JPS61174723A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61174723A
JPS61174723A JP1780185A JP1780185A JPS61174723A JP S61174723 A JPS61174723 A JP S61174723A JP 1780185 A JP1780185 A JP 1780185A JP 1780185 A JP1780185 A JP 1780185A JP S61174723 A JPS61174723 A JP S61174723A
Authority
JP
Japan
Prior art keywords
substrate
layer
metal plating
etching
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1780185A
Other languages
Japanese (ja)
Inventor
Yasuro Mitsui
三井 康郎
Michihiro Kobiki
小引 通博
Yoshinobu Sasaki
善伸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1780185A priority Critical patent/JPS61174723A/en
Publication of JPS61174723A publication Critical patent/JPS61174723A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To suppress up-diffusion of plated layer and lower an input/output series impedance by using a metal plated layer for heat radiation deposited to a semiconductor substrate as an etching mask when forming a high output FET and dividing the substrate by etching it through fine apertures provided thereto. CONSTITUTION:A flat plate 3 for reinforcement is attached to the FET forming surface side 1 of a very thin GaAs substrate 1 and a thin lower base metal layer 4 is deposited to the opposed surface of substrate 1. Next, a resist pattern 6 like a frame is provided on the layer 4 and a metal plated layer 5 for heat radiation is formed while the slits 12 are generated on the pattern 6 at the entire part thereof. Thereafter, the discolored part of pattern 6 is exposed and developed through the slits 12, the etching is carried out with the layer 5 used as the mask, the lower layer 4 of slits 12 is eliminated and aperture 13 is formed on the substrate. In this case, the side etch is reduced as much as possible in order to suppress the lateral extension of aperture 13 and thereby the substrate 1 is formed like a pellet. It is then placed upside down. A base seat 7 for heat radiation is fixed to the substrate 1 is surrounded by an external circuit forming substrate 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関し、特に砒化ガリ
ウム電界効果トランジスタ(GaAs−FET) 。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a gallium arsenide field effect transistor (GaAs-FET).

砒化ガリウムマイクロ波モノリシック集積回路などの高
出力電界効果トランジスタの製造方法におけるチップ分
割1岨立て方法の改良に係るものである。
The present invention relates to an improvement in the chip division and one-hole fabrication method in the manufacturing method of high-power field effect transistors such as gallium arsenide microwave monolithic integrated circuits.

〔従来の技術〕[Conventional technology]

従来におけるこの種の半導体装置の製造方法につき、こ
−ではマイクロ波帯高出力GaAs−FETを例にとっ
て述べる。第2図(a)ないしくf)はこの従来例方法
での準ミリ波帯動作高出力GaAs−FETにおける放
熱のための裏面PH9(Plated Heat 5i
nk)形成工程から、チップ分割9岨立て工程に至るプ
ロセスフロー図である。
A conventional method for manufacturing this type of semiconductor device will now be described using a microwave band high output GaAs-FET as an example. Figures 2(a) to 2(f) show the back surface PH9 (Plated Heat 5i) for heat dissipation in a high power GaAs-FET operating in the quasi-millimeter wave band using this conventional method.
nk) is a process flow diagram from the formation process to the chip division 9-editing process.

一般的にこの種の高出力GaAs−FETにおいては、
表面能動部としての、  FET形成面2からの発生熱
の放熱経路にあたるGaAs基板1の厚さを薄くするこ
とが、素子自体の熱抵抗Rthの低減につながることか
ら、このGaAs基板1には10〜50終■オーダの厚
さ程度の極薄の素材を用いることが多い、そこでまずこ
の極薄GaA+基板1に対しては、表面工程完了後に加
えられる熱歪みとか機械的応力などによる割れ、そりな
どを防止するために、 FET形成面2側には補強平板
3をワックスなどで接着させておき、かつ裏面全面には
電解メッキ用の下地金属層4を被着させる(M図(a)
)。
Generally, in this type of high-power GaAs-FET,
Since reducing the thickness of the GaAs substrate 1, which serves as a surface active part and is a radiation path for heat generated from the FET formation surface 2, leads to a reduction in the thermal resistance Rth of the element itself, this GaAs substrate 1 has a Ultra-thin materials with a thickness on the order of ~50 mm are often used, so first of all, this ultra-thin GaA+ substrate 1 is protected against cracks and warpage due to thermal strain and mechanical stress applied after the surface process is completed. In order to prevent this, a reinforcing flat plate 3 is adhered to the FET forming surface 2 side with wax or the like, and a base metal layer 4 for electrolytic plating is applied to the entire back surface (Fig. M (a)).
).

