JPH0781143B2 - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPH0781143B2
JPH0781143B2 JP18222186A JP18222186A JPH0781143B2 JP H0781143 B2 JPH0781143 B2 JP H0781143B2 JP 18222186 A JP18222186 A JP 18222186A JP 18222186 A JP18222186 A JP 18222186A JP H0781143 B2 JPH0781143 B2 JP H0781143B2
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
phase
chiral
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18222186A
Other languages
Japanese (ja)
Other versions
JPS6337188A (en
Inventor
博之 大西
強 上村
孝男 櫻井
量一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Panasonic Holdings Corp
Original Assignee
Ajinomoto Co Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Matsushita Electric Industrial Co Ltd filed Critical Ajinomoto Co Inc
Priority to JP18222186A priority Critical patent/JPH0781143B2/en
Publication of JPS6337188A publication Critical patent/JPS6337188A/en
Publication of JPH0781143B2 publication Critical patent/JPH0781143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な液晶物質を含有する液晶組成物に係わ
り、特に強誘電性液晶材料に関するものである。
TECHNICAL FIELD The present invention relates to a liquid crystal composition containing a novel liquid crystal substance, and more particularly to a ferroelectric liquid crystal material.

従来の技術 近年液晶表示は、腕時計、電卓等だけでなく映像機器に
も広く使われるようになり、液晶カラーテレビも市場に
出始めている。現在カラー表示用液晶パネルはネマチッ
ク液晶を用いたものがその主流を占めている。しかし、
そのネマチック液晶の諸特性は理想的とは言い難く多く
の問題を含んでいる。強誘電性液晶はその速い応答速
度、メモリー性等ネマチック液晶にはない諸特性を有し
ておりディスプレイ装置への応用が考えられ多方面から
研究が進められている。(オプトロニクス、1983、No.
9)以下図面をみながら強誘電性液晶について説明す
る。第11図は強誘電性液晶分子の模式図である。強誘電
性液晶は通常スメクチック液晶と呼ばれる層構造を有す
る液晶で、液晶分子は層法線方向に対してθだけ傾いた
構造をとっている。また、通常強誘電性液晶分子は、ラ
セミ体でない光学活性な液晶分子によって構成されてい
る。
2. Description of the Related Art In recent years, liquid crystal displays have come into wide use not only in wristwatches, calculators, etc., but also in video equipment, and liquid crystal color televisions are also on the market. At present, the mainstream of liquid crystal panels for color display are those using nematic liquid crystals. But,
The properties of the nematic liquid crystal are not ideal and include many problems. Ferroelectric liquid crystal has various characteristics that nematic liquid crystal does not have such as fast response speed and memory property, and it is considered to be applied to a display device, and research is progressing from various fields. (Opttronics, 1983, No.
9) The ferroelectric liquid crystal will be described below with reference to the drawings. FIG. 11 is a schematic diagram of a ferroelectric liquid crystal molecule. Ferroelectric liquid crystal is a liquid crystal having a layer structure usually called smectic liquid crystal, and liquid crystal molecules have a structure inclined by θ with respect to the layer normal direction. Further, the ferroelectric liquid crystal molecules are usually composed of optically active liquid crystal molecules which are not racemic.

第11図に於て、7は液晶分子、8は自発分極、9はCダ
イレクター、10はコーン、11は層構造、12は層法線方
向、13は傾き角θを示している。
In FIG. 11, 7 is a liquid crystal molecule, 8 is a spontaneous polarization, 9 is a C director, 10 is a cone, 11 is a layer structure, 12 is a layer normal direction, and 13 is a tilt angle θ.

第11図に示すように、強誘電性液晶分子は自発分極を有
しており、カイラルスメクチックC相に於いては、第11
図の円錐形10(コーン)の外側を自由に動くことができ
る。層毎に分子長軸の方向は少しだけずれており全体と
してはねじれ構造をとっている。次に強誘電性液晶の表
示原理について述べる。第12図は強誘電性液晶の動作原
理図で有る。第12図(a)は電圧無印加の状態、第12図
(b)は紙面裏から表方向に電圧を印加した場合、第12
図(c)は逆方向に電圧を印加した場合の動作原理図で
ある。14は層法線に対して分子長軸が+θ度傾いた液晶
分子、15は−θ度傾いた液晶分子、16は紙面表方向を向
いている双極子モーメント、17は紙面裏方向を向いてい
る双極子モーメント、18は2枚の偏光板の方向である。
強誘電性液晶を透明電極を有したガラス基板に挾みその
パネルの厚を螺旋ピッチ以下にすると第12図(a)のよ
うに螺旋がほどけ層に対して分子が+θ度傾いた領域と
−θ度傾いた領域にわかれる。上下電極間紙面裏から表
方向に電圧を印加することにより第12図(b)のように
セル全体が+θ度傾いたモノドメインになる。また、逆
電圧を印加すると第12図(c)のようにセル全体が−θ
度傾いたモノドメインになる。従って、電気光学効果に
よる複屈折または2色性を利用すれば+θ度傾いた2つ
の状態により明暗を表すことができる。
As shown in FIG. 11, the ferroelectric liquid crystal molecules have spontaneous polarization, and in the chiral smectic C phase,
It is free to move outside the cone 10 (cone) shown. The direction of the molecular long axis is slightly deviated for each layer, and the structure has a twisted structure as a whole. Next, the display principle of the ferroelectric liquid crystal will be described. Figure 12 is a diagram of the operating principle of a ferroelectric liquid crystal. FIG. 12 (a) shows a state in which no voltage is applied, and FIG. 12 (b) shows a state in which no voltage is applied from the back side of the paper to the front side.
FIG. 6C is a principle diagram of the operation when a voltage is applied in the opposite direction. 14 is a liquid crystal molecule in which the long axis of the molecule is tilted by + θ degrees with respect to the layer normal, 15 is a liquid crystal molecule in which −θ degrees is tilted, 16 is a dipole moment facing the front side of the paper, and 17 is facing the back side of the paper. There is a dipole moment, 18 is the direction of the two polarizing plates.
When a ferroelectric liquid crystal is sandwiched between glass substrates having transparent electrodes and the thickness of the panel is set to a spiral pitch or less, a region where molecules are tilted by + θ degrees with respect to the unwinding layer is formed as shown in Fig. 12 (a). It is divided into regions that are inclined by θ degrees. By applying a voltage in the front direction from the back surface of the space between the upper and lower electrodes, the entire cell becomes a monodomain tilted by + θ degrees as shown in FIG. 12 (b). When a reverse voltage is applied, the entire cell is -θ as shown in Fig. 12 (c).
It becomes a mono-domain tilted. Therefore, if birefringence or dichroism due to the electro-optic effect is used, it is possible to represent light and dark by two states tilted by + θ degrees.

強誘電性液晶をデイスプレイデバイスに応用する場合、
液晶材料に要求される条件として以下のものがあげられ
る。
When applying a ferroelectric liquid crystal to a display device,
The conditions required for liquid crystal materials are as follows.

(1) 室温を含む広い温度範囲で強誘電性液晶相(た
とえばカイラルスメクチックC相)を示す。
(1) It exhibits a ferroelectric liquid crystal phase (eg, chiral smectic C phase) in a wide temperature range including room temperature.

