JPS6337186A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS6337186A
JPS6337186A JP61182209A JP18220986A JPS6337186A JP S6337186 A JPS6337186 A JP S6337186A JP 61182209 A JP61182209 A JP 61182209A JP 18220986 A JP18220986 A JP 18220986A JP S6337186 A JPS6337186 A JP S6337186A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
phase
chiral
spontaneous polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61182209A
Other languages
Japanese (ja)
Inventor
Hiroyuki Onishi
博之 大西
Tsuyoshi Kamimura
強 上村
Hisahide Wakita
尚英 脇田
Shiyuuko Ooba
大庭 周子
Isao Oota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61182209A priority Critical patent/JPS6337186A/en
Publication of JPS6337186A publication Critical patent/JPS6337186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain a liquid crystal composition capable of providing a ferroelectric liquid crystal material capable of rapidly responding, showing a liquid crystal phase readily in a wide temperature range including room temperature and containing a novel phenylpyrimidine liquid crystal compound showing nonchiral smectic C phase. CONSTITUTION:The aimed composition containing one or more phenylpyrimidine liquid crystal compounds shown by the formula I [R and R' are alkyl or alkoxy (e.g. C9H19O etc.)]. The aimed liquid crystal material is obtained by adding the composition to a ferroelectric liquid crystal composition comprising a compound shown by formula II, etc., having an extended spiral pitch.

Description

【発明の詳細な説明】 に係わり、特に強誘電性液晶材料に関するものである。[Detailed description of the invention] It particularly relates to ferroelectric liquid crystal materials.

従来の技術 近年液晶表示は、腕時計、電卓等だけでなく映像機器に
も広く使われるようになり、液晶カラーテレビも市場に
出始めている。現在カラー表示用液晶パネルはネマチッ
ク液晶を用いたものがその主流を占めている。しかし、
そのネマチック液晶の緒特性は理想的とは言い難く多く
の問題を含んでいる。強誘電性液晶はその速い応答速度
、メモリー性等ネマチフク液晶にはない緒特性を有して
おりデイスプレィ装置への応用が考えられ多方面から研
究が進められている(オプトロニクス、1983、徹9
)、以下図面をみながら強誘電性液晶について説明する
。第6図は強誘電性液晶分子の模式図である。強誘電性
液晶は通常スメクチツク液晶と呼ばれる層構造を有する
液晶で、液晶分子は層法線方向に対してθだけ傾いた構
造をとっている。また、通常強誘電性液晶分子は、ラセ
ミ体でない光学活性な液晶分子によって構成されている
2. Description of the Related Art In recent years, liquid crystal displays have come to be widely used not only in wristwatches, calculators, etc., but also in video equipment, and liquid crystal color televisions have also begun to appear on the market. Currently, the mainstream color display liquid crystal panels are those using nematic liquid crystals. but,
The characteristics of the nematic liquid crystal are far from ideal and include many problems. Ferroelectric liquid crystals have characteristics that are not found in nematic liquid crystals, such as fast response speeds and memory properties, and are being researched from various angles for potential applications in display devices (Optronics, 1983, Toru 9).
), ferroelectric liquid crystal will be explained below with reference to the drawings. FIG. 6 is a schematic diagram of ferroelectric liquid crystal molecules. A ferroelectric liquid crystal is a liquid crystal having a layered structure, which is usually called a smectic liquid crystal, and the liquid crystal molecules have a structure tilted by θ with respect to the normal direction of the layers. Furthermore, ferroelectric liquid crystal molecules are usually composed of optically active liquid crystal molecules that are not racemic.

第6図に於て、7は液晶分子、8は自発分極、9はCダ
イレクタ−110はコーン、11は層構造、12は層法
線方向、13は傾き角θを示している。
In FIG. 6, 7 is a liquid crystal molecule, 8 is spontaneous polarization, 9 is a C director 110 is a cone, 11 is a layer structure, 12 is a layer normal direction, and 13 is a tilt angle θ.

