JPS61174294A - Ferroelectric liquid crystal composition - Google Patents

Ferroelectric liquid crystal composition

Info

Publication number
JPS61174294A
JPS61174294A JP1359085A JP1359085A JPS61174294A JP S61174294 A JPS61174294 A JP S61174294A JP 1359085 A JP1359085 A JP 1359085A JP 1359085 A JP1359085 A JP 1359085A JP S61174294 A JPS61174294 A JP S61174294A
Authority
JP
Japan
Prior art keywords
phase
liquid crystal
optically active
spontaneous polarization
smectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1359085A
Other languages
Japanese (ja)
Other versions
JPH0717904B2 (en
Inventor
Yutaka Nakagawa
豊 中川
Tetsuo Matsumoto
哲郎 松本
Tomonori Korishima
友紀 郡島
Ryutaro Takei
武居 龍太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60013590A priority Critical patent/JPH0717904B2/en
Publication of JPS61174294A publication Critical patent/JPS61174294A/en
Publication of JPH0717904B2 publication Critical patent/JPH0717904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled liquid crystal compsn. containing an optically active compd. which produces a counterclockwise spiral and an optically active compd. which produces a clockwise spiral, and having a higher pitch of the spiral without decrease in spontaneous polarization. CONSTITUTION:The liquid crystal compsn. contains an optically active compd. of formulae I, II, etc. and an optically active compd. of formula III or IV (where A is of formula V) which produce a counterclockwise spiral and a clockwise spiral, respectively, when added to cholesteric or nematic phase. In a ferroelectric smectic phase, these optically active compds. show spontaneous polarization (60) which has a polarity in the same direction as a direction (10) perpendicular to smectic layer and a tilting direction (50) of molecule from the perpendicular line direction. EFFECT:Enable realizing low voltage driving, high speed response or uniform orientation control.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、強誘導性スメクチック液晶組成物に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to strongly inductive smectic liquid crystal compositions.

[従来の技術] 近年、強誘導性液晶を用いた電気光学装置が注目を集め
ている。(例えば、N、A、flark、S、T。
[Prior Art] In recent years, electro-optical devices using strongly inductive liquid crystals have been attracting attention. (For example, N, A, flakk, S, T.

Lagerwall、Appl、Phys、Lett、
3B、899(1980) )強誘導性液晶は、カイラ
ルスメクチック−〇相、カイラルスメクチック−H相等
の液晶相において、自発分極を持つ、すなわち強誘導性
を示すことにより従来から表示素子等に用いられてきた
ネマチック相あるいはコレステリック相とは異なる特徴
を持つ。
Lagerwall, Appl, Phys, Lett,
3B, 899 (1980)) Strongly inductive liquid crystals have been traditionally used in display elements, etc. because they have spontaneous polarization, that is, exhibit strong inductivity, in liquid crystal phases such as chiral smectic-〇 phase and chiral smectic-H phase. It has characteristics different from the nematic phase or cholesteric phase.

強誘導性スメクチック相としてはいくつかの相が知られ
ているが、光シヤツター等の用途への応用が期待されて
いる相はカイラルスメクチック相−C相(以下SmCψ
と称す)であるので以下の説明はSmC”相の例につい
て行なう。
Several phases are known as strongly inductive smectic phases, but the phase that is expected to be applied to applications such as optical shutters is the chiral smectic phase-C phase (hereinafter referred to as SmCψ
Therefore, the following explanation will be made regarding the example of the SmC'' phase.