(2) 強誘電性液晶の電界に対する応答速度τは、 τ=η/Ps・E 但し、η:粘度 Ps;自発分極 E;印加電場 で与えられる。この為、数μsecオーダーの高速応答を
実現するためには、大きな自発分極をもつことが必要で
ある。
(2) The response speed τ of the ferroelectric liquid crystal to the electric field is τ = η / Ps · E where η: viscosity Ps; spontaneous polarization E; applied electric field. Therefore, it is necessary to have a large spontaneous polarization in order to realize a high-speed response on the order of several μsec.

(3) 先述したように、強誘電性液晶の光学応答は、
安定な2状態(bistable state)により初めて実現され
る。Clerkらによると、この状態を実現するためには、
セルギャップdを螺旋ピッチp以下にし螺旋をほどく必
要がある。エヌ.エー.クラーク、エス.テイー.ラガ
ヴァル;アプル.フィズ.レット.、36 899(1980)
(N.A.Clerk,S.T.Lagerwall;Apll.Phys.Lett.、36 899
(1980))この為、セル作成上作成容易なセルギャップ
の厚いセルを利用するためには、強誘電性液晶の螺旋ピ
ッチを長くする必要がある。
(3) As described above, the optical response of the ferroelectric liquid crystal is
It is first realized by a stable bi-state. According to Clerk et al.
It is necessary to make the cell gap d equal to or smaller than the spiral pitch p and unwind the spiral. N. A. Clark, S. Tee. Ragaval; Apple. Fizz. Let. , 36 899 (1980)
(NAClerk, STLagerwall; Apll.Phys.Lett., 36 899
(1980)) Therefore, in order to use a cell with a thick cell gap that is easy to create, it is necessary to lengthen the helical pitch of the ferroelectric liquid crystal.

(4) 強誘電性液晶の配向状態は、液晶材料の相系列
によって異なり、特に強誘電性液晶相の高温側にスメク
チックA相(SmA)及びコレステリック相(Ch)を有す
る液晶材料が良好な配向状態が得られると考えられてい
る。即ち、強誘電性液晶材料の相系列が、たとえばカイ
ラルスメクチックC相の場合* Iso→Ch→SmA→SmC* 但し、Iso;等方性液体 Ch;コレステリック相 SmA;スメクチックA相 SmC*:カイラルスメクチックC相 であることが望ましい。
(4) The alignment state of the ferroelectric liquid crystal depends on the phase sequence of the liquid crystal material, and particularly the liquid crystal material having a smectic A phase (SmA) and a cholesteric phase (Ch) on the high temperature side of the ferroelectric liquid crystal phase has a good alignment. It is believed that status is obtained. That is, when the phase sequence of the ferroelectric liquid crystal material is, for example, a chiral smectic C phase * Iso → Ch → SmA → SmC * However, Iso; isotropic liquid Ch; cholesteric phase SmA; smectic A phase SmC *: chiral smectic C phase is desirable.

更に、上記のような相系列を持つ液晶材料の中でもCh相
のピッチが長いものの方が配向状態が良好であると考え
られている。
Further, among the liquid crystal materials having the above-mentioned phase series, it is considered that the one having a longer Ch phase pitch has a better alignment state.

以上述べた条件以外にも液晶分子の傾き角θ等に対する
様々な要求がある。
In addition to the conditions described above, there are various requirements for the tilt angle θ of liquid crystal molecules.

従来の強誘電性液晶材料は温度範囲だけをとりあげてみ
ても実用的な材料は数少なく、上記の条件をすべて満た
し実用に耐え得る材料は皆無に等しいのが現状であっ
た。
Conventional ferroelectric liquid crystal materials are few practical materials even if only considering the temperature range, and it is the current situation that none of the materials satisfy all the above conditions and can be practically used.

以下に従来の強誘電性液晶材料の1例を示す。(+)P
−デシルオキシベンジリデンp′アミノ2−メチルブチ
ルシンナメイト(+DOBAMBC) 但し、SmG*;カイラルスメクチックG相 Ps=4〜5nC τ=数百μsec〜数msec 発明が解決しようとする問題点 しかしながら、従来の強誘電性液晶材料は、その温度範
囲だけをとりあげても実用的なものは少なく先述の4つ
の条件を総て満たし即デイスプレイデバイスに応用でき
る液晶材料は皆無に等しいのが現状である。又温度範囲
の拡大の為には多くの種類の強誘電性液晶材料を混合し
てやる必要が有る。このとき先述の4つの条件を満たす
ためには多くの強誘電性液晶材料単体のコレステリック
相およびカイラルスメクチックC相それぞれに於けるピ
ッチの左右の向き、大きさ、自発分極の極性等を総て考
慮しながら混合しなければならず、実用的な強誘電性液
晶組成物は得にくいという問題点があった。
An example of a conventional ferroelectric liquid crystal material is shown below. (+) P
-Decyloxybenzylidene p'amino 2-methylbutylcinnamate (+ DOBAMBC) However, SmG *; chiral smectic G phase Ps = 4 to 5 nC τ = several hundred μsec to several msec Problems to be solved by the invention However, the conventional ferroelectric liquid crystal material is practical even if only its temperature range is taken into consideration. At present, there is almost no liquid crystal material that satisfies all of the above four conditions and can be applied to a display device immediately. Further, in order to expand the temperature range, it is necessary to mix many kinds of ferroelectric liquid crystal materials. At this time, in order to satisfy the above-mentioned four conditions, all the left and right directions of pitch, the magnitude, and the polarity of spontaneous polarization in each of the cholesteric phase and the chiral smectic C phase of many ferroelectric liquid crystal materials are taken into consideration. However, there is a problem that it is difficult to obtain a practical ferroelectric liquid crystal composition because they must be mixed.

問題点を解決するための手段 上記の問題点を解決するために本発明は、自発分極が大
きい強誘電性液晶材料に非カイラルである(即ちねじれ
構造、自発分極を全く有さない)スメクチックC相を示
す液晶材料を混合するか、或いは自発分極が大きい強誘
電性液晶材料にまず捩れの向きが逆であるような液晶材
料を混合してらせんのピッチの長い強誘電性液晶組成物
を作成し、このピッチの長い液晶組成物に非カイラルで
ある(即ちねじれ構造、自発分極を全く有さない)スメ
クチックC相を示す液晶材料を混合することにより広い
温度範囲で強誘電性液晶相を示し、良好な配向が得ら
れ、数十μsecオーダーの高速応答可能な強誘電性液晶
材料を容易に得ることができる。
Means for Solving the Problems In order to solve the above problems, the present invention is a non-chiral ferroelectric liquid crystal material having a large spontaneous polarization (that is, has no twist structure and no spontaneous polarization) Smectic C. A ferroelectric liquid crystal composition having a long helical pitch is prepared by mixing a liquid crystal material exhibiting a phase or by mixing a liquid crystal material having a large spontaneous polarization with a liquid crystal material in which the twist direction is opposite first. However, a liquid crystal material exhibiting a smectic C phase that is non-chiral (that is, has no twisted structure and no spontaneous polarization) is mixed with the liquid crystal composition having a long pitch to exhibit a ferroelectric liquid crystal phase in a wide temperature range. In addition, it is possible to easily obtain a ferroelectric liquid crystal material having a good orientation and capable of high-speed response on the order of several tens of μsec.

