JPS61174677A - Manufacture of diode - Google Patents

Manufacture of diode

Info

Publication number
JPS61174677A
JPS61174677A JP1473485A JP1473485A JPS61174677A JP S61174677 A JPS61174677 A JP S61174677A JP 1473485 A JP1473485 A JP 1473485A JP 1473485 A JP1473485 A JP 1473485A JP S61174677 A JPS61174677 A JP S61174677A
Authority
JP
Japan
Prior art keywords
electrode
active layer
substrate
wafer
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1473485A
Other languages
Japanese (ja)
Inventor
Hiroshi Morikawa
博司 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1473485A priority Critical patent/JPS61174677A/en
Publication of JPS61174677A publication Critical patent/JPS61174677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Abstract

PURPOSE:To facilitate handling of wafers and diminish dispersion in junction diamters, by making an electrode on an active layer formed on a backward conductiontype substrate and applying mesa-etching to the active layer through the mask of this electrode. CONSTITUTION:A P-type low resistance substrate 1 is laminated with an N-type high concentration layer 2 and an N-type low concentration layer 3 and finally with an N-type high concentration layer 4 for contact to form an active layer, on which an homic electrode 5 is formed. Using the electrode 5 as a mask, the active layer is mesa-etched and the wafer is stuck onto a quartz plate 8 with photoresist 7, the substrate 1 out. After subjected to lapping and etching to make the substrate 1 sufficiently thin, an electrode 6 is formed on the surface of the substrate 1. Just as stuck to the quartz plate 8, the wafer is then subjected to edge cutting and chip isolation. Thus as well processes including electrode formation are conducted in such a condition that a wafer is thick or stuck to a quartz plate, the wafer is easily handled. In addition, as mesa- etching is applied to a thin, active layer, dispersion in junction diameters becomes smaller.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発F!Aは、ダイオード、特にマイクロ波帯において
、高効率、高出力を有する固体発振源としてのリード型
インバットダイオードの製造方法に関する。
[Detailed description of the invention] [Industrial application field] The original F! A relates to a method for manufacturing a diode, particularly a leaded invat diode as a solid-state oscillation source having high efficiency and high output in the microwave band.

〔従来の技術〕[Conventional technology]