SmC★相において、液晶分子は層構造を成し、その分
子長軸方向は、層垂線方向に対して傾斜した配向をとる
。また、通常分子構造中に不斉炭素を持った光学活性化
合物を少なくとも含み、分子の傾斜方向は層毎にずれた
らせん構造を持っている。さらにSmG”相においては
、分子長軸方向に垂直で、かつ層平面に平行な方向に自
発分極を持ち、外部電界に対し自発分極の極性と電界と
が整合するように分子の配列方向が変化し、光学的変化
を生起することができる。この電気光学効果の特徴とし
て、従来のネマチック液晶を用いた効果に比較して10
〜1000倍もの高速応答であること、あるいはメモリ
ー性を示すこと等が見い出されており、光シヤツター素
子、ドツトマトリクス表示素子等へカ靴用が期待さ・れ
ている。しかしながら、これらの優れた特徴に対し、数
多くの技術的問題も持っている。
In the SmC* phase, liquid crystal molecules form a layered structure, and the long axis direction of the molecules is oriented obliquely with respect to the layer perpendicular direction. Further, it usually contains at least an optically active compound having an asymmetric carbon in its molecular structure, and has a helical structure in which the direction of inclination of the molecules is shifted from layer to layer. Furthermore, the SmG" phase has spontaneous polarization perpendicular to the long axis direction of the molecules and parallel to the layer plane, and the orientation direction of the molecules changes so that the polarity of spontaneous polarization matches the electric field with respect to the external electric field. This electro-optic effect is characterized by a 10% improvement in the effect compared to the effect using conventional nematic liquid crystals.
It has been found that the response is up to 1,000 times faster, or that it exhibits memory properties, and is expected to be used in optical shutter devices, dot matrix display devices, etc. However, despite these excellent features, there are also many technical problems.

最大の問題は、素子作成が難しいことである。SmC”
液晶は、従来から使用されてきたネマチック液晶に比較
して、より結晶に近い相であり、基板上に均一に配列さ
せることは、ilt結晶成長に類する困難をもっている
The biggest problem is that it is difficult to create devices. SmC”
Liquid crystal has a phase closer to a crystal than conventionally used nematic liquid crystal, and it is difficult to arrange it uniformly on a substrate, similar to ILT crystal growth.

本発明者等は種々検討した結果、液晶材料のラセンピッ
チを長くすること、さらに強誘導性スメクチック液晶相
温度よりも高温域にコレステリック相を持つ液晶が配向
を均一化することに有効であることを見い出した。また
ピッチの長さは、少なくとも基板間隙の4倍以十がより
好ましい。
As a result of various studies, the present inventors have found that increasing the helical pitch of the liquid crystal material and liquid crystal having a cholesteric phase at a temperature higher than the ferroconductive smectic liquid crystal phase temperature are effective in making alignment uniform. I found it. Further, the length of the pitch is more preferably at least four times the substrate gap or more.

かかる目的に対して、左らせん化合物、と右らせん化合
物とを共存させ、ピッチ補償組成を構成することにより
、長ピツチ化を余る方法が既にコレステリック材料では
知られている。一方SmC”液晶素子を作成する際、自
発分極の大きさは、駆動電圧を低下すること、あるいは
応會j速度をVくするために重要な物性である。かかる
観点からSmC”液晶組成としてはラセンピッチが充分
長く、かつ自発分極の大きい性質を持つことが好ましい
。そこで、左らせん化合物と右らせん化合物とを共存さ
せるピッチ補償の試みが行なわれた。
For this purpose, a method is already known for cholesteric materials in which a left-handed helical compound and a right-handed helical compound are made to coexist to form a pitch compensation composition, thereby increasing the length of the pitch. On the other hand, when creating an SmC" liquid crystal element, the magnitude of spontaneous polarization is an important physical property in order to lower the driving voltage or increase the response speed to V. From this point of view, as for the SmC" liquid crystal composition, It is preferable that the helical pitch is sufficiently long and the spontaneous polarization is large. Therefore, attempts were made to achieve pitch compensation in which left-handed helical compounds and right-handed helical compounds coexist.

その結果長ピツチ化は可能だが、反面自発分極が小さく
なるという実用性の乏しい液晶となった例が報告されて
いる。例えば、光学活性化合物として6体と文体とを共
存させれば、ラセン化が可能である。しかしながら自発
分極も同時に零になるという矛盾を生ずる。
As a result, it is possible to increase the pitch length, but on the other hand, it has been reported that the spontaneous polarization becomes small, resulting in a liquid crystal that is not practical. For example, helicalization is possible if hexagonal and text coexist as optically active compounds. However, a contradiction arises in that the spontaneous polarization also becomes zero at the same time.