作用 一般に、液晶の温度範囲を拡大する為には、2種類以上
の分子形状の異なる液晶化合物を混合することが必要で
ある。ところが、強誘電性液晶材料を混合する際にはそ
の化合物の自発分極の極性、強誘電性液晶相の捩れの向
き、コレステリック相の捩れの向き等の物質定数を考慮
にいれ混合しなければいけない。この為、捩れ構造、自
発分極を全く有さない非カイラルなスメクチックC相を
温度範囲拡大の為にもちいれば、捩れの向き及び自発分
極の極性等の物質定数を考慮することなしに温度範囲の
広い液晶組成物を容易に得ることができる。非カイラル
なスメクチックC相を示す液晶化合物を強誘電性液晶化
合物に混合する場合その自発分極は第9図に示すように
非カイラル成分の増加と共に直線的に減少するため自発
分極の小さい強誘電性液晶化合物に非カイラルな液晶化
合物を混合するとその混合物の自発分極は極端に小さく
なってしまう。本発明の場合は、自発分極の非常に大き
な強誘電性液晶化合物に非カイラルな液晶化合物を混合
する為、その自発分極の減少はかなり抑えられ比較的自
発分極の大きい強誘電性液晶組成物が容易に得られる。
螺旋軸の捩れ方向は、カイラル部の絶対的立体配置とベ
ンゼン環からカイラル中心までの分子数が偶数か奇数か
で決定されると考えられている。エム.ツカモト.テ
イ.オオツカ、ケイ.モリモト、ワイ.ムラカミ;ジャ
パン.ジェイ.アプル.フィズ.、141307(1975)(M.
Tukamoto,T.Otsuka,K.Morimoto,Y.Murakami;Japan.J.Ap
pl.Phys.,14 1307 (1975))即ちカイラル中心の絶
対立体配置がS体でありベンゼン環からカイラル中心ま
での原子数が偶数であれば捩れの方向は右であり奇数で
あれば左である。又、カイラル中心の絶対立体配置がR
体であれば逆になる。一般にピッチを伸すには、2つの
方法が考えられる。1つは強誘電性液晶材料にカイラル
を持たない液晶材料を混合する方法と、捩れの方向が逆
である液晶材料を混合する方法である。後者の方法によ
れば小量逆捩れの液晶化合物を添加するだけでピッチの
長い強誘電性液晶材料が容易に得られるが混合に際して
は、自発分極の極性も考慮に入れる必要がある。一方前
者の方法によると、ピッチの長い強誘電性液晶組成物を
得るためには、非カイラルな液晶化合物の添加量は多く
なるが自発分極の極性等は考慮する必要がないため容易
にピッチの長い強誘電性液晶組成物を得ることができ
る。又、自発分極の極性が同一であり且つらせんの捩れ
方向が逆であるような液晶材料を混合しある程度ピッチ
を伸した液晶組成物に非カイラルの液晶材料を混合すれ
ば小量の非カイラル成分の添加で自発分極の大きな、ピ
ッチの長い、温度範囲の広い強誘電性液晶組成物が容易
に得られる。
Action Generally, in order to expand the temperature range of liquid crystals, it is necessary to mix two or more kinds of liquid crystal compounds having different molecular shapes. However, when mixing a ferroelectric liquid crystal material, it is necessary to consider the material constants such as the polarity of spontaneous polarization of the compound, the twisting direction of the ferroelectric liquid crystal phase, and the twisting direction of the cholesteric phase. . Therefore, if a non-chiral smectic C phase having no twist structure or spontaneous polarization is used for expanding the temperature range, the temperature range can be considered without considering the material constants such as the direction of twist and the polarity of spontaneous polarization. A liquid crystal composition having a wide range can be easily obtained. When a liquid crystal compound exhibiting a non-chiral smectic C phase is mixed with a ferroelectric liquid crystal compound, its spontaneous polarization decreases linearly with an increase in the non-chiral component as shown in FIG. When a liquid crystal compound is mixed with a non-chiral liquid crystal compound, the spontaneous polarization of the mixture becomes extremely small. In the case of the present invention, since a non-chiral liquid crystal compound is mixed with a ferroelectric liquid crystal compound having a very large spontaneous polarization, a decrease in the spontaneous polarization is considerably suppressed, and a ferroelectric liquid crystal composition having a relatively large spontaneous polarization is obtained. Easily obtained.
The twist direction of the helical axis is considered to be determined by the absolute configuration of the chiral part and whether the number of molecules from the benzene ring to the chiral center is even or odd. M. Tsukamoto. Tei. Otsuka, Kei. Morimoto, Yi. Murakami; Japan. Jay. Apple. Fizz. , 14 1307 (1975) (M.
Tukamoto, T.Otsuka, K.Morimoto, Y.Murakami; Japan.J.Ap
pl.Phys., 14 1307 (1975)) That is, if the absolute configuration of the chiral center is S-form and the number of atoms from the benzene ring to the chiral center is even, the direction of twist is right, and if it is odd, it is left. is there. Also, the absolute configuration of the chiral center is R
The opposite is true for the body. Generally, two methods can be considered for extending the pitch. One is a method of mixing a ferroelectric liquid crystal material with a liquid crystal material having no chiral, and a method of mixing a liquid crystal material having a twist direction opposite to that of the liquid crystal material. According to the latter method, a ferroelectric liquid crystal material having a long pitch can be easily obtained only by adding a small amount of a liquid crystal compound having a reverse twist, but the polarity of spontaneous polarization must be taken into consideration when mixing. On the other hand, according to the former method, in order to obtain a ferroelectric liquid crystal composition having a long pitch, the addition amount of the non-chiral liquid crystal compound increases, but the polarity of spontaneous polarization does not need to be taken into consideration, so that the pitch can be easily adjusted. It is possible to obtain a long ferroelectric liquid crystal composition. In addition, if a liquid crystal material having the same polarities of spontaneous polarization and opposite helical twist directions is mixed and a liquid crystal composition having a certain pitch pitch is mixed with a non-chiral liquid crystal material, a small amount of non-chiral component is obtained. With the addition of, a ferroelectric liquid crystal composition having a large spontaneous polarization, a long pitch, and a wide temperature range can be easily obtained.

実施例 本発明の実施例を図を用いて説明する。最初に本実施例
において、その強誘電性液晶材料の応答特性を測定した
液晶セルの構造を第6図に示す。ここで、1は偏光板、
2はガラス基板、3は透明電極、4はラビングにより配
向処理を施した有機高分子膜、5は強誘電性液晶層、6
はセル厚を一定に保つためのスペーサーを表している。
このような構造のセルに強誘電性液晶材料を封入しその
応答特性及び自発分極を測定した。自発分極については
三角波法を用いて測定を行った。
Example An example of the present invention will be described with reference to the drawings. First, FIG. 6 shows the structure of a liquid crystal cell in which the response characteristics of the ferroelectric liquid crystal material were measured in this example. Here, 1 is a polarizing plate,
2 is a glass substrate, 3 is a transparent electrode, 4 is an organic polymer film which has been subjected to an alignment treatment by rubbing, 5 is a ferroelectric liquid crystal layer, 6
Indicates a spacer for keeping the cell thickness constant.
A ferroelectric liquid crystal material was enclosed in a cell having such a structure, and its response characteristics and spontaneous polarization were measured. The spontaneous polarization was measured using the triangular wave method.

