JPS63256688A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS63256688A
JPS63256688A JP9023987A JP9023987A JPS63256688A JP S63256688 A JPS63256688 A JP S63256688A JP 9023987 A JP9023987 A JP 9023987A JP 9023987 A JP9023987 A JP 9023987A JP S63256688 A JPS63256688 A JP S63256688A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
ferroelectric liquid
liq
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9023987A
Other languages
Japanese (ja)
Inventor
Kazuhiro Jiyouten
一浩 上天
Hiroyuki Onishi
博之 大西
Hisahide Wakita
尚英 脇田
Tsuyoshi Kamimura
強 上村
Yoshio Iwai
義夫 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9023987A priority Critical patent/JPS63256688A/en
Publication of JPS63256688A publication Critical patent/JPS63256688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a ferroelectric liq. crystal material which easily exhibits a liq. crystal phase over a wide temp. range including room temp. and enables a high speed response, by adding a liq. crystal material exhibiting nonchiral smectic C phase to a ferroelectric liq. crystal material in particular proportions. CONSTITUTION:A liq. crystal compsn. prepd. by adding at least one liq. crystal material exhibiting nonchiral smectic C phase in an amt. of at least 30-70wt.% to a ferroelectric liq. crystal material. Examples of the liq. crystal material include a compd. of formula 1 (wherein R and R' are each an alkyl, alkoxy, or acyloxy group).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な液晶物質を含有する液晶組成物に係わり
、特に強誘電性液晶材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to liquid crystal compositions containing novel liquid crystal materials, and in particular to ferroelectric liquid crystal materials.

従来の技術 近年液晶表示は、腕時計、電卓等だけでなく映像機器に
も広く使われるようになり、液晶カラーテレビも市場に
出始めている。現在カラー表示用液晶パネルはネマチッ
ク液晶を用いたものがその主流を占めている。しかし、
そのネマチック液晶の諸特性は理想的とは言い難く多く
の問題を含んでいる。強誘電性液晶はその速い応答速度
、メモリー性等ネマチフク液晶にはない諸特性を有して
おりディスプレイ装置への応用が考えられ多方面から研
究が進められている。(例えばオプトロニクス、198
3、阻9)、以下図面をみながら強誘電性液晶について
説明する。第6図は強誘電性液晶分子の模式図である。
2. Description of the Related Art In recent years, liquid crystal displays have come to be widely used not only in wristwatches, calculators, etc., but also in video equipment, and liquid crystal color televisions have also begun to appear on the market. Currently, the mainstream color display liquid crystal panels are those using nematic liquid crystals. but,
The characteristics of nematic liquid crystals are far from ideal and include many problems. Ferroelectric liquid crystals have various properties that are not found in nematic liquid crystals, such as fast response speed and memory properties, and are being studied in a variety of fields for potential applications in display devices. (e.g. Optronics, 198
3.9) The ferroelectric liquid crystal will be explained below with reference to the drawings. FIG. 6 is a schematic diagram of ferroelectric liquid crystal molecules.

強誘電性液晶は通常スメクチック液晶と呼ばれる層構造
を有する液晶で、液晶分子は層法線方向に対してθだけ
傾いた構造をとっている。また、通常強誘電性液晶分子
は、ラセル体でない光学活性な液晶分子によって構成さ
れている。
A ferroelectric liquid crystal is usually a liquid crystal having a layered structure called a smectic liquid crystal, and the liquid crystal molecules have a structure tilted by θ with respect to the normal direction of the layers. In addition, ferroelectric liquid crystal molecules are usually composed of optically active liquid crystal molecules that are not lace bodies.

第6図に於て、7は液晶分子、8は自発分極、9はCダ
イレクタ−1)0はコーン、1)は層構造、12は層法
線方法、13は傾き角θを示している。
In Figure 6, 7 indicates liquid crystal molecules, 8 indicates spontaneous polarization, 9 indicates C director, 1) 0 indicates cone, 1) indicates layer structure, 12 indicates layer normal method, and 13 indicates tilt angle θ. .