[発明の解決しようとする問題点] 従って左らせん化合物と右らせん化合物とを共存させ、
長ピツチ化すると同時に自発分極の大きさに悪影響しな
い方法が求められていた。
[Problems to be solved by the invention] Therefore, a left helical compound and a right helical compound are made to coexist,
There was a need for a method that would allow for longer pitches while at the same time not adversely affecting the magnitude of spontaneous polarization.

[問題点を解決するための手段] 本発明者等はかかる問題を解決すべく検討した結果、光
学活性化合物の種類により、自発分果、らせんの方向と
自発分極の極性とは各々独立の物性であり、適切な組合
せを選択することにより、前述の問題が解消されること
を見い出した。
[Means for Solving the Problems] As a result of studies to solve the problems, the present inventors found that depending on the type of optically active compound, the physical properties of spontaneous derivation, the direction of the helix, and the polarity of spontaneous polarization are independent of each other. It has been found that the above-mentioned problem can be solved by selecting an appropriate combination.

すなわち、本発明はコレステリック相、あるいはネマチ
ック相に添加した場合において左らせんを生じる光学活
性化合物の少なくとも1種  。
That is, the present invention provides at least one optically active compound that produces a left-handed helix when added to a cholesteric phase or a nematic phase.

と、右らせんを生じる光学活性化合物の少なくとも1種
を含み、かつ該光学活性化合物の強誘電性スメクチック
相における自発分極は、スメクチック層垂線方向と、該
層垂線方向からの分子のチルト方向とに対し、同一方向
の極性を有することを特徴とする強誘電性スメクチック
液晶組成物を提供するものであり、このように構成する
ことにより自発分極に悪影響なく、長ピツチ化すること
ができる。
and contains at least one optically active compound that produces a right-handed helix, and the spontaneous polarization in the ferroelectric smectic phase of the optically active compound is in the direction perpendicular to the smectic layer and in the tilt direction of the molecule from the direction perpendicular to the layer. On the other hand, we provide a ferroelectric smectic liquid crystal composition characterized by having polarities in the same direction, and by configuring it in this way, it is possible to increase the pitch length without adversely affecting the spontaneous polarization.

第1図はらせん方向(70〜73)、層垂線方向(10
〜13)、分子のチルト方向(50〜53)および自発
分極の極性(60〜63)を模式的に示した(d)のい
ずれかに分類される。コレステリック相におけるらせん
方向及びSmC:”層における自発分極方向によって、
第1図(a)において、層垂線方向(10)、チルト方
向(50)および自発分極の極性(60)を左手系と仮
定すれば、(b)も左手系、一方(c) 、 (d)は
右手系の性質を示す。
Figure 1 shows the spiral direction (70-73), the layer normal direction (10
-13), and (d), which schematically shows the tilt direction of the molecule (50-53) and the polarity of spontaneous polarization (60-63). Helical direction in the cholesteric phase and SmC: “Depending on the spontaneous polarization direction in the layer,
In Fig. 1(a), if we assume that the layer perpendicular direction (10), the tilt direction (50), and the polarity of spontaneous polarization (60) are left-handed, then (b) is also left-handed, while (c) and (d ) indicates right-handed properties.

第1図において好ましい組合せは、(a)と(b)もし
くは(c)と(d)であり、らせん方向が逆であり、[
1発分極が同一極性となる。一方、(a)〜(d)それ
ぞれ単独での系では長ピツチ化を実現する手段が光学活
性化合物の添加濃度を小さくすることしかなく、自発分
極の大きさはほぼla度に比例して小さくなる。また、
(a)と(c)あるいは(b)と(d)の組合せでは、
長ピツチ化は可能だが、自発分極の大きさに悪影響があ
る。
In FIG. 1, preferred combinations are (a) and (b) or (c) and (d), in which the helical directions are opposite, [
One shot polarization becomes the same polarity. On the other hand, in systems in which each of (a) to (d) is used alone, the only way to achieve a long pitch is to reduce the concentration of the optically active compound added, and the magnitude of the spontaneous polarization is small approximately in proportion to the la degree. Become. Also,
In the combination of (a) and (c) or (b) and (d),
It is possible to lengthen the pitch, but it has a negative effect on the magnitude of spontaneous polarization.