リード型インバットダイオードの不純物濃度分布は接合
部で不純物濃度が急碌にかわる蔑階段分布をしておシ、
第5図に示すように、N型低抵抗基板9にN型紙濃度層
3.N型高濃度層2及びP型高濃度層10を順次エピタ
キシャル成長し、然る後基板9を数10μmの厚さにし
、表裏の1極5.6を形成した後、基板9(!!l(N
側)よシエッチングを行ない、@6図に示すチップを得
ていた。
The impurity concentration distribution of a leaded invat diode has a stepwise distribution where the impurity concentration rapidly changes at the junction.
As shown in FIG. 5, an N-type paper concentration layer 3. The N-type high concentration layer 2 and the P-type high concentration layer 10 are epitaxially grown in sequence, and then the substrate 9 is made to have a thickness of several tens of μm, and one pole 5.6 is formed on the front and back sides, and then the substrate 9 (!!l( N
After etching, the chip shown in Figure @6 was obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来の製造法において、基板9側からメサエッチ
ングする理由は接合部側面への電界集中を避けるためで
、このようくしないで、もしP型高濃度層10側からメ
サエッチングを行なうと接合部側面への電界集中が起こ
シ特性が著しくそこなわれる。しかしながらこのメサエ
ッチングによシ接合径が決ま少、またチップの分離が行
なわnる為、ウェハーの厚さを先述のように前もって非
常に薄くしなければならず、その後の工程におけるウェ
ハーの取扱いが困難であるという欠点がある。またウェ
ハー厚の少しのばらつきによって、接合径が大きくばら
つくという欠点もある。
In the conventional manufacturing method described above, the reason why mesa etching is performed from the substrate 9 side is to avoid concentration of electric field on the side surface of the junction.If mesa etching is performed from the P-type high concentration layer 10 side without doing this, the junction Electric field concentration on the side surfaces of the parts occurs and the characteristics are significantly impaired. However, since the mesa etching method only determines the junction diameter and separates the chips, the wafer must be made very thin in advance as mentioned above, and the handling of the wafer in the subsequent process is difficult. The disadvantage is that it is difficult. Another drawback is that small variations in wafer thickness can cause large variations in bonding diameter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、活性層と逆導電型の基板を用い、活性
層上に電極を形成した後、この電極をマスクとして活性
層をメサエッチングするダイオ−の製造方法を得る。
According to the present invention, a method for manufacturing a diode is obtained in which a substrate of conductivity type opposite to that of the active layer is used, an electrode is formed on the active layer, and then the active layer is mesa-etched using the electrode as a mask.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例における、不純物濃度分布を
示した図である。この不純物濃度分布をしたリード型イ
ンバットダイオードは、まず第2図に示されているよう
に、P型低抵抗基板1に活性層がN型高濃度層2、N型
低濃度層3の順に従来とは逆の順で底長さn、最後にコ
ンタクト用のN型高濃度層4が形成さnる。こnらの層
2,3゜4の厚さの合計は10(Ezのリードインノミ
ットダイオードにおいても高々数μmである。N型高濃
度層4の表面に例えばAuGe−AuN1−TニーPt
−Auのオーミック電極5を形成した後、これをマスク
として活性層をメサエッチングする。第2図に示さnる
ように、接合部側面の形状については従来と同じであう
、電界集中は起こらない0また活性層のメサエッチング
の量は活性層の厚さ程度でよく、このためtlぼ電極径
=接合径となシ接合径のウェハー内におけるばらつきは
非常に小さくなる。次に第3図に示すようにウェハーを
基板1側を表にしてフォトレジスト7で石英板8に貼シ
付け、研磨、エツチングによシ基板1を充分薄くした後
、例えばTi−Pt−Auのもう一方の電極6を形成す
る。続いて石英板8に貼シ付けた状態のまま、エッチカ
ットによりチップ分離を行ない、第4図に示すチップを
得る。
FIG. 1 is a diagram showing impurity concentration distribution in one embodiment of the present invention. A lead-type invat diode with this impurity concentration distribution is first constructed of a P-type low-resistance substrate 1, an N-type high-concentration layer 2, an N-type low-concentration layer 3, and an active layer, as shown in FIG. In the reverse order from the conventional method, a base length n is formed, and finally an N-type high concentration layer 4 for contact is formed n. The total thickness of these layers 2, 3° 4 is 10 μm (even in an Ez lead-in-nomite diode, at most several μm. For example, AuGe-AuN1-T knee Pt is formed on the surface of the N-type high concentration layer 4.
After forming the -Au ohmic electrode 5, the active layer is mesa-etched using this as a mask. As shown in Fig. 2, the shape of the side surface of the junction is the same as the conventional one, no electric field concentration occurs, and the amount of mesa etching of the active layer can be approximately the same as the thickness of the active layer. When electrode diameter=junction diameter, variations in junction diameter within a wafer become extremely small. Next, as shown in FIG. 3, the wafer is pasted on a quartz plate 8 with a photoresist 7 with the substrate 1 side facing up, and after the substrate 1 is sufficiently thinned by polishing and etching, for example, Ti-Pt-Au is used. The other electrode 6 is formed. Subsequently, the chips are separated by etch cutting while still attached to the quartz plate 8 to obtain the chips shown in FIG. 4.