又、相転位温度については、偏光顕微鏡によるtexture
観察及びDSCにより行い、Sc*相のピッチはセル厚100ミ
クロンの配向処理を施したセルを用い、Ch相のピッチは
Ch相を示さない化合物についてはネマチック液晶と混合
することによりCh相とし厚さ5ミリの配向処理を施した
ガラス基板を用いた楔型セルを用い通常法により測定を
行った。
Also, regarding the phase transition temperature, texture with a polarization microscope
Observation and DSC were used. The pitch of the Sc * phase was 100 μm and the orientation of the cell was 100 μm.
The compound that does not show the Ch phase was measured by a usual method using a wedge cell using a glass substrate that was subjected to an alignment treatment with a thickness of 5 mm by mixing it with a nematic liquid crystal.

実施例1 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがオクトキシ基である化合
物(V)に非カイラルの化合物として、一般式が特許請
求の範囲第4項記載の化合物(II)で表されるフェニル
ピリミジン系の化合物3種類からなるスメクチックC相
を示す液晶混合物(VI)を混合した4成分混合系につい
て相転位温度、自発分極、ピッチの長さ、応答速度を測
定した。以下の表1に非カイラル物質の構造と混合比を
しめした。第1図に液晶混合物(VI)と化合物(V)の
相図を、第2図に25℃における自発分極と20Vpp印加時
に於ける応答速度の濃度依存を示した。第1図より全組
成範囲にわたって53℃付近から10℃付近まで室温を含む
広い温度範囲でカイラルスメクチックC相を示してい
る。又、第2図より自発分極の値は非カイラル成分の増
加と共にほぼ直線的に減少しているが、カイラル成分が
25wt%になっても10nC以上の比較的大きな自発分極をも
っている。25℃に於ける20Vppの電圧印加時の応答速度
は非カイラル成分が増加してもあまり遅くなっておらず
カイラル成分が25wt%において33μsecという高速応答
を示している。またこの組成においてピッチはかなり長
くなっており配向状態は良好であった。又、上記以外の
組成の化合物についても良好な配向が得られた。
Example 1 A compound having the general formula as a non-chiral compound is claimed as a compound (V) in which the configuration of the chiral moiety of the compound (I) according to claim 1 is 2S, 3S and X is an octoxy group. Phase transition temperature, spontaneous polarization, pitch for a four-component mixture system in which a liquid crystal mixture (VI) showing a smectic C phase consisting of three phenylpyrimidine compounds represented by the compound (II) And the response speed were measured. Table 1 below shows the structures and mixing ratios of non-chiral substances. FIG. 1 shows the phase diagram of the liquid crystal mixture (VI) and the compound (V), and FIG. 2 shows the spontaneous polarization at 25 ° C. and the concentration dependence of the response speed when 20 Vpp is applied. From FIG. 1, the chiral smectic C phase is shown in a wide temperature range including room temperature from around 53 ° C. to around 10 ° C. over the entire composition range. Moreover, from FIG. 2, the value of the spontaneous polarization decreases almost linearly with the increase of the non-chiral component, but
Even at 25 wt%, it has a relatively large spontaneous polarization of 10 nC or more. The response speed when a voltage of 20 Vpp was applied at 25 ° C did not slow down much even when the non-chiral component increased, and it showed a high-speed response of 33 μsec at 25 wt% chiral component. In this composition, the pitch was considerably long and the orientation was good. Good orientation was also obtained for compounds having compositions other than the above.

実施例2 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがオクトキシ基である化合
物(V)に非カイラルの化合物として、一般式が特許請
求の範囲第5項記載の化合物(III)で表されるエステ
ル系の化合物4種類からなるスメクチックC相を示す液
晶混合物(VII)を混合した5成分混合系について相転
位温度、自発分極、ピッチの長さ、応答速度を測定し
た。以下の表2に非カイラル物質の構造と混合比をしめ
した。第3図に液晶混合物(VII)と化合物(V)の相
図を、第4図に25℃における自発分極と20Vpp印加時に
於ける応答速度の濃度依存を示した。第2図より全組成
範囲にわたって50℃付近から室温を含む広い温度範囲で
カイラルスメクチックC相を示している。又、第4図よ
り自発分極の値は非カイラル成分の増加と共にほぼ直線
的に減少しているが、カイラル成分が25wt%になっても
10nC以上の比較的大きな自発分極をもっている。25℃に
於ける20Vppの電圧印加時の応答速度は非カイラル成分
が増加すると遅くなる傾向があるが、カイラル成分が50
wt%において53μsec、25wt%において95μsecという高
速応答を示している。またこれらの組成においてピッチ
はかなり長くなっており配向状態は良好であった。又、
上記以外の組成の化合物についても良好な配向が得られ
た。
Example 2 A compound having the general formula as a non-chiral compound is claimed as the compound (V) in which the configuration of the chiral moiety of the compound (I) according to claim 1 is 2S, 3S and X is an octoxy group. Of the five-component mixed system in which a liquid crystal mixture (VII) showing a smectic C phase composed of four kinds of ester compounds represented by the compound (III) described in the above item 5 is mixed. The length and response speed were measured. Table 2 below shows the structures and mixing ratios of non-chiral substances. FIG. 3 shows the phase diagram of the liquid crystal mixture (VII) and the compound (V), and FIG. 4 shows the spontaneous polarization at 25 ° C. and the concentration dependence of the response speed when 20 Vpp is applied. From FIG. 2, a chiral smectic C phase is shown in a wide temperature range from around 50 ° C. to room temperature over the entire composition range. Moreover, although the value of the spontaneous polarization decreases almost linearly with the increase of the non-chiral component from FIG. 4, even if the chiral component reaches 25 wt%,
It has a relatively large spontaneous polarization of 10 nC or more. The response speed when a voltage of 20 Vpp is applied at 25 ° C tends to decrease as the non-chiral component increases, but the
It shows a high-speed response of 53 μsec at wt% and 95 μsec at 25 wt%. Further, in these compositions, the pitch was considerably long and the orientation was good. or,
Good orientation was obtained for compounds having compositions other than the above.

実施例3 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがオクトキシ基である化合
物(V)のらせんの捩れ方向は右である為逆捩れの左捩
れの化合物として特許請求の範囲第7項記載の化合物
(IV)のRがオクトキシ基である化合物(VIII)を用
い、非カイラルの化合物として、一般式が特許請求の範
囲第3項記載の化合物(II)で表されるフェニルピリミ
ジン系の化合物2種類と一般式が特許請求の範囲第4項
記載の化合物(III)で表されるエステル系の化合物4
種類とからなるスメクチックC相を示す液晶混合物(I
X)を混合した8成分混合系について相転位温度、自発
分極、ピッチの長さ、応答速度を測定した。以下の表3
に非カイラル物質の構造と混合比をしめした。又、測定
を行った混合系の組成は、化合物(VII)が25wt%、混
合物(IX)が75wt%であった。この混合物をもちいて作
成した液晶パネルの配向状態は非常に良好であった。以
下に測定結果をしめす。
Example 3 In the compound (I) described in claim 1, since the configuration of the chiral part of the compound (I) is 2S, 3S and the compound (V) in which X is an octoxy group, the helical twist direction is right, the reverse twist The compound (VIII), wherein R of the compound (IV) is an octoxy group, is used as the compound having a left-handed twist, and the compound having the general formula as claimed in claim 3 is used as the non-chiral compound. 2 kinds of phenylpyrimidine compounds represented by the compound (II) and an ester compound 4 represented by the compound (III) whose general formula is Claim 4
And a liquid crystal mixture (I) showing a smectic C phase
The phase transition temperature, spontaneous polarization, pitch length, and response speed were measured for an 8-component mixed system in which X) was mixed. Table 3 below
The structure and mixing ratio of non-chiral substances are shown in Table 1. The composition of the mixed system measured was 25% by weight of the compound (VII) and 75% by weight of the mixture (IX). The alignment state of the liquid crystal panel produced by using this mixture was very good. The measurement results are shown below.