第6図に示すように、強誘電性液晶分子は自発分極を有
しており、カイラルスメクチックC相に於いては、第6
図の円錐形10(コーン)の外側を自由に動くことがで
きる。層毎に分子長軸の方向は少しだけずれており全体
としてはねじれ構造をとっている。次に強誘電性液晶の
表示原理について述べる。第7図は強誘電性液晶の動作
原理図で有る。第7図(alは電圧無印加の状態、第7
図山)は紙面裏から表方向に電圧を印加した場合、第7
図tc)は逆方向に電圧を印加した場合の動作原理図で
ある。14は層法線に対して分子長軸が+〇度傾いた液
晶分子、15は一θ度傾いた液晶分子、16は紙面表方
向を向いている双極子モーメント、17は紙面裏方向を
向いている双極子モーメント、18は2枚の偏光板の方
向である0強誘電性液晶を透明電極を有したガラス基板
に挟みそのパネルの厚を螺旋ピッチ以下にすると第7図
fatのように螺旋がほどけ層に対して分子が+θ度傾
いた領域と一θ度傾いた領域にわかれる。上下電極間紙
面裏から表方向に電圧を印加することにより第7図(b
lのようにセル全体が+θ度傾いたモノドメインになる
。また、逆電圧を印加すると第7図(C1のようにセル
全体が一θ度傾いたモノドメインになる。
As shown in Figure 6, ferroelectric liquid crystal molecules have spontaneous polarization, and in the chiral smectic C phase, the 6th
It can move freely outside the cone 10 (cone) shown. The direction of the long axis of the molecules deviates slightly from layer to layer, resulting in a twisted structure as a whole. Next, we will discuss the display principle of ferroelectric liquid crystal. FIG. 7 is a diagram showing the operating principle of a ferroelectric liquid crystal. Figure 7 (al is the state with no voltage applied,
(Fig.
Figure tc) is a diagram showing the principle of operation when voltage is applied in the opposite direction. 14 is a liquid crystal molecule whose long axis is tilted by +0 degrees with respect to the layer normal, 15 is a liquid crystal molecule tilted by 1 θ degree, 16 is a dipole moment pointing toward the front of the page, and 17 is a dipole moment facing toward the back of the page. The dipole moment 18 is the direction of the two polarizing plates.If a ferroelectric liquid crystal is sandwiched between glass substrates with transparent electrodes and the thickness of the panel is less than the helical pitch, it will form a spiral as shown in Figure 7 fat. It is divided into a region where the molecules are tilted by +θ degrees and a region where the molecules are tilted by 1θ degrees with respect to the unraveled layer. By applying a voltage from the back side of the paper surface to the front side between the upper and lower electrodes, the
The entire cell becomes a monodomain tilted by +θ degrees as shown in l. Furthermore, when a reverse voltage is applied, the entire cell becomes a monodomain tilted by 1θ degree as shown in FIG. 7 (C1).

従って、電気光学効果による複屈折または2色性を利用
すれば+θ度傾いた2つの状態により明暗を表すことが
できる。
Therefore, by using birefringence or dichroism due to the electro-optic effect, brightness and darkness can be represented by two states tilted by +θ degrees.

強誘電性液晶をデイスプレィデバイスに応用する場合、
液晶材料に要求される条件として以下のものがあげられ
る。
When applying ferroelectric liquid crystal to display devices,
The following conditions are required for liquid crystal materials.

■ 室温を含む広い温度範囲で強誘電性液晶相(例えば
カイラルスメクチックC相)を示す。
(2) Exhibits a ferroelectric liquid crystal phase (for example, chiral smectic C phase) over a wide temperature range including room temperature.