ついで前記下地金属層4上には、各チップ毎の表面能動
部を区分して、写真製版技術により額縁状のポジ形レジ
ストパターン6を形成させ(同図(b))たのち、この
レジストパターン6をマスクにして、前記FET形成面
2上に形成される各チップ毎に、電解メッキ法によって
PHS金属メッキ層5を選択的に形成させる。こへでこ
の金属メッキ暦5は、その厚さが厚い程、素子自体の熱
抵抗を低減し得るために、通常は50ル層以上の厚さに
設定されるが、前記レジストパターン6の厚さがせいぜ
い数JLm程度であることから、この金属メッキ層5は
、その成長過程で横方向に拡がって形成さ幻、る(同図
(C))。
Next, on the base metal layer 4, a frame-shaped positive resist pattern 6 is formed by photolithography, dividing the surface active part of each chip (FIG. 2(b)). 6 as a mask, a PHS metal plating layer 5 is selectively formed on each chip formed on the FET forming surface 2 by electrolytic plating. This metal plating layer 5 is normally set to a thickness of 50 layers or more because the thicker the metal plating layer 5 is, the more the thermal resistance of the element itself can be reduced. Since the thickness of the metal plating layer 5 is approximately several JLm at most, the metal plating layer 5 is formed to spread laterally during the growth process (FIG. 4(C)).

そして前記金属メッキ層5の形成後、レジストパターン
8を除去し、かつ続いて今度はこの金属メッキ暦5をマ
スクにして、化学エツチングにより下地金属層4を選択
的に除去しく同IN(d))、さらに続いて化学エツチ
ングによりGaAg基板l基板子ップ毎に分割されるま
でエツチングするが、このときこのGaAs基板1に対
するエツチングは、同基板1の横方向にもその厚さとは
C同程度の量だけ同時に進行し、このようにして各チッ
プ毎の分割がなされる(同図(e))。
After forming the metal plating layer 5, the resist pattern 8 is removed, and then, using the metal plating pattern 5 as a mask, the underlying metal layer 4 is selectively removed by chemical etching. ), and then the GaAg substrate 1 is etched by chemical etching until it is divided into sub-board chips. In this way, each chip is divided ((e) in the same figure).