転移温度 融点;5℃ 自発分極;6.5nC(33℃) Ch相のピッチ;無限大 SmC*相のピッチ;無限大 応答速度;85μsec(25℃、40V) 実施例4 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがヘプタノイルオキシ基で
ある化合物(X)に非カイラル物質として特許請求の範
囲第4項記載の一般式(II)で表されるフェニルピリミ
ジン系の化合物3種類を混合したスメクチックC相を示
す混合物(VI)を用いた4成分系についてピッチの長さ
を測定し、この液晶組成物を用いた液晶表示装置の応答
特性を測定した。以下に測定の結果を示す。非カイラル
化合物の構造と組成は表1にしめした。又、測定を行っ
た混合系の組成は、化合物(X)が25wt%、混合物(V
I)が75wt%であった。この混合物をもちいて作成した
液晶セルの配向状態は非常に良好であった。以下に測定
結果をしめす。
Transition temperature Melting point; 5 ℃ Spontaneous polarization; 6.5nC (33 ℃) Ch phase pitch; Infinite SmC * phase pitch; Infinite response speed; 85μsec (25 ℃, 40V) Example 4 A compound (I) according to claim 1, wherein the configuration of the chiral part of the compound (I) is 2S, 3S and X is a heptanoyloxy group, and the compound (I) is claimed as a non-chiral substance. The pitch length was measured for a four-component system using a mixture (VI) showing a smectic C phase in which three kinds of phenylpyrimidine compounds represented by the general formula (II) described in item 4 were mixed, and the liquid crystal composition was measured. The response characteristics of the liquid crystal display device using the product were measured. The measurement results are shown below. The structures and compositions of the non-chiral compounds are shown in Table 1. The composition of the mixed system measured was 25 wt% of the compound (X) and the mixture (V
I) was 75 wt%. The alignment state of the liquid crystal cell prepared by using this mixture was very good. The measurement results are shown below.

実施例5 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがヘプタノイルオキシ基で
ある化合物(X)のらせんのねじれ方向は右である為、
逆ねじれの化合物としてねじれ方向が左の化合物(IV)
のカイラル部の立体配置がS体でありR′がオクトキシ
基である化合物(VIII)を用いピッチを伸した液晶材料
に非カイラル物質として特許請求の範囲第4項記載のフ
ェニルピリミジン系の化合物2種類と特許請求の範囲第
5項記載のエステル系の化合物4種類を混合したスメク
チックC相を示す混合物(IX)を用いた8成分系につい
て相転移温度、ピッチの長さ、自発分極、応答速度につ
いて測定を行った。用いた非カイラル混合物の構造と組
成は表3にしめした。化合物(X)のピッチは化合物
(VIII)を75wt%いれると発散する。そこで、カイラル
化合物としって化合物(X)が25wt%、化合物(VIII)
が75wt%の混合物(XI)を用いた。第5図に混合物(VI
II)と混合物(IX)の相図を、第6図に25℃に於ける自
発分極と44Vppの電圧印加時の応答速度の濃度依存をし
めした。第5図より全組成範囲にわたり55℃−45℃付近
から室温を含む広い温度範囲でカイラルスメクチックC
相を示しており、特に混合物(IX)が25wt%において
は、53℃から13℃までカイラルスメクチックC相をしめ
しており第6図よりこの組成での応答速度は100μsecと
いう高速応答を示した。又、この組成においてピッチは
かなり長くなっており配向状態は非常に良好であった。
又、上記以外の組成の化合物についても良好な配向を示
した。
Example 5 Since the configuration of the chiral moiety of the compound (I) described in claim 1 is 2S, 3S and X is a heptanoyloxy group, the helical twist direction of the compound (X) is right. ,
Compound (IV) whose twist direction is left as a compound of reverse twist
5. The phenylpyrimidine compound 2 according to claim 4, which is used as a non-chiral substance in a liquid crystal material in which the pitch is extended by using the compound (VIII) in which the configuration of the chiral moiety is S-form and R'is an octoxy group. Phase transition temperature, pitch length, spontaneous polarization, response speed for an eight-component system using a mixture (IX) showing a smectic C phase in which four types and four types of ester compounds described in claim 5 are mixed. Was measured. The structure and composition of the non-chiral mixture used are shown in Table 3. The pitch of the compound (X) diverges when 75 wt% of the compound (VIII) is added. Therefore, as a chiral compound, 25 wt% of compound (X), compound (VIII)
Of 75 wt% of the mixture (XI) was used. The mixture (VI
The phase diagram of II) and the mixture (IX) are shown in Fig. 6 showing the spontaneous polarization at 25 ° C and the concentration dependence of the response speed when a voltage of 44 Vpp is applied. As shown in Fig. 5, chiral smectic C is observed in a wide temperature range from 55 ° C to 45 ° C to room temperature over the entire composition range.
In particular, when the mixture (IX) is 25 wt%, it exhibits a chiral smectic C phase from 53 ° C to 13 ° C, and Fig. 6 shows a high response speed of 100 µsec in this composition. Further, in this composition, the pitch was considerably long and the orientation was very good.
Further, compounds having compositions other than the above also showed good orientation.

実施例6 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありXがヘプタノイルオキシ基で
ある化合物(X)及び化合物(V)のらせんのねじれ方
向は右である為、逆ねじれの化合物としてねじれ方向が
左の化合物(IV)のカイラル部の立体配置がS体であり
R′がオクトキシ基である化合物(VII)を用いピッチ
を伸した液晶材料に非カイラル物質として特許請求の範
囲第4項記載のフェニルピリミジン系の化合物2種類と
特許請求の範囲第5項記載のエステル系の化合物4種類
を混合したスメクチックC相を示す混合物(IX)を用い
た8成分系について相転移温度、ピッチの長さ、自発分
極、応答速度について測定を行った。用いた非カイラル
混合物の構造と組成は表2にしめした。化合物(V)と
化合物(X)の混合比は50wt%としこの混合物のピッチ
は化合物(VII)を75wt%いれると発散する。そこで、
カイラル化合物として化合物(V)+化合物(X)が25
wt%、化合物(VII)が75wt%の混合物(XII)を用い
た。この組成のカイラル物質に50wt%の非カイラル混合
物(IX)を混合した液晶組成物の転移温度、ピッチ、自
発分極、応答速度について測定をおこなった。以下にそ
の結果を示す。又、この組成の液晶組成物をもちいて作
成した液晶パネルの配向状態は非常に良好であった。
Example 6 The helical twist direction of compound (X) and compound (V) in which the configuration of the chiral moiety of compound (I) according to claim 1 is 2S, 3S and X is a heptanoyloxy group. Is a right-handed compound, a compound (VII) in which the configuration of the chiral part of the compound (IV) with a left-handed twist direction is S-form and R'is an octoxy group as a compound with a reverse twist, and the pitch is extended. A mixture (IX) showing a smectic C phase in which two kinds of phenylpyrimidine compounds according to claim 4 and four kinds of ester compounds according to claim 5 are mixed as a non-chiral substance. The 8-component system used was measured for phase transition temperature, pitch length, spontaneous polarization, and response speed. The structure and composition of the non-chiral mixture used are shown in Table 2. The mixing ratio of the compound (V) and the compound (X) was 50 wt%, and the pitch of this mixture diverged when 75 wt% of the compound (VII) was added. Therefore,
25 compounds (V) + compounds (X) as chiral compounds
A mixture (XII) of wt% and compound (VII) of 75 wt% was used. The transition temperature, pitch, spontaneous polarization and response speed of a liquid crystal composition prepared by mixing a chiral substance of this composition with 50 wt% of a non-chiral mixture (IX) were measured. The results are shown below. Further, the alignment state of the liquid crystal panel prepared by using the liquid crystal composition having this composition was very good.