■ 強誘電性液晶の電界に対する応答速度τは、τ−η
/Ps−B 但し、η;粘度 PS;自発分極 E;印加電場 で与えられる。この為、数μsecオーダーの高速応答
を実現するためには、大きな自発分極をもつことが必要
である。
■ The response speed τ of ferroelectric liquid crystal to electric field is τ−η
/Ps-B where η; viscosity PS; spontaneous polarization E; given by applied electric field. Therefore, in order to achieve a high-speed response on the order of several microseconds, it is necessary to have a large spontaneous polarization.

■ 先述したように、強誘電性液晶の光学応答は、安定
な2状態(bistable 5tate)により初め
て実現される。C1erkらによると、この状態を実現
するためには、セルギャップdを螺旋ピッチル以下にし
螺旋をほどく必要がある。エヌ。
(2) As mentioned above, the optical response of a ferroelectric liquid crystal is first realized in two stable states (bistable 5 states). According to C1erk et al., in order to achieve this state, it is necessary to make the cell gap d less than the helical pitch and unwind the helix. N.

ニー、クラーク、ニス、ティー、ラガヴアル;アブル、
フイズ、レット9、二 899(1980)  (N、
 A、  C1erk、  S、T、 −Lagerw
all ; ApH,Phys、  Lett、、1旦
899 (1980))この為、セル作成上作成容易な
セルギャップの厚いセルを利用するためには、強誘電性
液晶の螺旋ピッチを長くする必要がある。
Knee, Clark, Nis, Tee, Raghaval; Able;
Huiz, Lett 9, 2 899 (1980) (N,
A, C1erk, S, T, -Lagerw
(all; APH, Phys, Lett, 1989 (1980)) Therefore, in order to utilize a cell with a thick cell gap that is easy to create, it is necessary to lengthen the helical pitch of the ferroelectric liquid crystal. .

■ 強誘電性液晶の配向状態は、液晶材料の相系列によ
って異なり、特に強誘電性液晶相の高温側にスメクチッ
クA相(SmA)及びコレステリック相(Ch)を有す
る液晶材料が良好な配向状態が得られると考えられてい
る。即ち、強誘電性液晶材料の相系列が、例えばカイラ
ルスメクチックC相の場合水 Iso−4Ch−4SmA−4SmC*但し、lso;
等方性液体 Ch;コレステリック相 SmA;スメクチックA相 SmC*HカイラルスメクチックC相 であることが望ましい。
■ The alignment state of ferroelectric liquid crystal varies depending on the phase series of the liquid crystal material, and in particular, liquid crystal materials with smectic A phase (SmA) and cholesteric phase (Ch) on the high temperature side of the ferroelectric liquid crystal phase have a good alignment state. It is believed that it can be obtained. That is, when the phase series of the ferroelectric liquid crystal material is, for example, chiral smectic C phase, water Iso-4Ch-4SmA-4SmC*However, lso;
Isotropic liquid Ch; cholesteric phase SmA; smectic A phase SmC*H chiral smectic C phase is desirable.

更に、上記のような相系列を持つ液晶材料の中でもCh
相のピッチが長いものの方が配向状態が良好であると考
えられている。
Furthermore, among the liquid crystal materials having the above phase series, Ch
It is believed that the longer the phase pitch, the better the orientation state.

以上述べた条件以外にも液晶分子の傾キ角θ等に対する
様々な要求がある。
In addition to the conditions described above, there are various requirements regarding the tilt angle θ of liquid crystal molecules, etc.