強誘導性スメクチック相を有する光学活性化合物として
は次のようなものがある。
Examples of optically active compounds having a strongly inductive smectic phase include the following.

以下の例でR傘は不斉炭素又はハロゲンを有するアルキ
ル基又はア竹□□□キシ基を示し;′、Rは直鎖アルキ
ル基又は直鎖アルコキシ基を示し、一つの化合物に同一
のR’、Rが示されていてもそれらは同一の基とは限ら
ない。
In the following examples, the R umbrella represents an asymmetric carbon or halogen-containing alkyl group or a bamboo □□□oxy group; ', R are not necessarily the same group.

又、」−述のような強誘導性スメクチック相を示す物質
以外の光学活性物質でも、他のスメクチックの液晶を加
えてその特性を改善して用い非液晶の液晶添加物が使用
でき、例えば以下のようなものがある。
In addition, non-liquid crystal additives can be used for optically active substances other than substances that exhibit a strongly inductive smectic phase as described above by adding other smectic liquid crystals to improve their properties. There is something like.

強誘導性スメクチック相はいくつか知られているが、応
答性等の実用的性質を考慮すると5tnC◆相が好まし
い。
Although several strongly inductive smectic phases are known, the 5tnC◆ phase is preferred in consideration of practical properties such as responsiveness.

ま剋光学活性化゛合物の濃度は自発分極の大きさに影響
するために、少なくとも1重量%以上の総濃度が好まし
い。
Since the concentration of the optically active compound influences the magnitude of spontaneous polarization, a total concentration of at least 1% by weight is preferred.

さらに、配向制御のより容易な条件どして、SmG”相
より高温域にコし・ステリック相を示す組成が好ましく
、ラビング法等の従来ネマチック液晶に用いられた手法
が使用できる。また2枚の基板間に保持されて使用され
る際に、基板間隙に対して、少なくとも4倍以上のピッ
チであることが好ましい。基板間隙の制御は、基板の平
滑度あるいは短絡の生じやすさ等を考慮するとlpm以
下では実用性が無い。従って少なくともコレステリック
相においては4pm以上のピッチを示すことが好ましい
Furthermore, under conditions such as easier alignment control, a composition that exhibits a stiff/steric phase in a higher temperature range than the SmG'' phase is preferable, and methods conventionally used for nematic liquid crystals such as rubbing methods can be used. When used while being held between two substrates, the pitch is preferably at least four times the substrate gap.The substrate gap is controlled by taking into account the smoothness of the substrates, the susceptibility to short circuits, etc. If the pitch is less than 1pm, it is not practical.Therefore, it is preferable that at least the cholesteric phase exhibits a pitch of 4pm or more.

[作 用] 第1表はらせん方向と自発分極の極性の向きによって分
類された光学活性化合物の例である。第1表において、
それ自信が5llG”相を示す化合物については単独で
自発分極の方向を知ることができたが、かかる相を示さ
ない場合はSmC相を示す1ボとして に5〜30重量%を添加し、透明電極基板間に挟持し、
電界を印加し、電界の向きと分子の配列方向を調べるこ
とで決定した。なお自発分極の極性に関しては既知の定
義が無いために通常多用される(S+)−2−メチルブ
チル−p−(p−n−デシロキシへンジリデンアミノ)
シンナメート(化合物Mail)を左と定義した。
[Function] Table 1 shows examples of optically active compounds classified according to the helical direction and the polar direction of spontaneous polarization. In Table 1,
For compounds that show a 5llG" phase, we were able to determine the direction of spontaneous polarization by themselves; however, in cases where such a phase is not shown, 5 to 30% by weight of the compound that shows an SmC phase is added to make the crystal clear. Sandwiched between electrode substrates,
This was determined by applying an electric field and examining the direction of the electric field and the orientation of the molecules. There is no known definition regarding the polarity of spontaneous polarization, so (S+)-2-methylbutyl-p-(p-n-desyloxyhenzylideneamino) is commonly used.
Cinnamate (compound Mail) was defined as left.

