反応を1時間行った。2段目の重合終了後、含水ゲル状物から水分をn−ヘプタンと共に加熱留去した。脱水した含水ゲル状物に10.5gの水に溶解したエチレングリコールジグリシジルエーテル211.0mgを添加し、80℃で2時間保持した。その後、50mlのn−ヘプタンに分散した粉末状の無水マレイン酸変成ポリエチレンを2.1g添加し、さらに1時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(D)を得た。   Next, in the five-necked cylindrical round bottom flask, the monomer aqueous solution (a) for the first stage polymerization was added and dispersed under stirring, and the system was sufficiently replaced with nitrogen. The polymerization reaction was carried out for 1 hour. Thereafter, the polymerization slurry was cooled to 40 ° C., and a monomer aqueous solution (b) for the second stage polymerization was added. After addition of the entire amount, the system was sufficiently replaced with nitrogen again, and then the temperature was raised to 70 ° C. and the second stage polymerization reaction was carried out for 1 hour. After the completion of the second stage polymerization, water was distilled off from the hydrated gel with heating with n-heptane. 211.0 mg of ethylene glycol diglycidyl ether dissolved in 10.5 g of water was added to the dehydrated hydrogel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, 2.1 g of powdered maleic anhydride-modified polyethylene dispersed in 50 ml of n-heptane was added, and the mixture was further maintained for 1 hour. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (D).

無水マレイン酸変成ポリエチレンに代えて粉末状の疎水性シリカ1.0gを用いた以外は、実施例4と同様の操作を行い、吸水性樹脂(E)を得た。   A water-absorbent resin (E) was obtained in the same manner as in Example 4 except that 1.0 g of powdered hydrophobic silica was used instead of maleic anhydride-modified polyethylene.

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが3.0のショ糖脂肪酸エステル0.92gを添加して分散させ、55℃まで昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 0.92 g of sucrose fatty acid ester having an HLB of 3.0 was added and dispersed, heated to 55 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを用意し、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。これに、ヒドロキシエチルセルロース0.46gを添加し、2時間攪拌溶解した。その後、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを単量体水溶液とした。   On the other hand, a 500 ml Erlenmeyer flask was prepared, and 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. To this, 0.46 g of hydroxyethylcellulose was added and dissolved by stirring for 2 hours. Thereafter, 50.3 g of water and 0.11 g of potassium persulfate as a polymerization initiator were added to obtain an aqueous monomer solution.

次に、上記単量体水溶液を、五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で充分置換した後、70℃に昇温し1時間重合反応を行った。重合終了後、含水状ゲル状物から水分をn−ヘプタンと共に加熱留去した。脱水した含水状ゲル状物に4.6gの水に溶解したエチレングリコールジグリシジルエーテル92.0mgを添加し、80℃で2時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(F)を得た。   Next, the monomer aqueous solution is added to and dispersed in a five-necked cylindrical round bottom flask under stirring, and the inside of the system is sufficiently substituted with nitrogen. Then, the temperature is raised to 70 ° C. and a polymerization reaction is performed for 1 hour. went. After completion of the polymerization, water was distilled off from the hydrated gel with heating with n-heptane. 92.0 mg of ethylene glycol diglycidyl ether dissolved in 4.6 g of water was added to the dehydrated hydrous gel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (F).

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが3.0のショ糖脂肪酸エステル0.92gを添加して分散させ、55℃に昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 0.92 g of sucrose fatty acid ester having an HLB of 3.0 was added and dispersed, heated to 55 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを2つ用意し、まず、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。さらに、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを1段目重合用の単量体水溶液(a)とした。次いで、別の500ml容の三角フラスコに、80重量%アクリル酸水溶液119.1gを加え、上記のごとく冷却しつつ、30重量%水酸化ナトリウム水溶液132.2gを滴下して、75モル%の中和を行い、さらに水27.4g過硫酸カリウム0.14gを添加し、これを2段目重合用の単量体水溶液(b)とした。   On the other hand, two 500 ml Erlenmeyer flasks were prepared, and first, 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. Further, 50.3 g of water and 0.11 g of polymerization initiator potassium persulfate were added to obtain a monomer aqueous solution (a) for the first stage polymerization. Next, 119.1 g of 80 wt% aqueous acrylic acid solution was added to another 500 ml Erlenmeyer flask, and 132.2 g of 30 wt% aqueous sodium hydroxide solution was added dropwise while cooling as described above. After the addition, 27.4 g of water and 0.14 g of potassium persulfate were added to obtain a monomer aqueous solution (b) for the second stage polymerization.

次に、五つ口円筒型丸底フラスコに、攪拌下で1段目重合用の単量体水溶液(a)を全量加えて分散させ、系内を窒素で十分に置換した後、70℃に昇温し1時間重合反応を行った。その後、重合スラリー液を40℃に冷却し、2段目重合用の単量体水溶液(b)を添加した。全量添加後、再び系内を窒素で十分に置換した後、70℃に昇温し2段目の重合反応を1時間行った。2段目の重合終了後、含水ゲル状物から水分をn−ヘプタンと共に加熱留去した。脱水した含水ゲル状物に10.5gの水に溶解したエチレングリコールジグリシジルエーテル211.0mgを添加し、80℃で2時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(G)を得た。   Next, in the five-necked cylindrical round bottom flask, the whole amount of the monomer aqueous solution (a) for the first stage polymerization is added and dispersed under stirring, and the inside of the system is sufficiently replaced with nitrogen. The temperature was raised and the polymerization reaction was carried out for 1 hour. Thereafter, the polymerization slurry was cooled to 40 ° C., and a monomer aqueous solution (b) for the second stage polymerization was added. After addition of the entire amount, the system was sufficiently replaced with nitrogen again, and then the temperature was raised to 70 ° C., and the second stage polymerization reaction was carried out for 1 hour. After the completion of the second stage polymerization, water was distilled off from the hydrated gel with heating with n-heptane. 211.0 mg of ethylene glycol diglycidyl ether dissolved in 10.5 g of water was added to the dehydrated hydrogel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (G).