その後、前記の分割されたチップを補強平板3から取外
し、これをその金属メッキ暦5側で放熱用の台座7に半
田付けなどでグイポンディングして取付けると共に、同
チップのFET形成面2上の入力および出力パッドと、
外部回路形成基板8上の入力および出力ポンディングエ
リヤ8およびlOとを、それぞれに金線、アルミ線など
のポンディングワイヤ11によりワイヤポンディングし
て組立てるのである(同図(f))。
Thereafter, the divided chip is removed from the reinforcing flat plate 3, and attached to the heat dissipation pedestal 7 by soldering or the like on the metal plating plate 5 side, and the FET forming surface 2 of the chip is attached. input and output pads, and
The input and output bonding areas 8 and 10 on the external circuit board 8 are assembled by wire bonding, respectively, using bonding wires 11 such as gold wire or aluminum wire (FIG. 2(f)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの極薄GaAs基板を用いた従来例によ
る高出力GaAs−FETでは、そのチップ分割2岨立
て工程が前記のようなプロセスフローからなるために、
チップ分割時のGaAs基板に対するサイドエツチング
のために、PH5金属メッキ層の巾が、分割される(i
aAs−F−ツブの巾よりも張り出した構造となり、こ
の構造により入出力用ポンディングワイヤの長さが、張
り出し長さ分だけ長くなって、FETの入出力パッドに
ワイヤによる大きなインダクタンス成分が付加されるこ
とになり、この結果として、FETの入出力整合が困難
になるなどのほか、FET増幅器を構成する場合などに
は、広帯域設計が難しくなるなどの問題を生じ、これが
特に30Gl(z帯以上の準ミリ波帯における素子の高
周波特性を阻害する主要因の一つになっていた。
However, in the conventional high-power GaAs-FET using this ultra-thin GaAs substrate, the chip division and two-layer assembly process consists of the process flow described above.
Due to side etching of the GaAs substrate during chip division, the width of the PH5 metal plating layer is divided (i
aAs-F-It has a structure that overhangs the width of the tube, and due to this structure, the length of the input/output bonding wire becomes longer by the overhang length, and a large inductance component due to the wire is added to the FET input/output pad. As a result, it becomes difficult to match the input and output of the FET, and when constructing a FET amplifier, it becomes difficult to design a wide band. This was one of the main factors that inhibited the high frequency characteristics of the device in the above-mentioned quasi-millimeter wave band.

この発明は従来のこのような製造フロー上の問題点を解
決するためになされたものであって、高周波特性に優れ
た高出力電界効果トランジスタを得ることを目的とする
The present invention has been made in order to solve these conventional manufacturing flow problems, and aims to provide a high-output field effect transistor with excellent high frequency characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、この発明に係る半導体装置
の製造方法は、高出力GaAs−FETなどの製造時に
、金属メッキ層をエツチングマスクとして微細な開口部
を形成させ、この開口部を通してチップ分割させること
により、この分割時に生ずるPH5金属メッキ層の張り
出し量を低減させるようにしたものである。
In order to achieve the above object, the method for manufacturing a semiconductor device according to the present invention involves forming fine openings using a metal plating layer as an etching mask during manufacturing of high-power GaAs-FETs, etc., and performing chip division through the openings. By doing so, the amount of overhang of the PH5 metal plating layer that occurs during this division is reduced.

〔作   用〕[For production]

従ってこの発明方法においては、半導体基板のチップ分
割工程で生ずる金属メッキ層の張り出し量を効果的に抑
制し得るために、結果として、入出力用ポンディングワ
イヤの長さを十分に短縮でき、コノポンディングワイヤ
によってFETに付加される入出力直列インダクタンス
を低減し得るのである。
Therefore, in the method of this invention, the amount of protrusion of the metal plating layer that occurs during the chip dividing process of the semiconductor substrate can be effectively suppressed, and as a result, the length of the input/output bonding wire can be sufficiently shortened, and the length of the input/output bonding wire can be sufficiently shortened. The input/output series inductance added to the FET by the bonding wire can be reduced.

〔実 施 例〕〔Example〕

以下この発明に係る半導体装置の製造方法の一実施例に
つき、第1図(a)ないしくe)を参照して詳細に説明
する。
An embodiment of the method for manufacturing a semiconductor device according to the present invention will be described in detail below with reference to FIGS. 1(a) to 1(e).

第1図(a)ないしくe)はこの実施例方法を工程順に
示したプロセスフロー図であり、この第1図(a)ない
しくe)実施例方法において、前記w4z図(a)ない
しくf)従来例方法と同一符号は同一または相当部分を
表わしている。
Figure 1 (a) to e) is a process flow diagram showing the method of this example in the order of steps. f) The same reference numerals as in the conventional method represent the same or corresponding parts.

この実施例方法においては、まず前記従来例方法と同様
にして、極薄GaAs基板1のFET形成面2側に補強
平板3を接着させ、かつ裏面全面に下地金属層4を被着
させた上で、この下地金属層4上に額縁状のポジ形レジ
ストパターンBを形成させる(同図(a))。
In this embodiment method, first, in the same manner as in the conventional method, a reinforcing flat plate 3 is adhered to the FET forming surface 2 side of the ultra-thin GaAs substrate 1, and a base metal layer 4 is coated on the entire back surface. Then, a frame-shaped positive resist pattern B is formed on this base metal layer 4 (FIG. 4(a)).