また、らせんの方向についても、メルク社製ZLI−1
565等のネマチック液晶に2〜20重量%添加しその
らせんの方向を決定した。
Also, regarding the direction of the helix, ZLI-1 manufactured by Merck & Co.
2 to 20% by weight was added to a nematic liquid crystal such as No. 565, and the direction of the helix was determined.

−7 n ’)− 前述のように、第1表において嬉−シい組み合せは、陽
、旧〜05の化合物群とNo、21〜25の化合物群と
、もしくはM、11〜16の化合物群と歯、31〜34
の化合物群であり、これらの組み合せにおいては自発分
極を互いに打ち消すことなく、らせんピッチを長くする
ことができる。
-7 n') - As mentioned above, the happy combinations in Table 1 are positive, old - 05 compound group and No, compound group 21-25, or M, compound group 11-16. and teeth, 31-34
are a group of compounds, and in these combinations, the helical pitch can be lengthened without mutually canceling out the spontaneous polarizations.

第2表は、本発明による液晶組成物の自発分極およびら
せんピッチを示す。らせん方向、自発分極の極性が共に
右の材料としてNo、01の化合物、一方双方共に左の
材料として陥、22の化合物(5,5重量%)と CRH+106COOGOCb HI3との混合液晶(
以下尚、22Qと略称する)を用いた。自発分極の測定
はSmC”相の上限温度より10°C低い温度で行なっ
た。またピッチのIIIJ定は70℃で行なった。
Table 2 shows the spontaneous polarization and helical pitch of the liquid crystal composition according to the invention. Compound No. 01 is the material with both the helical direction and the polarity of spontaneous polarization on the right, while the compound No. 01 is the material with both the polarities on the left, and a mixed liquid crystal of compound No. 22 (5.5% by weight) and CRH+106COOGOCb HI3 (
(hereinafter abbreviated as 22Q) was used. The measurement of spontaneous polarization was carried out at a temperature 10°C lower than the upper limit temperature of the SmC'' phase. Also, the IIIJ constant of pitch was carried out at 70°C.

第2図は第2表の結果を図示したものである。ピッチが
無限大になる組成があり、かつ自発分極は常に同一極性
である。
FIG. 2 illustrates the results of Table 2. There is a composition in which the pitch is infinite, and the spontaneous polarization is always the same polarity.

第3鑓歯、15(5,、O重星%)と as HI70・coo@oca HI3との混合液晶
(No、150と略称する)と、間、220との混合液
晶の比較例である。第3図に第3表の内容を図示するが
、ピッチを大きくすると同峙に自発分極も小さくなるこ
とがわかる。
This is a comparative example of a mixed liquid crystal (abbreviated as No. 150) of the third tooth, 15 (5, O double star %) and as HI70/coo@oca HI3, and a mixed liquid crystal of as, 220. The contents of Table 3 are illustrated in FIG. 3, and it can be seen that as the pitch increases, the spontaneous polarization also decreases.

第2表 第3表 [発明の効果] 以上の如く本発明は、自発分極の極性の同一である左ら
せんおよび右らせん光学活性化合物を共存させることに
より、自発分極を小さくすることなく、らせんピッチを
長くすることを可能にし、その結果、低電圧駆動、高速
応答あるいは均一な配向制御が実現できる。
Table 2 Table 3 [Effects of the Invention] As described above, the present invention enables the helical pitch to be reduced without reducing the spontaneous polarization by coexisting left helical and right helical optically active compounds with the same polarity of spontaneous polarization. As a result, low-voltage driving, high-speed response, and uniform orientation control can be realized.