第6図に示すように、強誘電性液晶分子は自発分極を有
しており、カイラルスメクチックC相に於いては、第6
図の円錐形10(コーン)の外側、を自由に動くことが
できる。層毎に分子長軸の方向は少しだけずれており全
体としてはねじれ構造をとっている。次に強誘電性液晶
の表示原理について述べる。第7図は強誘電性液晶の動
作原理図で有る。第7図(a)は電圧無印加の状態、第
7図(b)は紙面塵から表方向に電圧を印加した場合、
第7図(C)は逆方向に電圧を印加した場合の動作原理
図である。14は層法線に対して分子長軸が+θ度傾い
た液晶分子、15は一〇度傾いた液晶分子、16は紙面
表方向を向いている双極子モーメント、17は紙面裏方
向を向いている双極子モーメント、18は2枚の偏光板
の方向である。強誘電性液晶を透明電極を有したガラス
基板に挟みそのパネルの厚を螺旋ピッチ以下にすると第
7図(alのように螺旋がほどけ層に対して分子が+θ
度傾いた領域と一〇度傾いた領域にわかれる。上下電極
間紙面裏から表方向に電圧を印加することにより第7図
中)のようにセル全体が+θ度傾いたモノドメインにな
る。
As shown in Figure 6, ferroelectric liquid crystal molecules have spontaneous polarization, and in the chiral smectic C phase, the 6th
It can move freely on the outside of the conical shape 10 (cone) shown in the figure. The direction of the long axis of the molecules deviates slightly from layer to layer, resulting in a twisted structure as a whole. Next, we will discuss the display principle of ferroelectric liquid crystal. FIG. 7 is a diagram showing the operating principle of a ferroelectric liquid crystal. Fig. 7(a) shows the state when no voltage is applied, and Fig. 7(b) shows the case when the voltage is applied from the surface of the paper toward the front side.
FIG. 7(C) is a diagram showing the principle of operation when voltage is applied in the opposite direction. 14 is a liquid crystal molecule whose long axis is tilted by +θ degrees with respect to the layer normal, 15 is a liquid crystal molecule tilted by 10 degrees, 16 is a dipole moment facing toward the front of the page, and 17 is a dipole moment facing toward the back of the page. The dipole moment 18 is the direction of the two polarizing plates. When a ferroelectric liquid crystal is sandwiched between glass substrates with transparent electrodes and the thickness of the panel is made equal to or less than the helical pitch, the helix unwinds as shown in Figure 7 (al), and the molecules are +θ with respect to the layer.
It is divided into a region tilted by 10 degrees and a region tilted by 10 degrees. By applying a voltage between the upper and lower electrodes from the back of the paper toward the front, the entire cell becomes a monodomain tilted by +θ degrees as shown in FIG.

また、逆電圧を印加すると第7図(C)のようにセル全
体が−θ度傾いたモノドメインになる。従って、電気光
学効果による複屈折または2色性を利用すれば+θ度傾
いた2つの状態により明暗を表すことができる。
Furthermore, when a reverse voltage is applied, the entire cell becomes a monodomain tilted by -θ degrees as shown in FIG. 7(C). Therefore, by using birefringence or dichroism due to the electro-optic effect, brightness and darkness can be represented by two states tilted by +θ degrees.

強誘電性液晶をディスプレイデバイスに応用する場合、
液晶材料に要求される条件として以下のものがあげられ
る。
When applying ferroelectric liquid crystal to display devices,
The following conditions are required for liquid crystal materials.

■ 室温を含む広い温度範囲で強誘電性液晶相(例えば
カイラルスメクチックC相)を示す。
(2) Exhibits a ferroelectric liquid crystal phase (for example, chiral smectic C phase) over a wide temperature range including room temperature.

■ 強誘電性液晶の電界に対する応答速度τは、τ=η
/Ps−E 但し、η : 粘度 PS: 自発分極 E : 印加電場 で与えられる。この為、数μsecオーダーの高速応答
を実現するためには、大きな自発分極をもつことが必要
である。
■ The response speed τ of ferroelectric liquid crystal to electric field is τ=η
/Ps-E where η: Viscosity PS: Spontaneous polarization E: Given by applied electric field. Therefore, in order to achieve a high-speed response on the order of several microseconds, it is necessary to have a large spontaneous polarization.