2段目の重合終了後の操作として、脱水した含水ゲル状物に10.5gの水に溶解したエチレングリコールジグリシジルエーテル211.0mgを添加して80℃で2時間保持した後さらに、50mlのn−ヘプタンを分散した粉末状のエチルセルロースを0.92g添加して1時間保持してから、余剰の水およびn−ヘプタンを蒸留により除去して乾燥した以外は、実施例7と同様な操作を行い、吸水性樹脂(H)を得た。   As the operation after the completion of the second stage polymerization, 211.0 mg of ethylene glycol diglycidyl ether dissolved in 10.5 g of water was added to the dehydrated hydrogel and kept at 80 ° C. for 2 hours. The same operation as in Example 7 was performed except that 0.92 g of powdered ethylcellulose in which n-heptane was dispersed was added and held for 1 hour, and then excess water and n-heptane were removed by distillation and dried. The water absorbent resin (H) was obtained.

比較例1Comparative Example 1

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが13.1のヘキサグリセリルモノペヘニレート1.38gを添加して分散させ、50℃に昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 1.38 g of hexaglyceryl monopehenylate having an HLB of 13.1 was added and dispersed, heated to 50 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを2つ用意し、まず、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。さらに、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを1段目重合用の単量体水溶液(a)とした。次いで、別の500ml容の三角フラスコに、80重量%アクリル酸水溶液119.1gを加え、上記のごとく冷却しつつ、30重量%水酸化ナトリウム水溶液132.2gを滴下して75モル%の中和を行い、さらに水27.4g過硫酸カリウム0.14gを添加し、これを2段目重合用の単量体水溶液(b)とした。   On the other hand, two 500 ml Erlenmeyer flasks were prepared, and first, 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. Further, 50.3 g of water and 0.11 g of polymerization initiator potassium persulfate were added to obtain a monomer aqueous solution (a) for the first stage polymerization. Next, 119.1 g of 80 wt% aqueous acrylic acid solution was added to another 500 ml Erlenmeyer flask, and 132.2 g of 30 wt% aqueous sodium hydroxide solution was added dropwise while cooling as described above to neutralize 75 mol%. Then, 27.4 g of water and 0.14 g of potassium persulfate were added to obtain a monomer aqueous solution (b) for the second stage polymerization.

次に、五つ口円筒型丸底フラスコに、攪拌下で1段目重合用の単量体水溶液(a)を全量加えて分散させ、系内を窒素で十分に置換した後、70℃に昇温し1時間重合反応を行った。その後、重合スラリー液を冷却し、予め冷却した2段目重合用の単量体水溶液(b)を添加した。全量添加後、再び系内を窒素で十分に置換した後、浴温を70℃に保持して2段目の重合反応を1時間行った。2段目の重合終了後、含水ゲル状物から水分をn−ヘプタンと共に加熱留去した。脱水した含水ゲル状物に10.5gの水に溶解したエチレングリコールジグリシジルエーテル211.0mgを添加し、80℃で2時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(I)を得た。   Next, in the five-necked cylindrical round bottom flask, the whole amount of the monomer aqueous solution (a) for the first stage polymerization is added and dispersed under stirring, and the inside of the system is sufficiently replaced with nitrogen. The temperature was raised and the polymerization reaction was carried out for 1 hour. Thereafter, the polymerization slurry liquid was cooled, and the monomer aqueous solution (b) for second-stage polymerization that had been cooled in advance was added. After addition of the entire amount, the system was sufficiently replaced with nitrogen again, and the second stage polymerization reaction was carried out for 1 hour while maintaining the bath temperature at 70 ° C. After the completion of the second stage polymerization, water was distilled off from the hydrated gel with heating with n-heptane. 211.0 mg of ethylene glycol diglycidyl ether dissolved in 10.5 g of water was added to the dehydrated hydrogel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (I).

比較例2Comparative Example 2

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000ml容の五つ口円筒型丸底フラスコにn−ヘプタンを500ml加えた。これに、HLBが8.7のソルビタンモノラウレート1.84gを添加して分散させ、50℃まで昇温して溶解した後、30℃まで冷却した。   500 ml of n-heptane was added to a 1000 ml five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas introduction tube. To this, 1.84 g of sorbitan monolaurate having an HLB of 8.7 was added and dispersed, heated to 50 ° C. and dissolved, and then cooled to 30 ° C.

一方、500ml容の三角フラスコを用意し、80重量%アクリル酸水溶液92gを加えた。これに、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して75モル%の中和を行い、アクリル酸の部分中和物水溶液を調製した。さらに、水50.3gと、重合開始剤の過硫酸カリウム0.11gを添加し、これを単量体水溶液とした。   On the other hand, a 500 ml Erlenmeyer flask was prepared, and 92 g of an 80 wt% aqueous acrylic acid solution was added. While cooling with ice from the outside, 102.2 g of a 30 wt% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% to prepare a partially neutralized aqueous solution of acrylic acid. Further, 50.3 g of water and 0.11 g of polymerization initiator potassium persulfate were added to obtain an aqueous monomer solution.