また、Sac”相のらせんピッチも同様に長くでき、メ
モリー性の向」二が期待できる。
Furthermore, the helical pitch of the Sac" phase can be similarly increased, and an improvement in memory properties can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の主要概念を示す模式図である。 第2図は本発明による実施例の物性を図にしたものであ
る。 第3図は比較例を図にしたものである。 10.11.12,13 :層垂線方向30.31,3
2,33 :液晶分子 50.51,52.53 :チルト方向Bo、s2.s
2.g3:自発分極方向?0,71,72.73 : 
らせん方向fcl            +d)第2
 図 うU述二ン1z町NO,Q I儂7’!(v量%)第 
3 図 一゛°・。〜      ″。
FIG. 1 is a schematic diagram showing the main concept of the present invention. FIG. 2 is a diagram illustrating the physical properties of an example according to the present invention. FIG. 3 is a diagram of a comparative example. 10.11.12,13: Layer normal direction 30.31,3
2, 33: Liquid crystal molecules 50.51, 52.53: Tilt direction Bo, s2. s
2. g3: Spontaneous polarization direction? 0,71,72.73:
Helical direction fcl +d) second
U statement 2 1z town NO, Q I 7'! (v amount%)th
3 Figure 1゛°・. ~ ″.

Claims (1)

【特許請求の範囲】 1、コレステリック相、あるいはネマチック相に添加し
た場合において左らせんを生じる光学活性化合物の少な
くとも1種と、右らせんを生じる光学活性化合物の少な
くとも1種を含み、かつ該光学活性化合物の強誘電性ス
メクチック相における自発分極は、スメクチック層垂線
方向と、該層垂線方向からの分子のチルト方向とに対し
、同一方向の極性を有することを特徴とする強誘電性ス
メクチック液晶組成物。 2、強誘電性を示す相がカイラルスメクチック−C相で
ある特許請求の範囲第1項記載の強誘電性液晶組成物。 3、光学活性化合物の総濃度が1重量%以上である特許
請求の範囲第2項記載の強誘電性スメクチック液晶組成
物。 4、強誘電性を示すスメクチック相と等方相との間の温
度域にコレステリック相を示す特許請求の範囲第3項記
載の強誘電性液晶組成物。 5、該コレステリック相において、ラセンピッチが4μ
m以上である特許請求の範囲第4項記載の強誘電性液晶
組成物。
[Scope of Claims] 1. At least one optically active compound that produces a left helix when added to a cholesteric phase or a nematic phase, and at least one optically active compound that produces a right helix when added to a cholesteric phase or a nematic phase, and the optically active compound A ferroelectric smectic liquid crystal composition characterized in that the spontaneous polarization in the ferroelectric smectic phase of the compound has polarity in the same direction with respect to the direction perpendicular to the smectic layer and the direction of tilt of molecules from the direction perpendicular to the layer. . 2. The ferroelectric liquid crystal composition according to claim 1, wherein the phase exhibiting ferroelectricity is a chiral smectic-C phase. 3. The ferroelectric smectic liquid crystal composition according to claim 2, wherein the total concentration of optically active compounds is 1% by weight or more. 4. The ferroelectric liquid crystal composition according to claim 3, which exhibits a cholesteric phase in a temperature range between a smectic phase exhibiting ferroelectricity and an isotropic phase. 5. In the cholesteric phase, the helical pitch is 4μ
5. The ferroelectric liquid crystal composition according to claim 4, wherein the ferroelectric liquid crystal composition is at least m.
JP60013590A 1985-01-29 1985-01-29 Ferroelectric liquid crystal composition Expired - Fee Related JPH0717904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013590A JPH0717904B2 (en) 1985-01-29 1985-01-29 Ferroelectric liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013590A JPH0717904B2 (en) 1985-01-29 1985-01-29 Ferroelectric liquid crystal composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5347396A Division JPH08234243A (en) 1996-03-11 1996-03-11 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPS61174294A true JPS61174294A (en) 1986-08-05
JPH0717904B2 JPH0717904B2 (en) 1995-03-01