■ 先述したように、強誘電性液晶の光学応答は、安定
な2状態(bistable 5tate)により初め
て実現される。C1erkらによると、この状態を実現
するためには、セルギャップdを螺旋ピッチル以下にし
螺旋をほどく必要がある。エヌ、ニー、クラーク、ニス
、ティー、ラガヴアル:アブル、フィズ、レフト、36
899  (1980)  (N、  A、 C1er
k 。
(2) As mentioned above, the optical response of a ferroelectric liquid crystal is first realized in two stable states (bistable 5 states). According to C1erk et al., in order to achieve this state, it is necessary to make the cell gap d less than the helical pitch and unwind the helix. N, Knee, Clark, Nis, Tee, Raghaval: Able, Fizz, Left, 36
899 (1980) (N, A, C1er
k.

S、 T、 Lagerwall ; ApH,Phy
s、 Lett、 36899(1980) )この為
、セル作成上作成容易なセルギャップの厚いセルを利用
するためには、強誘電性液晶の螺旋ピッチを長くする必
要がある。
S, T, Lagerwall; APH, Phy
(S, Lett, 36899 (1980)) Therefore, in order to utilize a cell with a thick cell gap that is easy to fabricate, it is necessary to lengthen the helical pitch of the ferroelectric liquid crystal.

Φ 強誘電性液晶の配向状態は、液晶材料の相系列によ
って異なり、特に強誘電性液晶相の高温側にスメクチッ
クA相(Sa+ A )及びコレステリック相(ch)
を有する液晶材料が良好な配向状態が得られると考えら
れている。即ち、強誘電性液晶材料の相系列が、例えば
カイラルスメクチックC相の場合水 I so  −*Ch−+SmA−4SmC*但し、I
so:  等方性液体 Ch: コレステリンク相 SmA  :  スメクチックA相 SmC:  カイラルスメクチックC相であることが望
ましい。
Φ The orientation state of the ferroelectric liquid crystal varies depending on the phase series of the liquid crystal material, and especially the smectic A phase (Sa+A) and cholesteric phase (ch) on the high temperature side of the ferroelectric liquid crystal phase.
It is believed that a liquid crystal material having a good alignment state can be obtained. That is, when the phase series of the ferroelectric liquid crystal material is, for example, chiral smectic C phase, water Iso -*Ch-+SmA-4SmC*However, I
so: Isotropic liquid Ch: Cholesteric phase SmA: Smectic A phase SmC: Chiral smectic C phase is desirable.

更に、上記のような相系列を持つ液晶材料の中でもch
相のピッチが長いものの方が配向状態が良好であると考
えられている。
Furthermore, among liquid crystal materials with the above phase series, ch
It is believed that the longer the phase pitch, the better the orientation state.

以上述べた条件以外にも液晶分子の傾き角θ等に対する
様々な要求がある。
In addition to the conditions described above, there are various requirements regarding the tilt angle θ of liquid crystal molecules, etc.

温度範囲の拡大のためには多くの強誘電性液晶材料を混
合してやる必要が有る。このとき先述の4つの条件を満
たすためには多くの強誘電性液晶材料単位のコレステリ
ック相およびカイラルスメクチックC相それぞれに於け
るピッチの左右の向き、大きさ、自発分極の極性等を総
て考慮しながら混合しなければならず、実用的な強誘電
性液晶組成物は得にくいという問題点があり、非カイラ
ルなスメクチックC相を示す化合物を混合する方法がと
られていた。
In order to expand the temperature range, it is necessary to mix many ferroelectric liquid crystal materials. At this time, in order to satisfy the above four conditions, we must take into consideration the left and right direction of pitch, the size, the polarity of spontaneous polarization, etc. in the cholesteric phase and chiral smectic C phase of many ferroelectric liquid crystal material units. However, there is a problem in that it is difficult to obtain a practical ferroelectric liquid crystal composition, and a method of mixing a compound exhibiting a non-chiral smectic C phase has been adopted.