次に、上記単量体水溶液を、五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で充分置換した後、70℃に昇温し1時間重合反応を行った。重合終了後、含水状ゲル状物から水分をn−ヘプタンと共に加熱留去した。脱水した含水状ゲル状物に4.6gの水に溶解したエチレングリコールジグリシジルエーテル92.0mgを添加し、80℃で2時間保持した。その後、余剰の水およびn−ヘプタンを蒸留により除去して乾燥し、850μmのふるいで分級して吸水性樹脂(J)を得た。   Next, the monomer aqueous solution is added to and dispersed in a five-necked cylindrical round bottom flask under stirring, and the inside of the system is sufficiently substituted with nitrogen. Then, the temperature is raised to 70 ° C. and a polymerization reaction is performed for 1 hour. went. After completion of the polymerization, water was distilled off from the hydrated gel with heating with n-heptane. 92.0 mg of ethylene glycol diglycidyl ether dissolved in 4.6 g of water was added to the dehydrated hydrous gel, and the mixture was kept at 80 ° C. for 2 hours. Thereafter, excess water and n-heptane were removed by distillation and dried, followed by classification with a 850 μm sieve to obtain a water absorbent resin (J).

加圧吸水量
吸水開始から30秒後および30分後の加圧吸水量は、図1に概略構成を示した測定装置Xを用いて行った。
Pressurized water absorption :
The pressurized water absorption after 30 seconds and 30 minutes from the start of water absorption was performed using the measuring device X whose schematic configuration is shown in FIG.

図1に示した測定装置Xは、天秤1と、この天秤1上に置かれたボトル2と、空気吸入管3と、導管4と、ガラスフィルタ5と、このガラスフィルタ5上に置かれた測定部6とからなっている。天秤1はコンピューター7に連結され、秒単位また分単位でその重量変化を記録できるようになっている。ボトル2は、その内部に人工尿8を保持するものであり、その頂部の開口部に空気吸入管3が入れられている一方、胴体部に導管4が取り付けられている。空気吸入管3の下端部は、人工尿8中に没している。ガラスフィルタ5の直径は、25mmである。ガラスフィルタ5としては、相互理化学ガラス研究所のガラスフィルターNo.1(孔径100〜160μm)を用いた。そして、ボトル2およびガラスフィルタ5は、導管4によって互いに連通している。また、ガラスフィルタ5は、空気吸入管3の下端に対して僅かに高い位置に固定されている。測定部6は、円筒60と、この円筒60の底部に貼着されたナイロンメッシュ61と、重り62とを有している。円筒60の内径は、2センチである。ナイロンメッシュ61は 200メッシュ(目の大きさ75μm)に形成されている。そして、ナイロンメッシュ61上に所定量の吸水性樹脂9が均一に撒布されるようになっている。重り62は、吸水性樹脂9上に置かれ、吸水性樹脂9に対して5gの荷重を均一に加えることができるようになっている。   The measuring device X shown in FIG. 1 is placed on a balance 1, a bottle 2 placed on the balance 1, an air suction pipe 3, a conduit 4, a glass filter 5, and the glass filter 5. It consists of a measurement unit 6. The balance 1 is connected to a computer 7 so that the weight change can be recorded in seconds or minutes. The bottle 2 holds the artificial urine 8 therein, and the air suction pipe 3 is inserted into the opening at the top thereof, while the conduit 4 is attached to the trunk portion. The lower end of the air suction tube 3 is immersed in the artificial urine 8. The diameter of the glass filter 5 is 25 mm. As the glass filter 5, glass filter No. 1 (pore diameter 100-160 μm) was used. The bottle 2 and the glass filter 5 are communicated with each other by a conduit 4. The glass filter 5 is fixed at a slightly higher position with respect to the lower end of the air suction pipe 3. The measurement unit 6 includes a cylinder 60, a nylon mesh 61 attached to the bottom of the cylinder 60, and a weight 62. The inner diameter of the cylinder 60 is 2 cm. The nylon mesh 61 is formed to 200 mesh (eye size: 75 μm). A predetermined amount of water-absorbing resin 9 is uniformly distributed on the nylon mesh 61. The weight 62 is placed on the water absorbent resin 9 so that a load of 5 g can be uniformly applied to the water absorbent resin 9.

このような構成の測定装置Xでは、まずボトル2に所定量の人工尿8および空気吸入管3を入れて測定の準備を行う。人工尿8としては、蒸留水 5934.6g、NaCl 60g、CaCl2・2H2O 1.8g、MgCl2・6H2O 3.6gからなり、食用青色1号で着色したものを用いた。次いで、円筒60のナイロンメッシュ61上に0.10gの吸水性樹脂9を均一に撒布して、この吸水性樹脂9上に重り62を置いた。測定部6は、その中心部がガラスフィルタ5の中心部に一致するようにしてガラスフィルタ5上に置いた。 In the measuring apparatus X having such a configuration, first, a predetermined amount of artificial urine 8 and an air suction pipe 3 are placed in the bottle 2 to prepare for measurement. Artificial urine 8 was composed of 5934.6 g of distilled water, 60 g of NaCl, 1.8 g of CaCl 2 .2H 2 O, 3.6 g of MgCl 2 .6H 2 O, and colored with edible blue No. 1. Next, 0.10 g of the water absorbent resin 9 was uniformly spread on the nylon mesh 61 of the cylinder 60, and the weight 62 was placed on the water absorbent resin 9. The measuring unit 6 was placed on the glass filter 5 so that the center thereof coincided with the center of the glass filter 5.