次に前記レジストパターン8をマスクにして、各チップ
対応に電解メッキ法で金属メッキ層5を選択的に形成さ
せるが、このときこれらの各金属メッキ層5の横方向へ
の拡がり量を制御して、隣接層との間のスリット12の
巾を101L■程度以下に設定させるようにし、続いて
各金属メッキ層5の形成後、矢印にみられるようにチッ
プ全面を照射して(同図(b))、スリット12下のレ
ジストパターン6のみを露光かつ現像させたのち、この
金属メッキ層5をマスクにして、化学エツチングあるい
はドライエツチングにより、同スリット12下の下地金
属層4の部分のみを除去して開口部13を形成させる(
同図(C))。
Next, using the resist pattern 8 as a mask, a metal plating layer 5 is selectively formed on each chip by electrolytic plating. At this time, the amount of horizontal spread of each metal plating layer 5 is controlled. Then, the width of the slit 12 between the adjacent layers is set to about 101 L■ or less, and after forming each metal plating layer 5, the entire surface of the chip is irradiated as shown by the arrows ( b)) After exposing and developing only the resist pattern 6 under the slit 12, using the metal plating layer 5 as a mask, only the portion of the underlying metal layer 4 under the slit 12 is etched by chemical etching or dry etching. to form the opening 13 (
Same figure (C)).

さらに前記下地金属層4に対するスリット12下の選択
的な開口後、金属メッキ層5をマスクに、この開口部1
3を通して化学エツチングによりGaAs基板1を各チ
ップ毎に分離されるまでエツチングする。そしてこのと
きGaAs基板1の分割エツチングは、従来と同様に同
基板1の横方向にも同時に進行するが、このニー2チン
グがスリット12下の開口部13を通してなされるため
に、横方向へのサイドエツチング量を著るしく低減でき
て、結果的にはGaAs基板1に対する金属メッキR5
の張り出し量を効果的かつ実質的に抑制し得るのであり
、このようにして各チップ毎の分割がなされる(同図(
d))。
Furthermore, after selectively opening the base metal layer 4 below the slit 12, the opening 1 is opened using the metal plating layer 5 as a mask.
3, the GaAs substrate 1 is etched by chemical etching until each chip is separated. At this time, the dividing etching of the GaAs substrate 1 simultaneously proceeds in the lateral direction of the substrate 1, as in the past, but since this kneeling is done through the opening 13 below the slit 12, the etching in the lateral direction also progresses. The amount of side etching can be significantly reduced, and as a result, metal plating R5 on the GaAs substrate 1 can be reduced.
The amount of overhang can be effectively and substantially suppressed, and in this way, each chip is divided (as shown in the same figure).
d)).

そしてその後は、従来例と全く同様にして、分割された
チップを補強平板3から取外し、これをその金属メッキ
層5側で放熱用の台座7に半田付けなどでグイポンディ
ングして取付けると共に、同チップのFET形成面2上
の入力および出力パッドと、外部回路形成基板8上の入
力および出力ポンディングエリヤ8および10とを、そ
れぞれに金線、アルミ線などのポンディングワイヤ11
によりワイヤポンディングして組立てるのである(IW
I図(f))。
After that, in exactly the same manner as in the conventional example, the divided chips are removed from the reinforcing flat plate 3, and attached to the heat dissipation pedestal 7 by soldering or the like on the metal plating layer 5 side, and The input and output pads on the FET forming surface 2 of the chip and the input and output bonding areas 8 and 10 on the external circuit forming board 8 are connected to bonding wires 11 such as gold wires and aluminum wires, respectively.
It is assembled by wire bonding (IW
Figure I (f)).