発明が解決しようとする問題点 従来の強誘電性液晶材料は、温度範囲の拡大の為には、
非カイラルなスメクチックC相を示す化合物を混合する
方法がとられていた。ところが、非カイラルな化合物を
混合することにより、自発分極が小さくなるため非カイ
ラル成分の増加にともない応答速度が遅くなるため非カ
イラル成分の添加量をあまり増やせず多種類のカイラル
成分を自発分極の極性、カイラルスメクチックC相のら
せんのねじれ方向、コレステリック相のらせんのねじれ
方向等多くの物質定数を合せながら混合してやる必要が
あり実用的な強誘電性液晶組成物は得に(いという問題
点があった。そこで本発明の強誘電性液晶組成物は、非
カイラルなスメクチックC相を示す液晶化合物を30〜
70−t%を混合することにより、広い温度範囲で強誘
電性液晶相を示し、容易に良好な配向が得られ、高速応
答可能な強誘電性液晶材料を提供するものである。
Problems to be Solved by the Invention Conventional ferroelectric liquid crystal materials cannot be used to expand the temperature range.
A method of mixing compounds exhibiting a non-chiral smectic C phase has been used. However, by mixing non-chiral compounds, the spontaneous polarization becomes smaller, and as the non-chiral component increases, the response speed becomes slower. Practical ferroelectric liquid crystal compositions have the disadvantage that they must be mixed while adjusting many material constants, such as polarity, the direction of helix twist in the chiral smectic C phase, and the direction of helix twist in the cholesteric phase. Therefore, the ferroelectric liquid crystal composition of the present invention contains a liquid crystal compound exhibiting a non-chiral smectic C phase in an amount of 30 to 30%.
By mixing 70-t%, it is possible to provide a ferroelectric liquid crystal material that exhibits a ferroelectric liquid crystal phase over a wide temperature range, can easily obtain good alignment, and can respond at high speed.

問題点を解決するための手段 上記問題点を解決するために本発明の液晶組成物は、強
誘電性液晶材料に非カイラルである(即ちねじれ構造、
自発分極を全く有さない)スメクチックC相を示す液晶
材料を30〜70−t%混合することにより強誘電性液
晶相の温度範囲の拡大、良好な配向及び高速応答可能な
強誘電性液晶材料を容易に得ることができるという特徴
を備えたものである。
Means for Solving the Problems In order to solve the above problems, the liquid crystal composition of the present invention has a ferroelectric liquid crystal material that is non-chiral (i.e. has a twisted structure,
By mixing 30 to 70-t% of a liquid crystal material exhibiting a smectic C phase (which has no spontaneous polarization at all), a ferroelectric liquid crystal material capable of expanding the temperature range of the ferroelectric liquid crystal phase, achieving good alignment, and high-speed response. It has the characteristic that it can be easily obtained.

作用 本発明は上記した非カイラルなスメクチックC相を示す
液晶化合物を用いることによりねじれの向き及び自発分
極の極性等の物質定数を考慮することなしに温度範囲の
広い液晶組成物を容易に得ることができる。非カイラル
なスメクチ7りC相を示す液晶化合物を強誘電性液晶化
合物に混合する場合その自発分極は第4図に示すように
非カイラル成分の増加とともに直線的に減少するため混
合物の自発分極は極端に小さくなってしまいτ=η/P
s−E(但し、τは応答速度、ηは粘度、Psは自発分
極1、Eは印加電場を示す)より応答速度τは非カイラ
ル成分の増加とともに遅くなってしまう。本発明の場合
は、非カイラルな液晶化合物を30〜70−t%混合す
るため、その自発分極Psは減少するが粘性ηとの相関
により第4図に示すように非カイラル成分が増加しても
応答速度τは遅くなっておらず、より速くなる傾向にあ
ることとなる。
Effect of the present invention By using the above-mentioned liquid crystal compound exhibiting the non-chiral smectic C phase, it is possible to easily obtain a liquid crystal composition having a wide temperature range without considering material constants such as the direction of twist and the polarity of spontaneous polarization. Can be done. When a liquid crystal compound exhibiting a non-chiral Smectic C phase is mixed with a ferroelectric liquid crystal compound, the spontaneous polarization of the mixture decreases linearly as the non-chiral component increases, as shown in Figure 4. It becomes extremely small and τ=η/P
From s-E (where τ is the response speed, η is the viscosity, Ps is the spontaneous polarization 1, and E is the applied electric field), the response speed τ becomes slower as the non-chiral component increases. In the case of the present invention, since 30 to 70-t% of a non-chiral liquid crystal compound is mixed, the spontaneous polarization Ps decreases, but the non-chiral component increases due to the correlation with the viscosity η, as shown in FIG. In this case, the response speed τ has not become slower, but tends to become faster.