温度範囲の拡大のためには多(のの強誘電性液高材料を
混合してやる必要が存る。このとき先述の4つの条件を
満たすためには多くの強誘電性液晶材料単体のコレステ
リック相およびカイラルスメクチックC相それぞれに於
けるピッチの左右の向き、大きさ、自発分極の極性等を
総て考慮しながら混合しなければならず、実用的な強誘
電性液晶組成物は得に(いという問題点があり、非カイ
ラルなスメクチックC相を示す化合物を混合する方法が
とられていた。第3図に従来のエステル系の非カイラル
化合物を用いた混合系の自発分極と25℃に於ける24
VPpの電圧印加時の応答速度を示す。
In order to expand the temperature range, it is necessary to mix many ferroelectric liquid crystal materials.At this time, in order to satisfy the four conditions mentioned above, many ferroelectric liquid crystal materials must be mixed in the cholesteric phase and Mixing must be done while taking into account the left and right pitch directions, sizes, polarities of spontaneous polarization, etc. in each of the chiral smectic C phases, and a practical ferroelectric liquid crystal composition is particularly difficult to prepare. Due to these problems, a method of mixing compounds exhibiting a non-chiral smectic C phase was used. Figure 3 shows the spontaneous polarization of a mixed system using a conventional ester-based non-chiral compound and its effect at 25°C. 24
It shows the response speed when a voltage of VPp is applied.

発明が解決しようとする問題点 従来の強誘電性液晶材料は、温度範囲の拡大の為には、
非カイラルなスメクチックC相を示す化合物を混合する
方法がとられていた。ところが、非カイラルな化合物を
混合することにより、自発分極が小さくなるため非カイ
ラル成分の増加にともない応答速度が遅くなるため非カ
イラル成分の添加量をあまり増やせず多種類のカイラル
成分を自発分極の極性、カイラルスメクチックC相のら
せんのねじれ方向、コレステリック相のらせんのねじれ
方向等多くの物質定数を合せながら混合してやる必要が
あり実用的な強誘電性液晶組成物は得にくいという問題
点があった。そこで本発明の強誘電性液晶組成物は、非
カイラルなスメクチックC相を示す液晶化合物として(
1)式で示される様なフェニルピリミジン系の液晶化合
物を用いることにより、広い温度範囲で強誘電性液晶相
を示し、容易に良好な配向かえられ、高速応答可能な強
誘電性液晶材料を提供するものである。
Problems to be Solved by the Invention Conventional ferroelectric liquid crystal materials cannot be used to expand the temperature range.
A method of mixing compounds exhibiting a non-chiral smectic C phase has been used. However, by mixing non-chiral compounds, the spontaneous polarization becomes smaller, and as the non-chiral component increases, the response speed becomes slower. There was a problem that it was difficult to obtain a practical ferroelectric liquid crystal composition because it was necessary to adjust many material constants such as polarity, direction of twist of the helix in the chiral smectic C phase, and direction of twist of the helix in the cholesteric phase. . Therefore, the ferroelectric liquid crystal composition of the present invention is a liquid crystal compound exhibiting a non-chiral smectic C phase (
1) By using a phenylpyrimidine-based liquid crystal compound as shown in the formula, we provide a ferroelectric liquid crystal material that exhibits a ferroelectric liquid crystal phase over a wide temperature range, can easily change its orientation, and can respond at high speed. It is something to do.

問題点を解決するための手段 上記の問題点を解決するために本発明は、強誘電性液晶
材料に(1)式で表されるようなフェニルピリミジン系
の非カイラルである(即ちねじれ構造、自発分極を全く
有さない)スメクチックC相を示す液晶材料を混合する
ことにより非カイラル成分の添加量を増やすことができ
、広い温度範囲で強誘電性液晶相を示し、良好な配向が
得られ、数十μsecオーダーの高速応答可能な強誘電
性液晶材料を容易に得ることができる。
Means for Solving the Problems In order to solve the above problems, the present invention provides a ferroelectric liquid crystal material having a phenylpyrimidine non-chiral structure (i.e., a twisted structure, By mixing a liquid crystal material that exhibits a smectic C phase (which has no spontaneous polarization at all), the amount of non-chiral components added can be increased, exhibiting a ferroelectric liquid crystal phase over a wide temperature range, and achieving good alignment. , a ferroelectric liquid crystal material capable of high-speed response on the order of several tens of microseconds can be easily obtained.