一方、電子天秤1に連結されているコンピューター7を起動し、吸水し始めた時点から継続的に、ボトル2内の人工尿8の減少重量(吸水性樹脂9が吸水した人工尿8の重量)Wa(g)を、天秤1から得られる値に基づいて、分単位好ましくは秒単位にてコンピューター7に記録した。吸水開始から30秒後および30分後における吸水性樹脂9の加圧吸水量は、各時点における重量Wa(g)を吸水性樹脂9の重量(0.10g)で除することにより得た。   On the other hand, the weight of the artificial urine 8 in the bottle 2 (the weight of the artificial urine 8 absorbed by the water-absorbent resin 9) continuously from the time when the computer 7 connected to the electronic balance 1 is started and begins to absorb water. Wa (g) was recorded on the computer 7 in minutes, preferably in seconds, based on the value obtained from the balance 1. The pressure water absorption amount of the water absorbent resin 9 30 seconds and 30 minutes after the start of water absorption was obtained by dividing the weight Wa (g) at each time point by the weight of the water absorbent resin 9 (0.10 g).

飽和吸水量
吸水性樹脂2.0gを、500ml容のビーカー中で生理食塩水(0.9重量%NaCl水溶液)500gに分散し、1時間穏やかに撹拌して十分膨潤させた。一方で、75μm標準篩(JIS−Z8801−1982対応)の重量Wb(g)を測定しておき、膨潤ゲルを含んだ水溶液を75μm標準篩でろ過した。水平に対して成す角を約30度程度となるように傾けた状態で75μm標準篩を30分放置して、吸水性樹脂から余剰の生理食塩水を除いた。膨潤ゲルを含んだ篩重量Wc(g)を測定するとともに、この重量Wc(g)から75μm標準篩の重量Wb(g)を引いたものを、吸水性樹脂の重量(2.0g)で除することにより飽和吸水量を算出した。
Saturated water absorption :
2.0 g of the water-absorbent resin was dispersed in 500 g of physiological saline (0.9 wt% NaCl aqueous solution) in a 500 ml beaker and sufficiently swollen by gently stirring for 1 hour. On the other hand, the weight Wb (g) of a 75 μm standard sieve (corresponding to JIS-Z8801-1982) was measured, and the aqueous solution containing the swollen gel was filtered with a 75 μm standard sieve. The 75 μm standard sieve was allowed to stand for 30 minutes with the angle formed with respect to the horizontal being about 30 degrees, and excess physiological saline was removed from the water absorbent resin. The sieve weight Wc (g) including the swollen gel was measured, and the weight Wc (g) minus the weight Wb (g) of the 75 μm standard sieve was divided by the weight of the water absorbent resin (2.0 g). The saturated water absorption was calculated.

重量平均粒子径
吸水性樹脂100gを量り取りその重量を仕込量Wd(g)とした。JIS−Z8801−1982対応の8つの標準篩(目開き850μm、500μm、355μm、300μm、250μm、180μm、106μm、底容器の順番に積み重ねた)の一番上の篩に吸水性樹脂を入れ、ロータップ式篩振動器を用いて10分間振動させた後に吸水性樹脂を含んだ篩の重量We(g)を測定した。各篩に残った吸水性樹脂の重量割合は、吸水性樹脂を含んだ篩の重量We(g)から篩の重量Wf(g)を引いて当該篩に残った吸水性樹脂の重量Wg(g)を測定した後、この重量Wg(g)を仕込量Wd(g)で除して100を乗ずることにより算出した。そして、各篩上に残った吸水性樹脂の重量を測定し、その結果に基づいて、積算重量が全重量の50重量%になる重量平均粒子径を次式により算出した。
Weight average particle size :
100 g of the water-absorbent resin was weighed and its weight was defined as the charged amount Wd (g). Put the water-absorbing resin on the top sieve of 8 standard sieves corresponding to JIS-Z8801-1982 (mesh opening 850μm, 500μm, 355μm, 300μm, 250μm, 180μm, 106μm, stacked in order of bottom container) The weight We (g) of the sieve containing the water-absorbent resin was measured after vibrating for 10 minutes using a type sieve vibrator. The weight ratio of the water-absorbing resin remaining on each sieve is the weight Wg (g) of the water-absorbing resin remaining on the sieve by subtracting the weight Wf (g) of the sieve from the weight We (g) of the sieve containing the water-absorbing resin. ) Was measured, and the weight Wg (g) was divided by the charged amount Wd (g) and multiplied by 100. Then, the weight of the water-absorbent resin remaining on each sieve was measured, and based on the result, the weight average particle diameter at which the integrated weight was 50% by weight of the total weight was calculated by the following formula.