実施例 以下本発明の一実施例を図を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

最初に本実施例において、その強誘電性液晶材料の応答
特性を測定した液晶セルの構造を第5図に示す、ここで
、1.1′は偏光板2.2′はガラス基板、3.3′は
透明電極、4.4′はラビングにより配向処理を施した
有機高分子膜、5は強誘電性液晶層、6はセル厚を一定
に保つためのスペーサーを表わしている。このような構
造のセルに強誘電性液晶材料を封入しその応答特性及び
自発分極を測定した。自発分極については三角波法を用
いて測定を行った。
First, in this example, the structure of the liquid crystal cell in which the response characteristics of the ferroelectric liquid crystal material were measured is shown in FIG. 5, where 1.1' is a polarizing plate 2.2' is a glass substrate, 3. 3' is a transparent electrode, 4.4' is an organic polymer film subjected to alignment treatment by rubbing, 5 is a ferroelectric liquid crystal layer, and 6 is a spacer for keeping the cell thickness constant. A ferroelectric liquid crystal material was sealed in a cell with such a structure, and its response characteristics and spontaneous polarization were measured. Spontaneous polarization was measured using the triangular wave method.

又、相転移温度については、偏光顕微鏡によるテクチャ
−観察及び、DSC(示差走査熱量計)により測定を行
った。
Further, the phase transition temperature was measured by texture observation using a polarizing microscope and using a DSC (differential scanning calorimeter).

実施例1 又はアシルオキシ基を示す)で示される化合物(I)が
式(III)でしめされる化合物であり強誘電性を示す
カイラルな成分が(IV)式でしめされるような混合系
について相転移温度、自発分極、ピッチの長さ、応答速
度を測定した。第1図にこの混合系の相図を、第2図に
25℃における自発分極と20 V pI)印加時に於
ける応答速度の濃度依存を示した。Aは自発分極の濃度
依存を、Bは応答速度の濃度依存を示す。第2図より自
発分極の値は非カイラル成分の増加と共にほぼ直線的に
減少しており化合物(IV)が20−t%以下ではその
自発分極が粘性に増して応答速度に影響を及ぼすため、
化合物(IV)が20−t%の時25℃に於ける24 
V ppの電圧印加時の応答速度は140μsecと遅
い値を示した。一方、化合物(IV)が80w t%以
下では自発分極は高い値を示すがそれにともない粘度も
増加するため、化合物(IV)が80w t%の時25
℃に於ける24 V ppの電圧印加時の応答速度は1
20μsecと遅い値を示した。また、この領域では、
第1図より温度範囲も狭い。ところが、化合物(IV)
が50−t%の時25℃に於ける24 V ppの電圧
印加時の応答速度は62μsecという高速応答を示し
、温度範囲の広い液晶相が得られた。またこの組成にお
いてピッチはかなり長くなっており配向状態は良好であ
った。以上のように応答速度は自発分極と粘度との相関
で決定されるものであり、高速応答かつ広い温度範囲を
示すことが液晶材料に要求される。
Example 1 Regarding a mixed system in which the compound (I) represented by the formula (or acyloxy group) is a compound represented by the formula (III) and the chiral component exhibiting ferroelectricity is represented by the formula (IV) The phase transition temperature, spontaneous polarization, pitch length, and response speed were measured. FIG. 1 shows the phase diagram of this mixed system, and FIG. 2 shows the spontaneous polarization at 25° C. and the concentration dependence of the response speed when 20 V pI) is applied. A shows the concentration dependence of spontaneous polarization, and B shows the concentration dependence of response speed. From Figure 2, the value of spontaneous polarization decreases almost linearly as the non-chiral component increases, and when the content of compound (IV) is less than 20-t%, the spontaneous polarization increases in viscosity and affects the response speed.
24 at 25°C when compound (IV) is 20-t%
The response speed when a voltage of Vpp was applied was as slow as 140 μsec. On the other hand, when compound (IV) is 80 wt% or less, the spontaneous polarization shows a high value, but the viscosity also increases accordingly.
The response speed when applying a voltage of 24 V pp at ℃ is 1
It showed a slow value of 20 μsec. Also, in this area,
The temperature range is also narrower than in Figure 1. However, compound (IV)
When a voltage of 24 V pp was applied at 25 DEG C. when 50-t%, the response speed was as fast as 62 .mu.sec, and a liquid crystal phase with a wide temperature range was obtained. Further, in this composition, the pitch was considerably long and the orientation state was good. As described above, the response speed is determined by the correlation between spontaneous polarization and viscosity, and liquid crystal materials are required to exhibit high-speed response and a wide temperature range.