作用 一般に、液晶の温度範囲を拡大する為には、2種類以上
の分子形状の異なる液晶化合物を混合することが必要で
ある。ところが、強誘電性液晶材料を混合する際にはそ
の化合物の自発分極の極性、強誘電性液晶相の捩れの向
き、コレステリック相の涙れの向き等の物質定数を考慮
にいれ混合しなければいけない。この為、捩れ構造、自
発分極を全く有さない非カイラルなスメクチックC相を
温度範囲拡大の為にもちいれば、捩れの向き及び自発分
極の極性等の物質定数を考慮することなしに温度範囲の
広い液晶組成物を容易に得ることができる。非カイラル
なスメクチックC相を示す液晶化合物を強誘電性液晶化
合物に混合する場合その自発分極は第3図に示すように
非カイラル成分の増加と共に直線的に減少するため混合
物の自発分極は極端に小さくなってしまい応答速度は非
カイラル成分の増加とともに遅くなってしまう。本発明
の場合は、すり粘性の非常に小さいフェニルピリミジン
系の非カイラルな液晶化合物を混合する為、その自発分
極は減少するが第4図に示すように非カイラル成分が増
加しても応答速度は遅くなっておらず、より速くなる傾
向にある。このようにフェニルピリミジン系の非カイラ
ルなスメクチックC相を示す液晶化合物を用いることに
よりその添加量を増加させてもより高速な応答特性をし
めずため、強誘電性を示す液晶化合物に非カイラル成分
としてN)式で示されるようなフェニルピリミジン系の
液晶材料を混合すれば多量の非カイラル成分を添加でき
るためピッチの長い、温度範囲の広い高速な応答特性を
しめず強誘電性液晶組成物が容易に得られる。
Function Generally, in order to expand the temperature range of liquid crystals, it is necessary to mix two or more types of liquid crystal compounds with different molecular shapes. However, when mixing ferroelectric liquid crystal materials, material constants such as the polarity of the spontaneous polarization of the compound, the direction of twist of the ferroelectric liquid crystal phase, and the direction of tearing of the cholesteric phase must be taken into consideration. should not. Therefore, if the non-chiral smectic C phase, which has no twisted structure or spontaneous polarization, is used to expand the temperature range, the temperature range can be expanded without considering material constants such as the direction of twist and the polarity of spontaneous polarization. A wide range of liquid crystal compositions can be easily obtained. When a liquid crystal compound exhibiting a non-chiral smectic C phase is mixed with a ferroelectric liquid crystal compound, the spontaneous polarization of the mixture decreases linearly as the non-chiral component increases, as shown in Figure 3, so the spontaneous polarization of the mixture becomes extreme. As a result, the response speed becomes slower as the non-chiral component increases. In the case of the present invention, since a phenylpyrimidine-based non-chiral liquid crystal compound with extremely low friction viscosity is mixed, its spontaneous polarization decreases, but as shown in Figure 4, even if the non-chiral component increases, the response speed increases. is not slowing down, it is trending faster. In this way, by using a phenylpyrimidine-based liquid crystal compound that exhibits a non-chiral smectic C phase, even if the amount added does not result in faster response characteristics, the non-chiral component is added to the liquid crystal compound that exhibits ferroelectricity. If a phenylpyrimidine-based liquid crystal material as shown in formula N) is mixed, a large amount of non-chiral component can be added, so that a ferroelectric liquid crystal composition with a long pitch and high-speed response characteristics over a wide temperature range can be obtained. easily obtained.

実施例 本発明の実施例を図を用いて説明する。最初に本実施例
において、その強誘電性液晶材料の応答特性を測定した
液晶セルの構造を第5図に示す。
Embodiment An embodiment of the present invention will be described with reference to the drawings. First, FIG. 5 shows the structure of a liquid crystal cell in which the response characteristics of the ferroelectric liquid crystal material were measured in this example.