転移温度 融点;2.6℃ 自発分極;15.4nC(25℃) Ch相のピッチ;無限大 SmC*相のピッチ;無限大 応答速度;30μsec(25℃44Vpp) 実施例7 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありRがノニルオキシカルボニル
オキシ基である化合物(XIII)のらせんのねじれ方向は
右である為、逆ねじれの化合物としてねじれ方向が左の
化合物(IV)のカイラル部の立体配置がS体でありR′
がオクトキシ基である化合物(VII)を用いピッチを伸
した液晶材料に非カイラル物質として特許請求の範囲第
4項記載のフェニルピリミジン系の化合物2種類と特許
請求の範囲第5項記載のエステル系の化合物4種類を混
合したスメクチックC相を示す混合物(IX)を用いた。
用いた非カイラル混合物の構造と組成は表3にしめし
た。化合物(XIII)のピッチは化合物(VII)を75wt%
いれると発散する。そこで、カイラル化合物として化合
物(XIII)が25wt%、化合物(VII)が75wt%の混合物
(XIV)を用いた。第7図に混合物(IX)と混合物(XI
V)の相図を、第8図に25℃に於ける応答速度をしめし
た。測定に用いた混合物の組成は、化合物(XII)12.5w
t%,化合物(XIII)が37.5wt%,混合物(IX)が50wt
%であった。以下に転移温度、ピッチ、自発分極、応答
速度の測定結果を示す。又、この組成においてピッチは
かなり長くなっており配向状態は非常に良好であった。
Transition temperature Melting point: 2.6 ℃ Spontaneous polarization: 15.4nC (25 ℃) Ch phase pitch: Infinite SmC * phase pitch: Infinite Response speed: 30μsec (25 ℃ 44Vpp) Example 7 The helical twist direction of the compound (XIII) in which the configuration of the chiral moiety of the compound (I) according to claim 1 is 2S, 3S and R is a nonyloxycarbonyloxy group is right. Therefore, as the compound of the reverse twist, the configuration of the chiral part of the compound (IV) whose twist direction is left is S-form and R ′ is R ′.
Wherein the compound (VII) in which is an octoxy group is used as a non-chiral substance in a liquid crystal material having a pitch extended, two kinds of phenylpyrimidine compounds as claimed in claim 4 and an ester compound as claimed in claim 5 The mixture (IX) which shows the smectic C phase which mixed four kinds of compounds of the above was used.
The structure and composition of the non-chiral mixture used are shown in Table 3. The pitch of compound (XIII) is 75 wt% of compound (VII)
Divers when put. Therefore, as the chiral compound, a mixture (XIV) containing 25 wt% of the compound (XIII) and 75 wt% of the compound (VII) was used. Figure 7 shows mixture (IX) and mixture (XI
The phase diagram of (V) shows the response speed at 25 ° C in Fig. 8. The composition of the mixture used for the measurement is Compound (XII) 12.5w
t%, compound (XIII) 37.5wt%, mixture (IX) 50wt
%Met. The measurement results of transition temperature, pitch, spontaneous polarization and response speed are shown below. Further, in this composition, the pitch was considerably long and the orientation was very good.

又、上記以外の組成の化合物についても良好な配向を示
した。
Further, compounds having compositions other than the above also showed good orientation.

転移温度 融点;−7.5℃ 自発分極;9.15nC(25℃) Ch相のピッチ;無限大 SmC*相のピッチ;無限大 応答速度;45μsec(25℃,40Vpp) 実施例8 特許請求の範囲第1項記載の化合物(I)のカイラル部
の立体配置が2S,3SでありRがノニルオキシカルボニル
オキシ基である化合物(XIII)及び化合物(V)のらせ
んのねじれ方向は右である為、逆ねじれの化合物として
ねじれ方向が左の化合物(IV)のカイラル部の立体配置
がS体でありR′がオクトキシ基である化合物(VII)
を用いピッチを伸した液晶材料に非カイラル物質として
特許請求の範囲第4項記載のフェニルピリミジン系の化
合物2種類と特許請求の範囲第5項記載のエステル系の
化合物4種類を混合したスメクチックC相を示す混合物
(VIII)を用いた8成分系について相転移温度、ピッチ
の長さ、自発分極、応答速度について測定を行った。用
いた非カイラル混合物の構造と組成は表3にしめした、
化合物(XIII)と化合物(V)の混合比は50wt%としこ
の混合物のピッチは化合物(VII)を75wt%いれると発
散する。そこで、カイラル化合物として化合物(XIII)
+化合物(V)が25wt%、化合物(VII)が75wt%の混
合物を用いた。この組成のカイラル物質に50wt%の非カ
イラル混合物(IX)を混合した液晶組成物の転移温度、
ピッチについて測定をおこなった。以下にその結果を示
す。又、この組成の液晶組成物をもちいて作成した液晶
パネルの配向状態は非常に良好であった。
Transition temperature Melting point; -7.5 ° C Spontaneous polarization; 9.15nC (25 ° C) Ch phase pitch; Infinite SmC * phase pitch; Infinite response speed; 45μsec (25 ° C, 40Vpp) Example 8 Claim 1 In the compound (I), the configuration of the chiral part is 2S, 3S and R is a nonyloxycarbonyloxy group, and the twist direction of the helix of the compound (V) is right. A compound (VII) in which the configuration of the chiral part of the compound (IV) whose twist direction is left is the S-form and R'is an octoxy group
Smectic C obtained by mixing two kinds of phenylpyrimidine-based compounds according to claim 4 and four kinds of ester-based compounds according to claim 5 as a non-chiral substance in a liquid crystal material whose pitch is extended by using Phase transition temperature, pitch length, spontaneous polarization, and response speed were measured for an eight-component system using a mixture (VIII) exhibiting a phase. The structure and composition of the non-chiral mixture used are shown in Table 3.
The mixing ratio of the compound (XIII) and the compound (V) was 50 wt%, and the pitch of this mixture diverged when 75 wt% of the compound (VII) was added. Therefore, the compound (XIII) is used as a chiral compound.
+ A mixture containing 25 wt% of the compound (V) and 75 wt% of the compound (VII) was used. A transition temperature of a liquid crystal composition obtained by mixing a chiral substance of this composition with 50 wt% of a non-chiral mixture (IX),
The pitch was measured. The results are shown below. Further, the alignment state of the liquid crystal panel prepared by using the liquid crystal composition having this composition was very good.