式中、Aは、粒度分布の粗い方から順次重量を積算し、積算重量が50重量%未満であり、かつ50重量%に最も近い点の積算値を求めた場合の当該積算値(g)であり、また、Bは、当該積算値を求めた時の節目開き(μm)である。また、Dは、粒度分布の粗い方から順次重量を積算し、積算重量が50重量%以上であり、かつ50重量%に最も近い点の積算値を求めた場合の当該積算値(g)であり、また、Cは、当該積算値を求めた時の節目開き(μm)である。   In the formula, A is the cumulative value (g) when the weight is sequentially accumulated from the coarser particle size distribution, and the cumulative value at the point closest to 50% by weight is less than 50% by weight. And B is the knot opening (μm) when the integrated value is obtained. Further, D is the integrated value (g) when the integrated values are obtained in order from the coarser particle size distribution, and the integrated value of the point closest to 50% by weight is 50% by weight or more. Yes, and C is the knot opening (μm) when the integrated value is obtained.

逆戻り量および拡散長
逆戻り量および拡散長は、吸収性物品の状態で測定した。吸収性物品は、吸収体を40cm×12cmの大きさで重さ1gの不織布、同じ大きさで同じ重さのポリエチレンシートで挟み付けることにより作製した。吸収体は、吸水性樹脂および粉砕パルプ(親水性繊維)をミキサーを用いて乾式混合したものを大きさが40cm×12cmで重さが1gのティッシュに吹き付けた後に同じ大きさおよび重さのティッシュを重ねてシート状にし、これの全体に196kPaの加重を加えてプレスすることにより作製した。
Return amount and the diffusion length:
The amount of reversion and the diffusion length were measured in the state of the absorbent article. The absorbent article was produced by sandwiching the absorbent body with a nonwoven fabric having a size of 40 cm × 12 cm and a weight of 1 g and a polyethylene sheet having the same size and the same weight. The absorbent body is a tissue of the same size and weight after spraying water-absorbing resin and pulverized pulp (hydrophilic fiber) using a mixer and spraying the mixture onto a tissue having a size of 40 cm × 12 cm and a weight of 1 g. Were made into a sheet, and the whole was pressed by applying a load of 196 kPa.

吸収性物品の中心付近に人工尿150mlを1分間かけて注ぎ、5分間放置した。その後、10cm×10cmに裁断したろ紙(東洋ろ紙No.2)20枚を重ねて吸収性物品の中心付近に置き、その上から3.5kgのおもり(底面=10cm×10cm)を載せて3分間加重した。ろ紙に吸収された人工尿量を測定し、これを逆戻り量とした。また、吸収性物品に吸収された人工尿について、吸収性物品の長手方向の拡がりを測定し、これを拡散長とした。   150 ml of artificial urine was poured in the vicinity of the center of the absorbent article over 1 minute and left for 5 minutes. Then, 20 sheets of filter paper (Toyo Filter Paper No. 2) cut to 10 cm x 10 cm are stacked and placed near the center of the absorbent article, and a 3.5 kg weight (bottom = 10 cm x 10 cm) is placed thereon for 3 minutes. Weighted. The amount of artificial urine absorbed by the filter paper was measured, and this was used as the reversal amount. Moreover, about the artificial urine absorbed by the absorbent article, the longitudinal extension of the absorbent article was measured, and this was defined as the diffusion length.

実施例1で得られた吸水性樹脂(A)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例1で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   With respect to the water absorbent resin (A) obtained in Example 1, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the method described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbing resin obtained in Example 1 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例9において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例9と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was prepared in the same manner as in Example 9, except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was prepared using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例2で得られた吸水性樹脂(B)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例2で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   With respect to the water absorbent resin (B) obtained in Example 2, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the method described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30% by weight using the above-described method using 8 g of the water-absorbing resin obtained in Example 2 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例11において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例11と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 11 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例3で得られた吸水性樹脂(C)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例3で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   For the water absorbent resin (C) obtained in Example 3, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the methods described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbing resin obtained in Example 3 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例13において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例13と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 13 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例4で得られた吸水性樹脂(D)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例4で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   For the water absorbent resin (D) obtained in Example 4, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the methods described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30% by weight using the above-described method using 8 g of the water-absorbent resin obtained in Example 4 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例15において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例15と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 15 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例5で得られた吸水性樹脂(E)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例5で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   With respect to the water absorbent resin (E) obtained in Example 5, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the methods described above. On the other hand, after producing an absorbent body having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbent resin obtained in Example 5 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例17において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例17と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 17 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例6で得られた吸水性樹脂(F)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例6で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   For the water absorbent resin (F) obtained in Example 6, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle size were measured by the methods described above. On the other hand, after preparing an absorbent body having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbing resin obtained in Example 6 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例19において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例19と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 19 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例7で得られた吸水性樹脂(G)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例7で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   For the water absorbent resin (G) obtained in Example 7, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the methods described above. On the other hand, after producing an absorbent body having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbent resin obtained in Example 7 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例21において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例21と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 21 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

実施例8で得られた吸水性樹脂(H)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、実施例8で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   For the water absorbent resin (H) obtained in Example 8, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the methods described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbing resin obtained in Example 8 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

実施例23において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は実施例23と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was produced in the same manner as in Example 23 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was produced using 15 g of the water absorbent resin and 10 g of the pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

比較例3Comparative Example 3

比較例1で得られた吸水性樹脂(I)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、比較例1で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   With respect to the water absorbent resin (I) obtained in Comparative Example 1, the pressurized water absorption amount after 30 seconds, the pressurized water absorption amount after 30 minutes, the saturated water absorption amount, and the weight average particle diameter were measured by the method described above. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30 wt% by the above-described method using 8 g of the water-absorbing resin obtained in Comparative Example 1 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