ここで、1は偏光板、2はガラス基板、3は透明電極、
4はラビングにより配向処理を施した有機高分子膜、5
は強誘電性液晶層、6はセル厚を−定に保つためのスペ
ーサーを表している。このような構造のセルに強誘電性
液晶材料を封入しその応答特性及び自発分極を測定した
。自発分極については三角波法を用いて測定を行った。
Here, 1 is a polarizing plate, 2 is a glass substrate, 3 is a transparent electrode,
4 is an organic polymer film subjected to alignment treatment by rubbing, 5
6 represents a ferroelectric liquid crystal layer, and 6 represents a spacer for keeping the cell thickness constant. A ferroelectric liquid crystal material was sealed in a cell with such a structure, and its response characteristics and spontaneous polarization were measured. Spontaneous polarization was measured using the triangular wave method.

又、相転位温度については、偏光顕微鏡によるtext
ure観察及びDSC(示差走査熱量計)により測定を
行った。
In addition, regarding the phase transition temperature, the text
Measurements were performed by ure observation and DSC (differential scanning calorimeter).

実施例1 特許請求の範囲第1項記載の化合物(I)が式(II)
でしめされる化合物であり強誘電性を示すカイラルな成
分が(I[[)式でしめされるような混合系について相
転位温度、自発分極、ピッチの長さ、応答速度を測定し
た。第1図にこの混合系の相図を、第2図に25℃にお
ける自発分極と20Vpl)印加時に於ける応答速度の
濃度依存を示した。
Example 1 Compound (I) according to claim 1 has the formula (II)
The phase transition temperature, spontaneous polarization, pitch length, and response speed were measured for a mixed system in which the chiral component exhibiting ferroelectricity is represented by the formula (I[[). FIG. 1 shows the phase diagram of this mixed system, and FIG. 2 shows the spontaneous polarization at 25° C. and the concentration dependence of the response speed when 20 Vpl) is applied.

第2図より自発分極の値は非カイラル成分の増加と共に
ほぼ直線的に減少しているが、非カイラル成分が75w
t%になっても25℃に於いて24Vl)pの電圧印加
時の応答速度は110μsecという高速応答を示し、
非カイラル成分が5Qwt%に於ては62μsecとい
う高速応答をしめす。またこの組成においてピッチはか
なり長くなっており配向状態は良好であった。又、上記
以外の組成の化合物についても良好な配向が得られた。
From Figure 2, the value of spontaneous polarization decreases almost linearly as the non-chiral component increases;
Even at t%, the response speed when a voltage of 24 Vl)p is applied at 25°C is as fast as 110 μsec.
When the non-chiral component is 5 Qwt%, it exhibits a high-speed response of 62 μsec. Further, in this composition, the pitch was considerably long and the orientation state was good. Good orientation was also obtained with compounds having compositions other than those mentioned above.