転移温度 Ch相のピッチ;無限大 SmC*相のピッチ;無限大 発明の効果 以上のように本発明は自発分極の大きい強誘電性液晶材
料に非カイラルの液晶材料を混合するかあるいは、自発
分極の大きい強誘電性液晶材料に逆ねじれの液晶材料を
混合してピッチをのばしたものに非カイラルの液晶材料
を混合することにより、自発分極の大きい高速応答可能
な強誘電性液晶材料を提供するものである。
Transition temperature Ch phase pitch; infinity SmC * phase pitch; infinity Effect of the Invention As described above, according to the present invention, a ferroelectric liquid crystal material having a large spontaneous polarization is mixed with a non-chiral liquid crystal material, or a spontaneous polarization is large. Providing a ferroelectric liquid crystal material having a large spontaneous polarization and capable of high-speed response by mixing an anti-twist liquid crystal material with a ferroelectric liquid crystal material and extending the pitch to mix a non-chiral liquid crystal material Is.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1における混合系の相図、第2
図は本発明の実施例1における強誘電性液晶セルの応答
速度と自発分極の濃度依存の特性図、第3図は本発明の
実施例2における混合系の相図、第4図は本発明の実施
例2における強誘電性液晶セルの応答速度と自発分極の
濃度依存の特性図、第5図は本発明の実施例5における
混合系の相図、第6図は本発明の実施例5における強誘
電性液晶セルの応答速度と自発分極の濃度依存の特性
図、第7図は本発明の実施例7における混合系の相図、
第8図は本発明の実施例7における強誘電性液晶セルの
応答特性図、第9図はカイラル物質に非カイラル物質を
混合した時の自発分極の濃度依存の特性図、第10図は強
誘電性液晶セルの構成図、第11図は強誘電性液晶の模式
図、第12図は強誘電性液晶の動作原理を示した模式図で
ある。 1……偏光板、2……上下のガラス基板、3……透明電
極、4……配向処理を施した有機配向膜、5……強誘電
性液晶相、6……セル厚を一定に保つためのスペーサ
ー、7……強誘電性液晶分子、8……自発分極、9……
Cダイレクター、10……コーン、11……層、12……層法
線、13……分子の層法線に対する傾き角θ、14……層法
線に対して分子の長軸が+θ傾いた液晶分子、15……層
法線に対して分子の長軸が−θ傾いた液晶分子、16……
紙面表方向を向いている双極子モーメント、17……紙面
裏方向を向いている双極子モーメント、18……2枚の偏
光板の方向。
FIG. 1 is a phase diagram of a mixed system in Example 1 of the present invention, and FIG.
FIG. 3 is a characteristic diagram of the ferroelectric liquid crystal cell in Example 1 of the present invention, showing the response speed and concentration dependence of spontaneous polarization. FIG. 3 is a phase diagram of the mixed system in Example 2 of the present invention. 5 is a characteristic diagram of the response speed of the ferroelectric liquid crystal cell and concentration dependence of spontaneous polarization in Example 2, FIG. 5 is a phase diagram of the mixed system in Example 5 of the invention, and FIG. 6 is Example 5 of the invention. FIG. 7 is a characteristic diagram of the response speed of the ferroelectric liquid crystal cell and the concentration dependence of spontaneous polarization, and FIG. 7 is a phase diagram of the mixed system in Example 7 of the present invention.
FIG. 8 is a response characteristic diagram of a ferroelectric liquid crystal cell in Example 7 of the present invention, FIG. 9 is a concentration dependent characteristic diagram of spontaneous polarization when a non-chiral substance is mixed with a chiral substance, and FIG. FIG. 11 is a schematic diagram of the dielectric liquid crystal cell, FIG. 11 is a schematic diagram of the ferroelectric liquid crystal, and FIG. 12 is a schematic diagram showing the operation principle of the ferroelectric liquid crystal. 1 ... Polarizing plate, 2 ... Upper and lower glass substrates, 3 ... Transparent electrodes, 4 ... Aligned organic alignment film, 5 ... Ferroelectric liquid crystal phase, 6 ... Keeping cell thickness constant Spacers, 7 ... Ferroelectric liquid crystal molecules, 8 ... Spontaneous polarization, 9 ...
C director, 10 ...... cone, 11 ...... layer, 12 ...... layer normal, 13 ...... molecule tilt angle θ with respect to layer normal, 14 …… molecule major axis tilts + θ with respect to layer normal Liquid crystal molecules, 15 ... Liquid crystal molecules whose major axis is inclined by -θ with respect to the layer normal, 16 ...
Dipole moment facing the front of the paper, 17 …… Dipole moment facing the back of the paper, 18 …… Direction of two polarizing plates.