以上の工程において、電極形成等すべての工程はウェハ
ーが厚い状態あるいは石英板に貼シ付けらnた状態で行
なわれるので従来のようにウェハー割n等、薄いウェハ
ー取り扱い上の問題は発生しない。また、前述のように
メサエッチは薄い活性層に施されるので、接合径のバラ
ツキはきわめ□て少く、所定の特性を容易に得ることが
できる。
In the above steps, all steps such as electrode formation are performed with the wafer thick or attached to a quartz plate, so that problems associated with handling thin wafers, such as wafer splitting, do not occur as in the prior art. Further, as mentioned above, since the mesa etch is performed on a thin active layer, the variation in the bonding diameter is extremely small, and predetermined characteristics can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によnば、活性層とは逆の
導電型の基板を用いる事により、その後の工程において
ウェハーが厚い状態で取シ扱えて取り扱いが容易であシ
、シかも接合径のばらつきが非常に小さくなるという利
点を有する。
As explained above, according to the present invention, by using a substrate of a conductivity type opposite to that of the active layer, the wafer can be handled in a thick state in subsequent steps, making it easier to handle. This has the advantage that the variation in bond diameter is extremely small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるダイオードの不純物
濃度分布を示した図で、lrZ図、第3図および第4図
は本発明の一実施例によるメサエッチング後、石英板貼
付後、チップ分離後のそnぞnのチップ断面図であるo
第5図は従来のダイオードの不純物濃度分布を表わす図
で、第6図はそのチップ断面図である。 1・・・・・・P型低抵抗基板、2・・・・・・N型高
濃度層、3・・・・・・N型低濃度層、4・・・・・・
N型コ/タクト用高濃度層、5・・・・・・表面電極、
6・・・・・・裏面電極、7・・・・・・フォトレジス
ト、8・・・・・・石英板、9・旧・・N型低抵抗基板
、10・・・・・・P型高濃度層。 第1図 ノザユ1.テ復/)新面 M5 Z 図
FIG. 1 is a diagram showing the impurity concentration distribution of the diode in one embodiment of the present invention, and the lrZ diagram, FIG. 3, and FIG. This is a cross-sectional view of the chip after separation.
FIG. 5 is a diagram showing the impurity concentration distribution of a conventional diode, and FIG. 6 is a cross-sectional view of its chip. 1... P-type low resistance substrate, 2... N-type high concentration layer, 3... N-type low concentration layer, 4...
N-type co/tact high concentration layer, 5... surface electrode,
6... Back electrode, 7... Photoresist, 8... Quartz plate, 9... Old... N type low resistance substrate, 10... P type High concentration layer. Figure 1 Nozayu 1. Tefu/) New side M5 Z diagram

Claims (1)

【特許請求の範囲】[Claims]  一導電型低抵抗基板に他の導電型の活性層をエピタキ
シャル成長する工程と、該活性層上に電極を形成する工
程と、該電極をマスクとし所定の接合径に前記活性層を
メサエッチングする工程とを含むことを特徴とするダイ
オードの製造方法。
A process of epitaxially growing an active layer of one conductivity type on a low resistance substrate of another conductivity type, a process of forming an electrode on the active layer, and a process of mesa-etching the active layer to a predetermined junction diameter using the electrode as a mask. A method for manufacturing a diode, comprising:
JP1473485A 1985-01-29 1985-01-29 Manufacture of diode Pending JPS61174677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1473485A JPS61174677A (en) 1985-01-29 1985-01-29 Manufacture of diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1473485A JPS61174677A (en) 1985-01-29 1985-01-29 Manufacture of diode

Publications (1)

Publication Number Publication Date
JPS61174677A true JPS61174677A (en) 1986-08-06

Family

ID=11869352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1473485A Pending JPS61174677A (en) 1985-01-29 1985-01-29 Manufacture of diode

Country Status (1)

Country Link
JP (1) JPS61174677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158697A (en) * 2007-12-26 2009-07-16 Sharp Corp Bypass diode for solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158697A (en) * 2007-12-26 2009-07-16 Sharp Corp Bypass diode for solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH10275936A (en) Method for manufacturing semiconductor light-emitting element
JPS60201666A (en) Semiconductor device
JPH03165577A (en) Semiconductor device and its manufacture
WO1989006444A2 (en) Vertical power transistor and fabrication methods
JPS6159852A (en) Manufacture of semiconductor device
JP3344056B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JPH0553299B2 (en)
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
JPS61174677A (en) Manufacture of diode
JP2667863B2 (en) Manufacturing method of bipolar transistor
JP2681964B2 (en) Manufacturing method of semiconductor device for DHD having NPN structure
JP2606664B2 (en) Method for manufacturing mesa-type bipolar transistor
JPS5842631B2 (en) Method for manufacturing junction gate field effect transistor
JP2835398B2 (en) Manufacturing method of field effect transistor
JPH11204806A (en) Transverse trigger type diode
JP2862705B2 (en) Heterojunction semiconductor device and method of manufacturing the same
JPH0294632A (en) Manufacture of semiconductor device
JPS59126676A (en) Field effect type transistor
JPS61121362A (en) Semiconductor element
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPS6342177A (en) Manufacture of semiconductor element
JPS6128224B2 (en)
JPH104029A (en) Thin film capacitor and method for manufacturing the same
JPH0226083A (en) Planar photodetector and manufacture of same
JPS63234565A (en) Pin diode