発明の効果 以上のように本発明は強誘電性液晶材料に非カイラルの
スメクチックC相をしめす式(1)でしめされるフェニ
ルピリミジン系の液晶材料を混合することにより、容易
に室温を含む広い温度範囲で液晶相を示し、高速応答可
能な強誘電性液晶材料を提供するものである。
Effects of the Invention As described above, the present invention can easily be used over a wide range of temperatures including room temperature by mixing a phenylpyrimidine liquid crystal material shown by the formula (1) which exhibits a non-chiral smectic C phase with a ferroelectric liquid crystal material. The present invention provides a ferroelectric liquid crystal material that exhibits a liquid crystal phase in a temperature range and is capable of high-speed response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における混合系の相図、第2
図は本発明の実施例1における強誘電性液晶セルの応答
速度と自発分極の濃度依存の特性図、第3図は従来の強
誘電性液晶組成物の自発分極と応答速度のカイラル成分
の濃度依存の特性図、第4図は本発明の強誘電性液晶組
成物の自発分極と応答速度のカイラル成分の濃度依存の
特性図、第5図は強誘電性液晶セルの構成図、第6図は
強誘電性液晶の模式図、第7図は強誘電性液晶の動作原
理を示した模式図である。 1・・・・・・偏光板、2・・・・・・上下のガラス基
板、3・・・・・・透明電極、4・・・・・・配向処理
を施した有機配向膜、5・・・・・・強誘電性液晶相、
6・・・・・・セル厚を一定に保つためのスペーサー、
7・・・・・・強誘電性液晶分子、8・・・・・・自発
分極、9・・・・・・Cダイレクタ−110・・・・・
・コーン、11・・・・・・層、12・・・・・・層法
線、13・・・・・・分子の層法線に対する傾き角θ、
14・・・・・・層法線に対して分子の長軸が十〇傾い
た液晶分子、15・・・・・・層法線に対して分子の長
軸が一〇傾いた液晶分子、16・・・・・・紙面表方向
を向いている双極子モーメント、17・・・・・・紙面
裏方向を向いている双極子モーメント、18・・・・・
・2枚の偏光板の方向。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 06θ         lθθ 化合物CI[)ノW−t7A 第2図 イし合物 (I)のWtZ 第3図 Oぴ         100 カイラル八分のWちん 第4図 カイラルA分のwt% 第5図 第6図 第7図
Figure 1 is the phase diagram of the mixed system in Example 1 of the present invention, and Figure 2 is the phase diagram of the mixed system in Example 1 of the present invention.
The figure is a characteristic diagram of the concentration dependence of the response speed and spontaneous polarization of the ferroelectric liquid crystal cell in Example 1 of the present invention, and FIG. 3 is the concentration dependence of the chiral component of the spontaneous polarization and response speed of the conventional ferroelectric liquid crystal composition. FIG. 4 is a characteristic diagram of the concentration dependence of the chiral component of the spontaneous polarization and response speed of the ferroelectric liquid crystal composition of the present invention, FIG. 5 is a diagram of the configuration of the ferroelectric liquid crystal cell, and FIG. 6 is a schematic diagram of a ferroelectric liquid crystal, and FIG. 7 is a schematic diagram showing the operating principle of a ferroelectric liquid crystal. 1... Polarizing plate, 2... Upper and lower glass substrates, 3... Transparent electrode, 4... Organic alignment film subjected to alignment treatment, 5... ...ferroelectric liquid crystal phase,
6...Spacer to keep cell thickness constant,
7... Ferroelectric liquid crystal molecules, 8... Spontaneous polarization, 9... C director-110...
- Cone, 11... layer, 12... layer normal, 13... tilt angle θ of the molecule with respect to the layer normal,
14...Liquid crystal molecules whose long axis of the molecule is tilted by 10 degrees with respect to the layer normal, 15...Liquid crystal molecules whose long axis of the molecule is tilted by 10 degrees with respect to the layer normal, 16...Dipole moment facing toward the front of the page, 17...Dipole moment pointing toward the back of the page, 18...
・Direction of the two polarizing plates. Name of agent Patent attorney Toshio Nakao 1 person Fig. 1 06θ lθθ Compound CI [) no W-t7A Fig. 2 WtZ of compound (I) Fig. 3 Opi 100 Chiral 8th W Ch No. Figure 4 wt% of chiral A Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼……( I ) (但し式中R、R’はアルキル基またはアルコキシ基を
示す)で表される非カイラルなスメクチックC相を示す
液晶化合物を少なくとも1種類以上添加することを特徴
とする液晶組成物。
(1) Liquid crystal exhibiting a non-chiral smectic C phase represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. A liquid crystal composition characterized by adding at least one type of compound.
(2)一般式 ▲数式、化学式、表等があります▼……( I ) (但し式中R、R’はアルキル基又はアルコキシ基を示
す)で表される非カイラルなスメクチックC相を示す液
晶化合物をらせんピッチののびた強誘電性液晶組成物に
少なくとも1種類以上添加することを特徴とする特許請
求の範囲第1項記載の液晶組成物。
(2) Liquid crystal exhibiting a non-chiral smectic C phase represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. 2. The liquid crystal composition according to claim 1, wherein at least one compound is added to the ferroelectric liquid crystal composition having an extended helical pitch.
JP61182209A 1986-08-01 1986-08-01 Liquid crystal composition Pending JPS6337186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182209A JPS6337186A (en) 1986-08-01 1986-08-01 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182209A JPS6337186A (en) 1986-08-01 1986-08-01 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS6337186A true JPS6337186A (en) 1988-02-17