なお、前記実施例方法においては、チップ分割エツチン
グのための開口部を、レジストの選択的な露光、現像と
、化学エツチング、ドライエツチングなどにより形成さ
せるようにしているが、これに代えてその他のマスク層
2例えばシリコン酸化膜、窒化膜などの絶縁膜を用い、
金属メッキ層をエツチングマスクとして、反応性イオン
エツチング(RIE)などにより、金属メッキ層間のス
リット下の絶縁膜のみを選択的に除去することで、同様
に微細開口部を形成させることができる。
In the method of the above embodiment, the openings for chip division etching are formed by selective exposure and development of the resist, chemical etching, dry etching, etc. However, other methods may be used instead. Mask layer 2: For example, using an insulating film such as a silicon oxide film or a nitride film,
Similarly, fine openings can be formed by selectively removing only the insulating film under the slit between the metal plating layers by reactive ion etching (RIE) or the like using the metal plating layer as an etching mask.

また前記実施例方法では、高出力GaAs−FETに適
用する場合について述べたが、その他のチップ分割をな
す素子構成9例えば高出力シリコンFETなどに適用し
ても同様な効果を得られることは勿論である。
Furthermore, in the above embodiment method, the case where it is applied to a high-power GaAs-FET has been described, but it goes without saying that the same effect can be obtained even if it is applied to other chip-divided element configurations 9, such as a high-power silicon FET. It is.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明方法によれば、高出力電界
効果トランジスタの製造に際し、放熱用金属メッキ暦を
エツチングマスクにして、基板チップ分割のためのエツ
チング用微細開口部を形成させ、この開口部を通してチ
ップ分割させるようにしたから、基板に対する金属メッ
キ層の張り出し量を効果的、かつ実質的に抑制でき、こ
れによって素子の入出力直列インピーダンスを低減し得
られ、このため装置の入出力整合が容易になり、広帯域
設計が可能で、しかも優れた高周波特性の高出力電界効
果トランジスタを提供できるものである。
As detailed above, according to the method of the present invention, when manufacturing a high-output field effect transistor, a heat-dissipating metal plating pattern is used as an etching mask to form fine etching openings for dividing the substrate chips. Since the chip is divided through the parts, the amount of overhang of the metal plating layer relative to the substrate can be effectively and substantially suppressed, thereby reducing the input/output series impedance of the device, thereby improving the input/output matching of the device. Accordingly, it is possible to provide a high-output field effect transistor with excellent high-frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくe)はこの発明に係る半導体装置
の製造方法の一実施例によるプロセスフロー図であり、
また第2図(a)ないしくf)は同上従来例方法による
プロセスフロー図でアル。 1・・・・GaAs基板(半導体基板)、2・・・・F
E丁影形成面能動部)、3・・・・補強平板、4・・・
・下地金層、5・・・・金属メッキ層、6・・・・レジ
ストパターン(マスク層)、7・・・・放熱用の台座、
8・・・・外部回路形成基板、8,10・・・・入力、
出力ポンディングエリヤ、11・・・・ポンディングワ
イヤ、12・・・・スリット、13・・・・開口部。 代理人  大  岩  増  雄 第1図
FIGS. 1(a) to 1(e) are process flow diagrams according to an embodiment of the method for manufacturing a semiconductor device according to the present invention,
Further, FIGS. 2(a) to 2(f) are process flow diagrams according to the conventional method described above. 1...GaAs substrate (semiconductor substrate), 2...F
E-cho shadow forming surface active part), 3... Reinforcement flat plate, 4...
・Base gold layer, 5...Metal plating layer, 6...Resist pattern (mask layer), 7...Pedestal for heat dissipation,
8... External circuit forming board, 8, 10... Input,
Output bonding area, 11... bonding wire, 12... slit, 13... opening. Agent Masuo Oiwa Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に表面能動部、および放熱用の裏面金
属メッキ層を形成させた高出力電界効果トランジスタな
どの半導体装置の製造方法であつて、前記半導体基板の
裏面に、各チップ毎の表面能動部を区分する額縁状のマ
スク層を形成させ、かつ前記各チップに対応する金属メ
ッキ層を、隣接層間に微細なスリットを残してそれぞれ
選択的に形成する工程と、前記金属メッキ層をエッチン
グマスクに用い、前記スリット下のマスク層を選択的に
エッチングして開口部を形成する工程と、この開口部を
通して前記半導体基板を各チップ毎に分割する工程とを
含み、チップ分割後の半導体基板に対する金属メッキ層
の張り出し量を低減させたことを特徴とする半導体装置
の製造方法。
(1) A method for manufacturing a semiconductor device such as a high-output field effect transistor in which a front surface active part and a back surface metal plating layer for heat dissipation are formed on a semiconductor substrate, wherein the surface of each chip is formed on the back surface of the semiconductor substrate. A step of forming a frame-shaped mask layer for dividing the active part, and selectively forming a metal plating layer corresponding to each chip, leaving fine slits between adjacent layers, and etching the metal plating layer. The method includes a step of selectively etching a mask layer under the slit using a mask to form an opening, and a step of dividing the semiconductor substrate into each chip through the opening. A method for manufacturing a semiconductor device, characterized in that the amount of overhang of a metal plating layer is reduced.
(2)各チップ毎の表面能動部を額縁状のレジスト層に
より区分させ、このレジスト層を金属メッキ層のマスク
で露光、現像させてマスク層としたことを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(2) The surface active portion of each chip is divided by a frame-shaped resist layer, and this resist layer is exposed and developed using a mask of a metal plating layer to form a mask layer. A method for manufacturing a semiconductor device according to section 1.
(3)額縁状のマスク層をシリコン酸化膜、シリコン窒
化膜などの絶縁膜により形成させたことを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the frame-shaped mask layer is formed of an insulating film such as a silicon oxide film or a silicon nitride film.
JP1780185A 1985-01-30 1985-01-30 Manufacture of semiconductor device Pending JPS61174723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1780185A JPS61174723A (en) 1985-01-30 1985-01-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1780185A JPS61174723A (en) 1985-01-30 1985-01-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61174723A true JPS61174723A (en) 1986-08-06