フロントページの続き (72)発明者 櫻井 孝男 神奈川県川崎市川崎区鈴木町1番1号 味 の素株式会社中央研究所内 (72)発明者 樋口 量一 神奈川県川崎市川崎区鈴木町1番1号 味 の素株式会社中央研究所内Front page continued (72) Inventor Takao Sakurai 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory (72) Inventor Ryoichi Higuchi 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】強誘電性を示すスメクチック液晶に於て、
一般式 (但し、式中XはR−,RO−,RCOO−,ROCOO−のいずれか
であり、Rはアルキル基を示す)で表されるカイラル部
がラセミ体をなさない液晶化合物と非カイラルなスメク
チックC相を示す液晶化合物をそれぞれ1種類以上含有
することを特徴とする液晶組成物。
1. A smectic liquid crystal exhibiting ferroelectricity,
General formula (Wherein, X is any one of R-, RO-, RCOO-, and ROCOO-, and R is an alkyl group) and the liquid crystal compound in which the chiral portion does not form a racemate and a non-chiral smectic A liquid crystal composition comprising at least one liquid crystal compound exhibiting a C phase.
【請求項2】非カイラルなスメクチックC相を示す液晶
化合物の少なくとも1種類が、一般式 (但し、式中R,R′はそれぞれアルキル基またはアルコ
キシ基を示す)で表されることを特徴とする特許請求の
範囲第1項記載の液晶組成物。
2. At least one kind of liquid crystal compounds exhibiting an asymmetric chiral smectic C phase is represented by the general formula: (Wherein R and R'represent an alkyl group or an alkoxy group respectively), The liquid crystal composition according to claim 1.
【請求項3】非カイラルなスメクチックC相を示す液晶
化合物の少なくとも1種類が、一般式 (但し、式中R,R′はそれぞれアルキル基またはアルコ
キシ基を示す)で表されることを特徴とする特許請求の
範囲第1項記載の液晶組成物。
3. At least one type of liquid crystal compound exhibiting a non-chiral smectic C phase is represented by the general formula: (Wherein R and R'represent an alkyl group or an alkoxy group respectively), The liquid crystal composition according to claim 1.
【請求項4】非カイラルなスメクチックC相を示す液晶
化合物が、少なくとも一般式(II)で表される化合物及
び一般式(III)で表される化合物であることを特徴と
する特許請求の範囲第1項 第2項 第3項のいずれか
に記載の液晶組成物。
4. A liquid crystal compound exhibiting a non-chiral smectic C phase is at least a compound represented by the general formula (II) and a compound represented by the general formula (III). Item 1. The liquid crystal composition according to any one of items 2 and 3.
【請求項5】強誘電性を示すスメクチック液晶に於て、
一般式 (但し、式中XはR−,RO−,RCOO−,ROCOO−のいずれか
であり、Rはアルキル基を示す)で表されるカイラル部
がラセミ体をなさない液晶化合物に前記化合物とらせん
の捩れ方向が逆である化合物を混合してなる液晶組成物
と非カイラルなスメクチックC相を示す液晶化合物をそ
れぞれ1種類以上含有することを特徴とする液晶組成
物。
5. A smectic liquid crystal exhibiting ferroelectricity,
General formula (Wherein, X is any one of R-, RO-, RCOO-, and ROCOO-, and R is an alkyl group), and the chiral part represented by the formula is a liquid crystal compound which is not racemic 2. A liquid crystal composition comprising a liquid crystal composition obtained by mixing a compound having the opposite twist direction and one or more kinds of liquid crystal compounds each exhibiting a non-chiral smectic C phase.
【請求項6】非カイラルなスメクチックC相を示す液晶
化合物の少なくとも1種類が、一般式 (但し、式中R,R′はそれぞれアルキル基またはアルコ
キシ基を示す)で表されることを特徴とする特許請求の
範囲第5項記載の液晶組成物。
6. At least one liquid crystal compound exhibiting a non-chiral smectic C phase is represented by the general formula: (Wherein R and R'represent an alkyl group or an alkoxy group respectively), The liquid crystal composition according to claim 5.
【請求項7】非カイラルなスメクチックC相を示す液晶
化合物の少なくとも1種類が、一般式 (但し、式中R,R′はそれぞれアルキル基またはアルコ
キシ基を示す)で表されることを特徴とする特許請求の
範囲第5項記載の液晶組成物。
7. At least one kind of liquid crystal compounds showing a non-chiral smectic C phase is represented by the general formula: (Wherein R and R'represent an alkyl group or an alkoxy group respectively), The liquid crystal composition according to claim 5.
【請求項8】非カイラルなスメクチックC相を示す液晶
化合物が、少なくとも一般式(II)で表される化合物及
び一般式(III)で表される化合物であることを特徴と
する特許請求の範囲第5項 第6項 第7項のいずれか
に記載の液晶組成物。
8. A liquid crystal compound showing a non-chiral smectic C phase is at least a compound represented by the general formula (II) and a compound represented by the general formula (III). Item 5 The liquid crystal composition according to any one of items 6 and 7.
【請求項9】非カイラルなスメクチックC相を示す液晶
化合物の少なくとも1種類が、一般式 (但し、式中R,R′はそれぞれアルキル基またはアルコ
キシ基を示す)で表され、一般式(I)で表される化合
物とらせんのねじれ方向が逆の化合物の少なくとも1種
類が、一般式 (但し、式中Rはアルキル基、又はアルコキシ基を示
す)で表されるカイラル部がラセミ体をなさない液晶化
合物であることを特徴とする特許請求の範囲第5項第6
項のいずれかに記載の液晶組成物。
9. A liquid crystal compound having a non-chiral smectic C phase is at least one compound represented by the general formula: (Wherein R and R'represent an alkyl group or an alkoxy group, respectively), and at least one of the compound represented by the general formula (I) and the compound having the opposite helical twist direction is represented by the general formula (Wherein R represents an alkyl group or an alkoxy group in the formula) is a liquid crystal compound which does not form a racemate.
Item 4. The liquid crystal composition according to any one of items.
【請求項10】非カイラルなスメクチックC相を示す液
晶化合物の少なくとも1種類が、一般式 (ただし、式中R″,Rはそれぞれアルキル基またはア
ルコキシ基を示す)で表され、一般式(I)で表される
化合物とらせんのねじれ方向が逆の化合物の少なくとも
1種類が一般式 (但し、式中Rはアルキル基、アルコキシ基を示す)で
表されるカイラル部がラセミ体をなさない液晶化合物で
あることを特徴とする特許請求の範囲第5項 第7項の
いずれかに記載の液晶組成物。
10. At least one kind of liquid crystal compounds showing a non-chiral smectic C phase is represented by the general formula: (Wherein R ″ and R each represent an alkyl group or an alkoxy group), and at least one of the compound represented by the general formula (I) and the compound having the opposite helical twist direction is a general formula. (Wherein R represents an alkyl group or an alkoxy group in the formula) is a liquid crystal compound which does not form a racemate, according to any one of claims 5 to 7. The liquid crystal composition described.
【請求項11】非カイラルなスメクチックC相を示す液
晶化合物が、少なくとも一般式(II)で表される化合物
及び一般式(III)で表される化合物であることを特徴
とする特許請求の範囲第9項 第10項のいずれかに記載
の液晶組成物。
11. A liquid crystal compound exhibiting a non-chiral smectic C phase is at least a compound represented by the general formula (II) and a compound represented by the general formula (III). Item 9. The liquid crystal composition according to any one of item 10.
JP18222186A 1986-08-01 1986-08-01 Liquid crystal composition Expired - Lifetime JPH0781143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18222186A JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18222186A JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS6337188A JPS6337188A (en) 1988-02-17
JPH0781143B2 true JPH0781143B2 (en) 1995-08-30

Family

ID=16114461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18222186A Expired - Lifetime JPH0781143B2 (en) 1986-08-01 1986-08-01 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH0781143B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254421A (en) * 1987-04-13 1988-10-21 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS63256688A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPH01101390A (en) * 1987-10-15 1989-04-19 Matsushita Electric Ind Co Ltd Ferroelectric liquid crystal composition

Also Published As

Publication number Publication date
JPS6337188A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
EP0206228B2 (en) Ferroelectric chiral smetic liquid crystal composition and light switching element
JPS60223891A (en) Manufacture of ferroelectric chiral c smectic liquid crystal, liquid crystal produced thereby and display device
JP2547857B2 (en) Ferroelectric liquid crystal composition
JPH02227A (en) Optically active liquid crystal compound and liquid crystal composition containing the same compound
JPH0644120B2 (en) Liquid crystal display element
JPS62205189A (en) Liquid crystal display device
JPS62205190A (en) Liquid crystal composition
JPS6337186A (en) Liquid crystal composition
JPH0781143B2 (en) Liquid crystal composition
KR0146051B1 (en) Ferroelectric liquid crystal composition and a light switching element using the same
JPS6337187A (en) Liquid crystal display device
JPH0745661B2 (en) Liquid crystal display
JPH0745658B2 (en) Liquid crystal composition
JPS63256688A (en) Liquid crystal composition
JPH0788507B2 (en) Liquid crystal display
JP2563553B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH0745659B2 (en) Liquid crystal composition
JPH0745660B2 (en) Liquid crystal display
JPH07116440B2 (en) Liquid crystal composition and liquid crystal display device
JPH01101390A (en) Ferroelectric liquid crystal composition
JPS63254421A (en) Liquid crystal display device
JPH01152186A (en) Ferroelectric liquid crystal display
JPS63191891A (en) Liquid crystal display device
JPH01313589A (en) Ferroelectric liquid crystal display device
JPS63191890A (en) Liquid crystal composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term