非カイラル成分を30〜70−t%混合することにより
高速応答でしかも温度範囲の広い液晶材料が得ら(式中
R,R’、R’、R−はアルキル基又はアルコキシ基又
はアシルオキシ基を示す)で示される化合物(1)式及
び(II)式が(V)式及び(VI)式で示される化合
物であり強誘電性を示すカイラルな成分が(■)式で示
されるような混合系について相転移温度を測定した。第
3図にこの混合系の相図を示した。第3図よりカイラル
成分のwt%の減少と共に広い温度範囲の液晶相を示し
た。
By mixing 30 to 70-t% of a non-chiral component, a liquid crystal material with a fast response and a wide temperature range can be obtained (in the formula, R, R', R', and R- represent an alkyl group, an alkoxy group, or an acyloxy group). A mixture in which the compound (1) and (II) are the compounds represented by the (V) and (VI) formulas, and the chiral component exhibiting ferroelectricity is represented by the (■) formula. The phase transition temperature was measured for the system. Figure 3 shows the phase diagram of this mixed system. From FIG. 3, a liquid crystal phase was exhibited over a wide temperature range as the wt% of the chiral component decreased.

H3 C@ H+?O旨■X(C←C00CHzCHCzHs
   ・・・(■)本 発明の効果 以上のように本発明は強誘電性液晶材料に非カイラルの
スメクチックC相を示す液晶材料を30〜70wt%混
合することにより、容易に室温を含む広い温度範囲で液
晶相を示し、高速応答可能な強誘電性液晶材料を提供す
るものである。
H3 C@H+? O effect■X(C←C00CHzCHCzHs
... (■) Effects of the present invention As described above, the present invention can easily handle a wide range of temperatures including room temperature by mixing 30 to 70 wt% of a liquid crystal material exhibiting a non-chiral smectic C phase to a ferroelectric liquid crystal material. The object of the present invention is to provide a ferroelectric liquid crystal material that exhibits a liquid crystal phase within a range of 100 to 100 nm and is capable of high-speed response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における混合系の相図、第2
図は本発明の実施例1における強誘電性液晶セルの応答
速度と自発分極の濃度依存の特性を示すグラフ、第3図
は本発明の実施例2における混合系の相図、第4図は本
発明の強誘電性液晶組成物の自発分極と応答速度のカイ
ラル成分の濃度依存の特性を示すグラフ、第5図は強誘
電性液晶セルの構成図、第6図は強誘電性液晶の模式図
、第7図は強誘電性液晶の動作原理を示した模式図であ
る。 A、A’・・・・・・自発分極の濃度依存、B、B’・
・・・・・応答速度の濃度依存を示す、1.1′・・・
・・・偏光板、2.2′・・・・・・上下のガラス基板
、3.3′・・・・・・透明電極、4.4′・・・・・
・配向処理を施した有機配向膜、5・・・・・・強誘電
性液晶相、6・・・・・・セル厚を一定に保つためのス
ペーサー、7・・・・・・強誘電性液晶分子、8・・・
・・・自発分極、9・・・・・・Cダイレクタ−1)0
・・・・・・コーン、1)・・・・・・層、12・・・
・・・層法線、13・・・・・・分子の層法線に対する
傾き角θ、14・・・・・・層法線に対して分子の長軸
が十〇傾いた液晶分子、15・・・・・・層法線に対し
て分子の長軸が一θ傾いた液晶分子、16・・・・・・
紙面表方向を向いている双極子モーメント、17・・・
・・・紙面裏方向を向いている双極子モーメント、18
・・・・・・2枚の偏光板の方向。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 θ            so          
 iθOイbイ酬4勿 CIV)の vt2 第 2 図 OSθ         Iθ0 イヒ4−4句 (IV)のW亡、l 第3図 θ                、so     
         1004ヒレイト4勿 (V/1)
の W沙!≦第4図 0        60        lθρカイラ
ルA分ψwt名 第5図 第6図 第7図
Figure 1 is the phase diagram of the mixed system in Example 1 of the present invention, and Figure 2 is the phase diagram of the mixed system in Example 1 of the present invention.
The figure is a graph showing the concentration dependence characteristics of the response speed and spontaneous polarization of the ferroelectric liquid crystal cell in Example 1 of the present invention, Figure 3 is the phase diagram of the mixed system in Example 2 of the present invention, and Figure 4 is A graph showing the concentration dependence of the chiral component of the spontaneous polarization and response speed of the ferroelectric liquid crystal composition of the present invention, FIG. 5 is a diagram of the configuration of the ferroelectric liquid crystal cell, and FIG. 6 is a schematic diagram of the ferroelectric liquid crystal. 7 are schematic diagrams showing the operating principle of a ferroelectric liquid crystal. A, A'・・・Concentration dependence of spontaneous polarization, B, B'・