Family

ID=11953819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1780185A Pending JPS61174723A (en) 1985-01-30 1985-01-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61174723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092890B2 (en) * 2002-11-27 2006-08-15 Freescale Semiconductor, Inc. Method for manufacturing thin GaAs die with copper-back metal structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092890B2 (en) * 2002-11-27 2006-08-15 Freescale Semiconductor, Inc. Method for manufacturing thin GaAs die with copper-back metal structures

Similar Documents

Publication Publication Date Title
US5045503A (en) Microwave monolithic integrated circuit with heat radiating electrode
JPH06310547A (en) Semiconductor device and manufacture thereof
JP2003007706A (en) Manufacturing method of semiconductor device
JPS61174723A (en) Manufacture of semiconductor device
JPH0732257B2 (en) Monolithic semiconductor structure
JPH02177342A (en) Tape for mounting integrated circuit
JPH06120294A (en) Compound semiconductor device, production and mounting method thereof
JPH06326330A (en) Semiconductor device and its manufacture
US11521928B2 (en) Reducing stress cracks in substrates
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPH06334197A (en) Semiconductor device and manufacture
JPH04335550A (en) Manufacture of semiconductor device
JPH0362930A (en) Manufacture of semiconductor device
JPS6179261A (en) Manufacture of semiconductor device
KR100311463B1 (en) Method for manufacturing plated heat sink
JPH04124822A (en) Manufacture of semiconductor device
JP2697683B2 (en) Semiconductor device and manufacturing method thereof
JP3302811B2 (en) Microwave semiconductor device
JPS63140556A (en) Semiconductor device
KR950003237B1 (en) Semiconductor device
JPH07120643B2 (en) Semiconductor device and manufacturing method thereof
JPS6177369A (en) Manufacture of semiconductor device
JPS60111475A (en) Semiconductor device and manufacture thereof
JPH08227959A (en) Lead frame and its manufacture
JPH0443416B2 (en)