比較例4Comparative Example 4

比較例3において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は比較例3と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   In Comparative Example 3, an absorbent article was prepared in the same manner as in Comparative Example 3 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was prepared using 15 g of the water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

比較例5Comparative Example 5

比較例2で得られた吸水性樹脂(J)について、上述した方法により30秒後の加圧吸水量、30分後の加圧吸水量、飽和吸水量、および重量平均粒子径を測定した。一方、比較例2で得られた吸水性樹脂8gおよび粉砕パルプ18gを用いて、上述した方法により、重さが26g、吸水性樹脂の割合が30重量%である吸収体を作製した後に、この吸収体から吸収性物品を作製して逆戻り量および拡散長を測定した。これらの測定結果は、表1に示した。   With respect to the water absorbent resin (J) obtained in Comparative Example 2, the pressurized water absorption after 30 seconds, the pressurized water absorption after 30 minutes, the saturated water absorption, and the weight average particle diameter were measured by the above-described methods. On the other hand, after producing an absorber having a weight of 26 g and a water-absorbing resin ratio of 30% by weight using the above-described method using 8 g of the water-absorbing resin obtained in Comparative Example 2 and 18 g of pulverized pulp, Absorbent articles were prepared from the absorbent and the amount of reversion and diffusion length were measured. These measurement results are shown in Table 1.

比較例6Comparative Example 6

比較例5において吸水性樹脂15g、粉砕パルプ10gを用いて重さが25g、吸水性樹脂の割合が60重量%である吸収体を作製した以外は比較例5と同様にして吸収性物品を作製し、逆戻り量および拡散長を測定した。その結果は、表2に示した。   An absorbent article was prepared in the same manner as in Comparative Example 5 except that an absorbent body having a weight of 25 g and a water absorbent resin ratio of 60% by weight was prepared using 15 g of water absorbent resin and 10 g of pulverized pulp. The amount of reversion and the diffusion length were measured. The results are shown in Table 2.

表1および表2から明らかなように、吸水開始から30秒後の加圧吸水量が小さく、吸水開始から30分後の加圧吸水量が大きい吸水性樹脂を用いた吸収性物品は、逆戻り量が小さく、拡散長が大きくなっている。このような傾向は、吸収体中の吸水性樹脂の濃度が30重量%および60重量%の双方の場合ともに現れている。このように、初期吸水量が小さく、最終吸水量の大きな吸水性樹脂(A)〜(H)を用いた吸収性物品は、吸収体中の樹脂の割合が大きくても優れた拡散性を発揮するばかりか、逆戻り量も少なくなっていることが確認された。   As is clear from Table 1 and Table 2, the absorbent article using the water absorbent resin having a small pressurized water absorption amount 30 seconds after the start of water absorption and a large pressurized water absorption amount 30 minutes after the start of water absorption is reversed. The amount is small and the diffusion length is large. Such a tendency appears in both cases where the concentration of the water-absorbent resin in the absorber is 30% by weight and 60% by weight. As described above, the absorbent article using the water absorbent resins (A) to (H) having a small initial water absorption amount and a large final water absorption amount exhibits excellent diffusibility even when the ratio of the resin in the absorber is large. In addition, it was confirmed that the amount of reversion was also reduced.

評価Evaluation

以上のように、本発明の吸水性樹脂を用いた吸収性物品は、吸収体中の吸水性樹脂の割合が大きくても優れた拡散性を発揮するばかりか、逆戻り量も少ない。そのため、吸収性物品では、実際の使用状態において漏れを防ぎ、ドライ感を与えることができる優れた性能(吸水特性)を発揮することができる。   As described above, the absorbent article using the water-absorbent resin of the present invention not only exhibits excellent diffusibility even when the proportion of the water-absorbent resin in the absorbent body is large, but also has a small amount of reversion. Therefore, the absorbent article can exhibit excellent performance (water absorption characteristics) capable of preventing leakage and giving a dry feeling in an actual use state.

X 測定装置
1 天秤
2 ボトル
3 空気吸入管
4 導管
5 ガラスフィルタ
6 測定部
60 円筒(測定部の)
61 ナイロンメッシュ(測定部の)
62 重り(測定部の)
7 コンピュータ
8 人工尿
9 吸水性樹脂
X measuring device 1 balance 2 bottle 3 air suction pipe 4 conduit 5 glass filter 6 measuring part 60 cylinder (of measuring part)
61 Nylon mesh (for measuring part)
62 Weight (of measuring part)
7 Computer 8 Artificial urine 9 Water absorbent resin

Claims (6)