...1.1'...indicating concentration dependence of response speed
...Polarizing plate, 2.2'... Upper and lower glass substrates, 3.3'... Transparent electrode, 4.4'...
・Organic alignment film subjected to alignment treatment, 5... Ferroelectric liquid crystal phase, 6... Spacer for keeping cell thickness constant, 7... Ferroelectric Liquid crystal molecules, 8...
...Spontaneous polarization, 9...C director-1)0
... Cone, 1) ... Layer, 12 ...
...Layer normal, 13...Tilt angle θ of the molecule with respect to the layer normal, 14...Liquid crystal molecule whose long axis of the molecule is tilted by 10 degrees with respect to the layer normal, 15・・・・・・Liquid crystal molecules whose long axis is tilted by 1θ with respect to the layer normal, 16・・・・・・
Dipole moment pointing toward the surface of the paper, 17...
...Dipole moment pointing toward the back of the paper, 18
・・・・・・Direction of the two polarizing plates. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 θ so
iθO Ib I 4 Nau CIV) vt2 Fig. 2 OSθ Iθ0 Ihi 4-4 Clause (IV) W death, l Fig. 3 θ , so
1004 Hireito 4 Naru (V/1)
The W Sha! ≦Figure 4 0 60 lθρ Chiral A minute ψwt name Figure 5 Figure 6 Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)強誘電性液晶を示す液晶組成物に、非カイラルな
スメクチックC相を示す液晶化合物を少なくとも1種類
以上30〜70wt%添加することを特徴とする液晶組
成物。
(1) A liquid crystal composition characterized in that 30 to 70 wt % of at least one type of liquid crystal compound exhibiting an achiral smectic C phase is added to a liquid crystal composition exhibiting a ferroelectric liquid crystal.
(2)非カイラルなスメクチックC相を示す液晶化合物
の一般式が ▲数式、化学式、表等があります▼ (但し式中R、R′はアルキル基又はアルコキシ基又は
アシルオキシ基を示す)で表されることを特徴とする特
許請求の範囲第(1)項記載の液晶組成物。
(2) The general formula of a liquid crystal compound exhibiting a non-chiral smectic C phase is represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, R and R' represent an alkyl group, an alkoxy group, or an acyloxy group.) A liquid crystal composition according to claim (1), characterized in that:
(3)強誘電性液晶を示す液晶組成物のらせんピッチが
のびていることを特徴とする特許請求の範囲第(1)項
または第(2)項のいずれかに記載の液晶組成物。
(3) The liquid crystal composition according to claim 1 or 2, characterized in that the helical pitch of the liquid crystal composition exhibiting ferroelectric liquid crystal is elongated.
(4)非カイラルなスメクチックC相を示す液晶化合物
の一般式が ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ (但し式中R、R′、R″、R′″はアルキル基又はア
ルコキシ基又はアシルオキシ基を示す)で表されること
を特徴とする特許請求の範囲第(1)項記載の液晶組成
物。
(4) The general formula of a liquid crystal compound exhibiting a non-chiral smectic C phase is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, in the formula, R, R', R'', R The liquid crystal composition according to claim 1, wherein ``'' represents an alkyl group, an alkoxy group, or an acyloxy group.
(5)強誘電性液晶を示す液晶組成物のらせんピッチが
のびていることを特徴とする特許請求の範囲第(1)項
または第(4)項のいずれかに記載の液晶組成物。
(5) The liquid crystal composition according to claim 1 or 4, characterized in that the helical pitch of the liquid crystal composition exhibiting ferroelectric liquid crystal is elongated.
JP9023987A 1987-04-13 1987-04-13 Liquid crystal composition Pending JPS63256688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9023987A JPS63256688A (en) 1987-04-13 1987-04-13 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9023987A JPS63256688A (en) 1987-04-13 1987-04-13 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS63256688A true JPS63256688A (en) 1988-10-24