Family

ID=11837409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013590A Expired - Fee Related JPH0717904B2 (en) 1985-01-29 1985-01-29 Ferroelectric liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH0717904B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250087A (en) * 1985-06-13 1986-11-07 Canon Inc Cholesteric liquid crystal composition
EP0219481A2 (en) * 1985-10-14 1987-04-22 FLC Innovation AB Fast-switching low-temperature ferroelectric liquid crystal mixtures
JPS62205189A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS62205190A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPS63165345A (en) * 1986-12-26 1988-07-08 Chisso Corp Optically active-2-methyl-alkanoates and utilized substance thereof
US4769176A (en) * 1985-01-22 1988-09-06 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Biphenyl esters and liquid crystal materials and devices containing them
US4780240A (en) * 1985-08-02 1988-10-25 Chisso Corporation Liquid crystal composition
US4780242A (en) * 1985-03-14 1988-10-25 Chisso Corporation Halogen-containing, optically active liquid crystal compound and liquid crystal composition containing same
EP0292244A2 (en) * 1987-05-18 1988-11-23 Canon Kabushiki Kaisha Polymeric liquid crystal composition and liquid crystal device
JPH01500856A (en) * 1986-04-03 1989-03-23 イギリス国 smekchitsuk liquid crystal device
US4852977A (en) * 1984-11-13 1989-08-01 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland 19 -hydroxy carboxylic acid derivatives suitable for use in liquid crystal materials and devices
US4874545A (en) * 1986-06-14 1989-10-17 Hoechst Aktiengesellschaft Chiral esters of α-substituted phenylalkanoic acids and mesogenic hydroxy compounds, and their use as a doping substance in liquid crystal phases
US4904409A (en) * 1987-10-09 1990-02-27 Chisso Corporation Optically active-1-(2-halogen-substituted-phenyl)-ethanol and its derivative
US4961876A (en) * 1985-08-26 1990-10-09 Veb Werk Fuer Fernsehelektronik Im Veb Kombinat Mikroelektronik Liquid crystalline ferroelectric derivatives of branched acyclic alpha-chlorocarboxylic acids
US4965018A (en) * 1988-04-06 1990-10-23 Chisso Corporation Optically active pyridylethanol derivative
US4988458A (en) * 1985-09-30 1991-01-29 Hoechst Aktiengesellschaft Liquid crystal phase containing admixtures which effect temperature compensation
EP0603786A2 (en) * 1992-12-23 1994-06-29 Hoechst Aktiengesellschaft Alkyl-substituted hydroquinone derivatives for use in ferro-electric liquid crystal mixtures
JPH08101368A (en) * 1986-04-03 1996-04-16 Uk Government Smectic liquid crystal device
US6267910B1 (en) 1994-04-18 2001-07-31 Nippon Soken, Inc. Antiferroelectric liquid crystal composition
US6573970B1 (en) 1999-07-16 2003-06-03 Nec Corporation Liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538869A (en) * 1978-06-22 1980-03-18 Siemens Ag Liquid crystal cell and driving same
JPS6090290A (en) * 1983-10-05 1985-05-21 Chisso Corp Chiral smectic liquid crystal composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538869A (en) * 1978-06-22 1980-03-18 Siemens Ag Liquid crystal cell and driving same
JPS6090290A (en) * 1983-10-05 1985-05-21 Chisso Corp Chiral smectic liquid crystal composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852977A (en) * 1984-11-13 1989-08-01 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland 19 -hydroxy carboxylic acid derivatives suitable for use in liquid crystal materials and devices
US4769176A (en) * 1985-01-22 1988-09-06 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Biphenyl esters and liquid crystal materials and devices containing them
US5312564A (en) * 1985-03-14 1994-05-17 Chisso Corporation Halogen-containing, optically active liquid crystal compound and liquid crystal composition containing same
US4780242A (en) * 1985-03-14 1988-10-25 Chisso Corporation Halogen-containing, optically active liquid crystal compound and liquid crystal composition containing same
JPS61250087A (en) * 1985-06-13 1986-11-07 Canon Inc Cholesteric liquid crystal composition
US4780240A (en) * 1985-08-02 1988-10-25 Chisso Corporation Liquid crystal composition
US4961876A (en) * 1985-08-26 1990-10-09 Veb Werk Fuer Fernsehelektronik Im Veb Kombinat Mikroelektronik Liquid crystalline ferroelectric derivatives of branched acyclic alpha-chlorocarboxylic acids
US4988458A (en) * 1985-09-30 1991-01-29 Hoechst Aktiengesellschaft Liquid crystal phase containing admixtures which effect temperature compensation
EP0219481A2 (en) * 1985-10-14 1987-04-22 FLC Innovation AB Fast-switching low-temperature ferroelectric liquid crystal mixtures
JPS62205190A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPS62205189A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPH08101368A (en) * 1986-04-03 1996-04-16 Uk Government Smectic liquid crystal device
JPH01500856A (en) * 1986-04-03 1989-03-23 イギリス国 smekchitsuk liquid crystal device
USRE37509E1 (en) 1986-04-03 2002-01-15 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Smectic liquid crystal devices
US4874545A (en) * 1986-06-14 1989-10-17 Hoechst Aktiengesellschaft Chiral esters of α-substituted phenylalkanoic acids and mesogenic hydroxy compounds, and their use as a doping substance in liquid crystal phases
JPS63165345A (en) * 1986-12-26 1988-07-08 Chisso Corp Optically active-2-methyl-alkanoates and utilized substance thereof
EP0292244A2 (en) * 1987-05-18 1988-11-23 Canon Kabushiki Kaisha Polymeric liquid crystal composition and liquid crystal device
US4904409A (en) * 1987-10-09 1990-02-27 Chisso Corporation Optically active-1-(2-halogen-substituted-phenyl)-ethanol and its derivative
US4965018A (en) * 1988-04-06 1990-10-23 Chisso Corporation Optically active pyridylethanol derivative
EP0603786A2 (en) * 1992-12-23 1994-06-29 Hoechst Aktiengesellschaft Alkyl-substituted hydroquinone derivatives for use in ferro-electric liquid crystal mixtures
EP0603786A3 (en) * 1992-12-23 1994-08-17 Hoechst Ag Alkyl-substituted hydroquinone derivatives for use in ferro-electric liquid crystal mixtures.
US6267910B1 (en) 1994-04-18 2001-07-31 Nippon Soken, Inc. Antiferroelectric liquid crystal composition
US6573970B1 (en) 1999-07-16 2003-06-03 Nec Corporation Liquid crystal display device