吸水開始から30秒後における人工尿の加圧吸水量が10g/g以下であり、吸水開始から30分後における人工尿の加圧吸水量が20g/g以上である吸水性樹脂。   A water-absorbing resin having a pressure water absorption amount of 10 g / g or less after 30 seconds from the start of water absorption and a pressure water absorption amount of 20 g / g or more after 30 minutes from the start of water absorption. 吸水開始から30秒後における人工尿の加圧吸水量が5g/g以下であり、吸水開始から30分後における人工尿の加圧吸水量が30g/g以上である、請求項1に記載の吸水性樹脂。   The pressurized water absorption amount of the artificial urine 30 seconds after the start of water absorption is 5 g / g or less, and the pressurized water absorption amount of the artificial urine 30 minutes after the start of water absorption is 30 g / g or more. Water absorbent resin. 生理食塩水に対する飽和吸水量が40g/g以上である、請求項1または2に記載の吸水性樹脂。   The water absorbent resin according to claim 1 or 2, wherein a saturated water absorption amount with respect to physiological saline is 40 g / g or more. 重量平均粒子径が200〜600μmである、請求項1ないし3のいずれか1つに記載の吸水性樹脂。   The water-absorbent resin according to any one of claims 1 to 3, wherein the weight average particle diameter is 200 to 600 µm. 疎水処理されている、請求項1ないし4のいずれか1つに記載の吸水性樹脂。   The water-absorbent resin according to any one of claims 1 to 4, which has been subjected to a hydrophobic treatment. 表面架橋されている、請求項5に記載の吸水性樹脂。   The water-absorbent resin according to claim 5, which is surface-crosslinked.
JP2010136471A 2010-06-15 2010-06-15 Water absorbent resin Expired - Lifetime JP5485805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136471A JP5485805B2 (en) 2010-06-15 2010-06-15 Water absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136471A JP5485805B2 (en) 2010-06-15 2010-06-15 Water absorbent resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001284739A Division JP2003088551A (en) 2001-09-19 2001-09-19 Absorber and absorptive article using it

Publications (2)

Publication Number Publication Date
JP2010253283A true JP2010253283A (en) 2010-11-11
JP5485805B2 JP5485805B2 (en) 2014-05-07

Family

ID=43314863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136471A Expired - Lifetime JP5485805B2 (en) 2010-06-15 2010-06-15 Water absorbent resin

Country Status (1)

Country Link
JP (1) JP5485805B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153823A (en) * 2011-01-27 2012-08-16 Sumitomo Seika Chem Co Ltd Water-absorbing resin composition
KR101507287B1 (en) 2013-12-03 2015-03-30 주식회사 엘지화학 a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
WO2016104926A1 (en) * 2014-12-23 2016-06-30 주식회사 엘지화학 Attrition-resistant superabsorbent polymer and method for producing same
WO2016175428A1 (en) * 2015-04-28 2016-11-03 주식회사 엘지화학 Method for preparing super absorbent resin
US9700871B2 (en) 2013-12-03 2017-07-11 Lg Chem, Ltd. Method for preparing super absorbent resin
EP4074755A4 (en) * 2019-12-13 2024-01-24 Sumitomo Seika Chemicals Absorbent resin particles and absorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228812B (en) * 2016-03-24 2021-04-13 香港理工大学 Method and device for detecting moisture absorption and transmission in textile fabric

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer
JPS6117542B2 (en) * 1980-03-25 1986-05-08 Nippon Shokubai Kagaku Kogyo Kk
JPH02284927A (en) * 1989-04-26 1990-11-22 Nippon Synthetic Chem Ind Co Ltd:The Granulation of highly water-absorbing resin
JPH0328203A (en) * 1989-06-27 1991-02-06 Toagosei Chem Ind Co Ltd Preparation of water-absorbing resin
JPH03285919A (en) * 1990-03-30 1991-12-17 Sekisui Plastics Co Ltd Production of highly water-absorbing resin
JPH05230747A (en) * 1990-08-30 1993-09-07 Nippon Shokubai Co Ltd Production of absorbent
WO1995033558A1 (en) * 1994-06-06 1995-12-14 Sanyo Chemical Industries, Ltd. Modified water-absorbent resin particles
JPH08511459A (en) * 1993-06-21 1996-12-03 メールンリユーケ アーベー Absorbent article including superabsorbent material having delayed activation time
JP2579814B2 (en) * 1989-03-16 1997-02-12 三洋化成工業株式会社 Water absorbing agent and method for producing the same
JPH09136966A (en) * 1995-11-13 1997-05-27 Sanyo Chem Ind Ltd Water-absorptive resin particles and its preparation
JPH10118117A (en) * 1996-10-22 1998-05-12 Kao Corp Absorptive article
JPH10204184A (en) * 1996-11-20 1998-08-04 Sanyo Chem Ind Ltd Water absorbent and its production
JPH1128355A (en) * 1996-11-06 1999-02-02 Sanyo Chem Ind Ltd Water absorbent and absorptive article
JPH1160975A (en) * 1997-04-14 1999-03-05 Nippon Shokubai Co Ltd Pressure-resistant water-absorbing resin, paper diaper using the same and its production
JPH1171529A (en) * 1997-07-03 1999-03-16 Nippon Shokubai Co Ltd Water-absorption resin and water-absorbing article using the same
JPH11216162A (en) * 1998-02-05 1999-08-10 Oji Paper Co Ltd Absorbent article
WO2001000258A1 (en) * 1999-06-29 2001-01-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
JP2001239159A (en) * 2000-03-01 2001-09-04 Toagosei Co Ltd Absorbent article
JP2001252307A (en) * 2000-03-13 2001-09-18 Oji Paper Co Ltd Absorptive article
JP2002532154A (en) * 1998-12-16 2002-10-02 エスシーエー・ハイジーン・プロダクツ・アーベー Absorbent structure in an absorbent article comprising a partially neutralized superabsorbent material, and absorbent article comprising the absorbent structure

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117542B2 (en) * 1980-03-25 1986-05-08 Nippon Shokubai Kagaku Kogyo Kk
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer
JP2579814B2 (en) * 1989-03-16 1997-02-12 三洋化成工業株式会社 Water absorbing agent and method for producing the same
JPH02284927A (en) * 1989-04-26 1990-11-22 Nippon Synthetic Chem Ind Co Ltd:The Granulation of highly water-absorbing resin
JPH0328203A (en) * 1989-06-27 1991-02-06 Toagosei Chem Ind Co Ltd Preparation of water-absorbing resin
JPH03285919A (en) * 1990-03-30 1991-12-17 Sekisui Plastics Co Ltd Production of highly water-absorbing resin
JPH05230747A (en) * 1990-08-30 1993-09-07 Nippon Shokubai Co Ltd Production of absorbent
JPH08511459A (en) * 1993-06-21 1996-12-03 メールンリユーケ アーベー Absorbent article including superabsorbent material having delayed activation time
WO1995033558A1 (en) * 1994-06-06 1995-12-14 Sanyo Chemical Industries, Ltd. Modified water-absorbent resin particles
JPH09136966A (en) * 1995-11-13 1997-05-27 Sanyo Chem Ind Ltd Water-absorptive resin particles and its preparation
JPH10118117A (en) * 1996-10-22 1998-05-12 Kao Corp Absorptive article
JPH1128355A (en) * 1996-11-06 1999-02-02 Sanyo Chem Ind Ltd Water absorbent and absorptive article
JPH10204184A (en) * 1996-11-20 1998-08-04 Sanyo Chem Ind Ltd Water absorbent and its production
JPH1160975A (en) * 1997-04-14 1999-03-05 Nippon Shokubai Co Ltd Pressure-resistant water-absorbing resin, paper diaper using the same and its production
JPH1171529A (en) * 1997-07-03 1999-03-16 Nippon Shokubai Co Ltd Water-absorption resin and water-absorbing article using the same
JPH11216162A (en) * 1998-02-05 1999-08-10 Oji Paper Co Ltd Absorbent article
JP2002532154A (en) * 1998-12-16 2002-10-02 エスシーエー・ハイジーン・プロダクツ・アーベー Absorbent structure in an absorbent article comprising a partially neutralized superabsorbent material, and absorbent article comprising the absorbent structure
WO2001000258A1 (en) * 1999-06-29 2001-01-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
JP2003503554A (en) * 1999-06-29 2003-01-28 ストックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Superabsorbent polymer with characteristics of delayed water absorption
JP2001239159A (en) * 2000-03-01 2001-09-04 Toagosei Co Ltd Absorbent article
JP2001252307A (en) * 2000-03-13 2001-09-18 Oji Paper Co Ltd Absorptive article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153823A (en) * 2011-01-27 2012-08-16 Sumitomo Seika Chem Co Ltd Water-absorbing resin composition
KR101507287B1 (en) 2013-12-03 2015-03-30 주식회사 엘지화학 a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
US9700871B2 (en) 2013-12-03 2017-07-11 Lg Chem, Ltd. Method for preparing super absorbent resin
WO2016104926A1 (en) * 2014-12-23 2016-06-30 주식회사 엘지화학 Attrition-resistant superabsorbent polymer and method for producing same
CN106062071A (en) * 2014-12-23 2016-10-26 株式会社Lg化学 Attrition-resistant superabsorbent polymer and method for producing same
US10307731B2 (en) 2014-12-23 2019-06-04 Lg Chem, Ltd. Attrition-resistant superabsorbent polymer and method for producing same
WO2016175428A1 (en) * 2015-04-28 2016-11-03 주식회사 엘지화학 Method for preparing super absorbent resin
US10294334B2 (en) 2015-04-28 2019-05-21 Lg Chem, Ltd. Method for preparing super absorbent resin
EP4074755A4 (en) * 2019-12-13 2024-01-24 Sumitomo Seika Chemicals Absorbent resin particles and absorbent

Also Published As

Publication number Publication date
JP5485805B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP4880144B2 (en) Absorber and absorbent article using the same
JP5485805B2 (en) Water absorbent resin
JP5289955B2 (en) Water-absorbent resin particles, method for producing the same, and absorbent body using the same
US10265226B2 (en) Water-absorbent resin, water-absorbent material, and water-absorbent article
US9585798B2 (en) Water absorbent storage layers
EP2607383B1 (en) Water-absorbing resin
JP4380873B2 (en) Water absorbent resin powder and use thereof
JP4685332B2 (en) Water-absorbent resin suitable for absorption of viscous liquid containing high molecular weight body, and absorbent body and absorbent article using the same
JP5930966B2 (en) Water-absorbing resin and method for producing the same
WO2006121148A1 (en) Absorbent composite material and method for producing same
TWI681976B (en) Water-absorbing resin and absorbent articles
KR20010012132A (en) Resilient superabsorbent compositions
JP2979047B2 (en) High-performance high-absorbency material and absorbent article containing it
JP2003518150A (en) High permeability and low absorption capacity polymer
CA2781165A1 (en) Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
JP2011080069A (en) Water-absorbing resin
JP2010142808A (en) Absorbing agent composition, method for preparing the same and absorbent product containing the same
JP3335843B2 (en) Absorbent composition and absorber, and absorbent article including absorber
JP2003088551A (en) Absorber and absorptive article using it
JP4256484B2 (en) Water-absorbing agent, water-absorbing article, and method for producing water-absorbing agent
JP2003088553A (en) Absorber and absorptive article using it
JP2003088551A5 (en)
JP2008086590A (en) Fabric-like high speed absorbent composite and production method therefor
JP2002045395A (en) Absorber and absorptive goods using the same, and water absorptive resin
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term