Family

ID=13992941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9023987A Pending JPS63256688A (en) 1987-04-13 1987-04-13 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS63256688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185390A (en) * 1988-01-18 1989-07-24 Chisso Corp Smectic liquid crystal mixture
JPH02117989A (en) * 1988-10-27 1990-05-02 Adeka Argus Chem Co Ltd Ferroelectric liquid crystal composition
JPH0381392A (en) * 1989-08-23 1991-04-05 Sharp Corp Liquid crystal composition and liquid crystal device containing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195187A (en) * 1985-02-25 1986-08-29 Chisso Corp Ferroelectric chiral smectic liquid crystal composition
JPS61291679A (en) * 1985-06-18 1986-12-22 Chisso Corp Ferroelectric chiral smectic liquid crystal composition
JPS6337188A (en) * 1986-08-01 1988-02-17 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPS6388165A (en) * 1986-10-01 1988-04-19 Ajinomoto Co Inc Liquid crystal
JPS63122650A (en) * 1986-11-10 1988-05-26 Chisso Corp Alpha-alkoxypropionic acid esters
JPS63126842A (en) * 1986-11-17 1988-05-30 Chisso Corp Optically active compound
JPS63190842A (en) * 1987-02-02 1988-08-08 Chisso Corp 2-substituted alkyl ethers and liquid crystal composition
JPS63277295A (en) * 1987-01-27 1988-11-15 Asahi Glass Co Ltd Ferroelectric liquid crystal composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195187A (en) * 1985-02-25 1986-08-29 Chisso Corp Ferroelectric chiral smectic liquid crystal composition
JPS61291679A (en) * 1985-06-18 1986-12-22 Chisso Corp Ferroelectric chiral smectic liquid crystal composition
JPS6337188A (en) * 1986-08-01 1988-02-17 Matsushita Electric Ind Co Ltd Liquid crystal composition
JPS6388165A (en) * 1986-10-01 1988-04-19 Ajinomoto Co Inc Liquid crystal
JPS63122650A (en) * 1986-11-10 1988-05-26 Chisso Corp Alpha-alkoxypropionic acid esters
JPS63126842A (en) * 1986-11-17 1988-05-30 Chisso Corp Optically active compound
JPS63277295A (en) * 1987-01-27 1988-11-15 Asahi Glass Co Ltd Ferroelectric liquid crystal composition
JPS63190842A (en) * 1987-02-02 1988-08-08 Chisso Corp 2-substituted alkyl ethers and liquid crystal composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185390A (en) * 1988-01-18 1989-07-24 Chisso Corp Smectic liquid crystal mixture
JPH02117989A (en) * 1988-10-27 1990-05-02 Adeka Argus Chem Co Ltd Ferroelectric liquid crystal composition
JPH0381392A (en) * 1989-08-23 1991-04-05 Sharp Corp Liquid crystal composition and liquid crystal device containing the same

Similar Documents

Publication Publication Date Title
JP2547857B2 (en) Ferroelectric liquid crystal composition
JPH0644120B2 (en) Liquid crystal display element
JPH02227A (en) Optically active liquid crystal compound and liquid crystal composition containing the same compound
JPS6337186A (en) Liquid crystal composition
JPS6337187A (en) Liquid crystal display device
JPS62205189A (en) Liquid crystal display device
JPS63256688A (en) Liquid crystal composition
JPS62205190A (en) Liquid crystal composition
JP2796753B2 (en) Chiral smectic liquid crystal composition and liquid crystal device using the same
JP2510664B2 (en) Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device
JPH0781143B2 (en) Liquid crystal composition
JPH0745661B2 (en) Liquid crystal display
JPS63254421A (en) Liquid crystal display device
JP2563553B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPS6337190A (en) Liquid crystal composition
JP2910791B2 (en) Liquid crystal composition
JP2763220B2 (en) Liquid crystal display
JPS63191890A (en) Liquid crystal composition
JPH01101390A (en) Ferroelectric liquid crystal composition
JPH0788507B2 (en) Liquid crystal display
JPS63191891A (en) Liquid crystal display device
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH0745660B2 (en) Liquid crystal display
JPH07116440B2 (en) Liquid crystal composition and liquid crystal display device
JPH0745659B2 (en) Liquid crystal composition