Family

ID=16114261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182209A Pending JPS6337186A (en) 1986-08-01 1986-08-01 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS6337186A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252938A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal panel
JPH01254793A (en) * 1988-04-01 1989-10-11 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal composition
JPH02117989A (en) * 1988-10-27 1990-05-02 Adeka Argus Chem Co Ltd Ferroelectric liquid crystal composition
JPH02173089A (en) * 1988-12-26 1990-07-04 Chisso Corp Rerroelectric liquid crystal composition
JPH02285074A (en) * 1989-03-30 1990-11-22 Leybold Ag Apparatus for carrying workpiece in and out vacuum chamber
US5071589A (en) * 1987-09-19 1991-12-10 Hoechst Aktiengesellschaft Liquid-crystalline mixtures, in particular ferroelectric liquid-crystalline mixtures
JPH0711443A (en) * 1993-06-28 1995-01-13 Chugai Ro Co Ltd Sheet type film forming device by sputtering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071589A (en) * 1987-09-19 1991-12-10 Hoechst Aktiengesellschaft Liquid-crystalline mixtures, in particular ferroelectric liquid-crystalline mixtures
JPH01252938A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal panel
JPH01254793A (en) * 1988-04-01 1989-10-11 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal composition
JPH02117989A (en) * 1988-10-27 1990-05-02 Adeka Argus Chem Co Ltd Ferroelectric liquid crystal composition
JPH02173089A (en) * 1988-12-26 1990-07-04 Chisso Corp Rerroelectric liquid crystal composition
JPH02285074A (en) * 1989-03-30 1990-11-22 Leybold Ag Apparatus for carrying workpiece in and out vacuum chamber
JPH07113151B2 (en) * 1989-03-30 1995-12-06 ライボルト・アクチエンゲゼルシヤフト Equipment for loading and unloading workpieces in the vacuum chamber
JPH0711443A (en) * 1993-06-28 1995-01-13 Chugai Ro Co Ltd Sheet type film forming device by sputtering

Similar Documents

Publication Publication Date Title
JP2547857B2 (en) Ferroelectric liquid crystal composition
JPH0644120B2 (en) Liquid crystal display element
JPS6337186A (en) Liquid crystal composition
JPS6337187A (en) Liquid crystal display device
JPS62205189A (en) Liquid crystal display device
JPS62205190A (en) Liquid crystal composition
JPS6222889A (en) Ferroelectric liquid crystal composition for guest-host display element
JPS63256688A (en) Liquid crystal composition
JPH0781143B2 (en) Liquid crystal composition
JPH0745661B2 (en) Liquid crystal display
JPS63254421A (en) Liquid crystal display device
JP2563553B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPS62141093A (en) Ferroelectric liquid crystal display unit
JPH01101390A (en) Ferroelectric liquid crystal composition
JPS6337190A (en) Liquid crystal composition
JPH07116440B2 (en) Liquid crystal composition and liquid crystal display device
JPS63191890A (en) Liquid crystal composition
JP2763220B2 (en) Liquid crystal display
JP2910791B2 (en) Liquid crystal composition
JPS63191891A (en) Liquid crystal display device
JPS6337192A (en) Liquid crystal display device
JPH0788507B2 (en) Liquid crystal display
JPH02151683A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH01152186A (en) Ferroelectric liquid crystal display