Also Published As

Publication number Publication date
JPH0717904B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPS61174294A (en) Ferroelectric liquid crystal composition
JPH0581633B2 (en)
JPS61291679A (en) Ferroelectric chiral smectic liquid crystal composition
JP2525139B2 (en) Ferroelectric chiral smectic liquid crystal composition
JPH05500866A (en) LCD switching and display elements
JPS62205189A (en) Liquid crystal display device
JPS62205190A (en) Liquid crystal composition
JPS6222889A (en) Ferroelectric liquid crystal composition for guest-host display element
JPH02265986A (en) Ferroelectric liquid crystal composition and photoswitching element using it
JPS6337186A (en) Liquid crystal composition
JPH07786B2 (en) Ferroelectric liquid crystal composition
JPS6337187A (en) Liquid crystal display device
JPH08234243A (en) Liquid crystal electro-optical device
JPS6337193A (en) Liquid crystal display device
JPS6041108B2 (en) liquid crystal composition
JPH0781143B2 (en) Liquid crystal composition
JPH0745658B2 (en) Liquid crystal composition
JPH09183976A (en) Antiferroelectric liquid crystal composition
JPH02212588A (en) Ferroelectric liquid crystal composition
JP2625027B2 (en) Preparation method of ferroelectric liquid crystal composition
JPH0819409B2 (en) Chiral smectic liquid crystal composition
JPS6337192A (en) Liquid crystal display device
JPH0745659B2 (en) Liquid crystal composition
JP3111610B2 (en) Ferroelectric liquid crystal composition and device
JPS62143030A (en) Ferroelectric liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees