JPS62143030A - Ferroelectric liquid crystal display device - Google Patents

Ferroelectric liquid crystal display device

Info

Publication number
JPS62143030A
JPS62143030A JP28347785A JP28347785A JPS62143030A JP S62143030 A JPS62143030 A JP S62143030A JP 28347785 A JP28347785 A JP 28347785A JP 28347785 A JP28347785 A JP 28347785A JP S62143030 A JPS62143030 A JP S62143030A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
display device
chiral
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28347785A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kamimura
強 上村
Chikako Ooba
大庭 周子
Hiroyuki Onishi
博之 大西
Hisahide Wakita
尚英 脇田
Isao Oota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28347785A priority Critical patent/JPS62143030A/en
Publication of JPS62143030A publication Critical patent/JPS62143030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily obtain a ferroelectric liquid crystal display device having a wide temp. range and good display grade by using a ferroelectric liquid crystal compsn. mixed with a nonchiral liquid crystal for a compsn. mixed with chiral materials which are reversed in twisting directions. CONSTITUTION:The compsn. mixture composed of the liquid crystal having any of SmC, SmI, SmF, and SmG phases which are not chiral is mixed with the compsn. which is prepd. by mixing the left-hand chiral ferroelectric liquid crystal and right-hand chiral ferroelectric liquid crystal, is unravelled in the twisting directions and has a long pitch. The ferroelectric liquid crystal compsn. having the long pitch is thus obtd. Since this liquid crystal compsn. has the long pitch, the compsn. has a high memory characteristic and good orientability. The ferroelectric liquid crystal display device having the high display grade and a wide temp. range is thus easily obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶表示装置に関わるものであり、光
シヤツターまたはマトリックス表示装置に広く用いられ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to ferroelectric liquid crystal display devices, which are widely used in optical shutters or matrix display devices.

従来の技術 従来の技術を以下、図を用いて説明する。Conventional technology The conventional technology will be explained below using figures.

強誘電性液晶分子は不斉原子を有しており、そのため通
常ねじれ構造を有している。このねじれ構造を第3図に
示す。
Ferroelectric liquid crystal molecules have asymmetric atoms and therefore usually have a twisted structure. This twisted structure is shown in FIG.

第3図において31は液晶分子、32は永久双種子モー
メント、23はねじれの周期を表すピッチ(L) 、3
4は層構造、35は層の法線方向、36は傾き角θを表
す0強誘電性液晶パネルのセル厚(d)がピッチより厚
いとき(d>L)、通常、強誘電性液晶はセル基板表面
の影響がセル中央部まで及ばないため、ねじれ構造を持
った状態で存在する。
In Fig. 3, 31 is the liquid crystal molecule, 32 is the permanent twin seed moment, 23 is the pitch (L) representing the period of twist, 3
4 represents the layer structure, 35 represents the normal direction of the layer, and 36 represents the tilt angle θ.0 When the cell thickness (d) of the ferroelectric liquid crystal panel is thicker than the pitch (d>L), the ferroelectric liquid crystal usually Since the influence of the cell substrate surface does not extend to the center of the cell, it exists in a twisted structure.

しかし、セル厚がピッチより小さいとき(d<L)ねじ
れ構造は基板表面の力でほどかれ第4図のような分子が
基板表面と平行になった二つの領域が現れる。この二つ
の領域は分子の持つ永久双極子モーメントがそれぞれ反
対の方向を向いているものであり、一方は紙面冨から表
方向へもう一方は紙面表から裏方向へ向いている。これ
はそれぞれ層法線に対する分子の傾き角に対応している
However, when the cell thickness is smaller than the pitch (d<L), the twisted structure is unraveled by the force of the substrate surface, and two regions where the molecules are parallel to the substrate surface appear as shown in FIG. In these two regions, the permanent dipole moment of the molecule points in opposite directions, one direction from the edge of the paper toward the front, and the other from the front toward the back of the page. Each of these corresponds to the tilt angle of the molecule with respect to the layer normal.

第4図において41は液晶分子、42は紙面裏方向から
表方向を向いている永久双極子モーメント、43は紙面
表方向から裏方向を向いている永久双極子モーメント、
44は層構造、45は層法線方向、46は傾き角を表し
ている。
In FIG. 4, 41 is a liquid crystal molecule, 42 is a permanent dipole moment pointing from the back of the page to the front, 43 is a permanent dipole moment pointing from the front of the page to the back,
44 represents the layer structure, 45 represents the layer normal direction, and 46 represents the inclination angle.

次に強誘電性液晶の動作原理について図を用いて説明す
る。第5図に一般的な強誘電性液晶パネルの構造を示す
、第5図において51は偏光板、52はガラス基板、5
3は透明電極、54は強誘電性液晶を表している。
Next, the operating principle of the ferroelectric liquid crystal will be explained using diagrams. FIG. 5 shows the structure of a general ferroelectric liquid crystal panel. In FIG. 5, 51 is a polarizing plate, 52 is a glass substrate, 5
3 represents a transparent electrode, and 54 represents a ferroelectric liquid crystal.

このように強誘電性液晶セルにピッチがセル厚よりも大
きな強誘電性液晶(d>L)を封入すると第4図のよう
な二つの領域を持つ状態となる。
In this way, when a ferroelectric liquid crystal cell is filled with ferroelectric liquid crystal whose pitch is larger than the cell thickness (d>L), a state is created in which the cell has two regions as shown in FIG.

このとき紙面裏方向から表方向に電界を印加すると永久
双極子モーメントは全て電界の方向に向き第6図(al
のように分子が全て十〇の傾き角を持った状態となる。
At this time, when an electric field is applied from the back to the front of the paper, all the permanent dipole moments are directed in the direction of the electric field, as shown in Figure 6 (al
The molecules all have a tilt angle of 10, as shown in .

このような状態で偏光板の偏光子(P)の偏光軸方向を
分子の長軸方向に検光子(A)の偏光軸方向を分子の短
軸方向に平行にすると(第゛6図a参照)偏光子(P)
を通過した直線偏光は複屈折を受けずに透過し検光子(
A)により遮られ暗状態が得られる。
In this state, if the polarization axis of the polarizer (P) of the polarizing plate is made parallel to the long axis of the molecule and the polarization axis of the analyzer (A) is made parallel to the short axis of the molecule (see Figure 6a). ) Polarizer (P)
The linearly polarized light that has passed through passes through the analyzer (
A) and a dark state is obtained.

また電界を逆方向に印加すると第6図ib)のように分
子が全て一〇の傾きを持つ状態となり偏光子を通過した
直線偏光は複屈折効果により検光子を通り抜は明状態が
得られる。
Furthermore, when an electric field is applied in the opposite direction, the molecules all have a tilt of 10 as shown in Figure 6 ib), and the linearly polarized light that passes through the polarizer becomes bright when it passes through the analyzer due to the birefringence effect. .

以上のように電界の正負により明暗の状態をそれぞれ得
ることができる。
As described above, bright and dark states can be obtained depending on the positive and negative electric fields.

(文献:福田、竹製、近藤、:強誘電性液晶を使った高
速ディスプレイ、オブトロニクス、9合、64頁、19
83年) 第6図において61は電界の方向、62は分子の永久双
極子モーメント、63は層構造、64は傾き角θ、65
は偏光子(P)、検光子(A)の偏光軸をそれぞれ表し
ている。また、このようにセル厚がピッチより小さいセ
ル(d < L)においては通常ねじれ構造がほどけて
いるため電界を取り除いた後も分子はそのままの状態で
いるというメモリー効果が生じるといわれている。
(Reference: Fukuda, Takesei, Kondo: High-speed display using ferroelectric liquid crystal, Obtronics, 9th edition, p. 64, 19
1983) In Figure 6, 61 is the direction of the electric field, 62 is the permanent dipole moment of the molecule, 63 is the layer structure, 64 is the tilt angle θ, 65
represent the polarization axes of the polarizer (P) and analyzer (A), respectively. Furthermore, in cells where the cell thickness is smaller than the pitch (d < L), the twisted structure is usually unraveled, so it is said that a memory effect occurs in which the molecules remain in the same state even after the electric field is removed.

このようにピッチがセル厚よりも大きい強誘電性液晶を
用いることばメモリー効果を持たせるために有力な方法
であると考えられる。また強誘電性液晶は層構造を有す
るため従来のネマチック液晶に比較すると良好な配向を
得ることが難しいとされていた。特にコレステリフク相
を相転移系列に有する化合物ではコレステリック相のピ
ッチが短いと良好な配向が得難いという問題点があった
In this way, using ferroelectric liquid crystal whose pitch is larger than the cell thickness is considered to be an effective method for creating a word memory effect. Furthermore, since ferroelectric liquid crystals have a layered structure, it has been considered difficult to obtain good alignment compared to conventional nematic liquid crystals. Particularly in compounds having a cholesteric phase in the phase transition series, there is a problem in that it is difficult to obtain good orientation if the pitch of the cholesteric phase is short.

従来、強誘電性液晶のピッチを大きくするためにはコレ
ステリック液晶の場合と同様に左回りのねじれを有する
強誘電性液晶と右回りのねじれを持つ強誘電性液晶を混
合することにより、ねじれを補償してやる方法が用いら
れていた。
Conventionally, in order to increase the pitch of ferroelectric liquid crystals, as in the case of cholesteric liquid crystals, it is possible to increase the twist by mixing ferroelectric liquid crystals with counterclockwise twist and ferroelectric liquid crystals with clockwise twist. A method of compensation was used.

発明が解決しようとする問題点 強誘電性液晶組成物を実際に表示装置に用いるためには
広い温度範囲で強誘電性を示す必要がある。このため多
くの種類の強誘電性液晶材料を混合してやる必要がある
。このときピッチの大きな強誘電性液晶組成物を得るに
は多くの強誘電性液晶材料単体のピッチの大きさ、左右
の向き、その温度依存などをそれぞれ考慮しながら混合
しなければならず、あまり大きなピンチの強誘電性液晶
組成物は得にくくそのため、かなり薄いセル厚のパネル
を用いなければねじれ構造はほどけず、メモリー性など
も低い、表示装置。品位の悪い表示装置しか得られない
という問題点があった。
Problems to be Solved by the Invention In order to actually use a ferroelectric liquid crystal composition in a display device, it is necessary to exhibit ferroelectricity over a wide temperature range. Therefore, it is necessary to mix many types of ferroelectric liquid crystal materials. At this time, in order to obtain a ferroelectric liquid crystal composition with a large pitch, it is necessary to mix many individual ferroelectric liquid crystal materials while taking into consideration the pitch size, left and right orientation, their temperature dependence, etc. Because it is difficult to obtain ferroelectric liquid crystal compositions with large pinches, the twisted structure cannot be unraveled unless a panel with a fairly thin cell thickness is used, and display devices have poor memory performance. There was a problem in that only a display device of poor quality could be obtained.

問題点を解決するための手段 上記の問題点を解決するため、まず、ねじれ方向が逆の
カイラル物質を混合し、ねじれ構造をほどけた、ピンチ
の長い強誘電性液晶組成物を作成する。(この組成物は
温度範囲の狭いものでよいし、強誘電性液晶でなくとも
よい、) 次にもともとカイラルでない、すなわち、ねじれ構造を
全く有さない液晶材料(例えばスメクチックC相を有す
る液晶材料)を混合する。このとき液晶材料単体がねじ
れを有さないためピッチの左右など考えずに混合できる
。そのため温度範囲の広い、ねじれ構造のない液晶組成
物を簡単に得ることができる。
Means for Solving the Problems In order to solve the above problems, first, chiral substances with opposite twist directions are mixed to create a ferroelectric liquid crystal composition with an untwisted structure and a long pinch. (This composition may have a narrow temperature range and may not be a ferroelectric liquid crystal.) Next, a liquid crystal material that is not inherently chiral, that is, has no twisted structure at all (for example, a liquid crystal material having a smectic C phase). ) to mix. At this time, since the liquid crystal material itself has no twist, it can be mixed without considering left and right pitches. Therefore, it is possible to easily obtain a liquid crystal composition that has a wide temperature range and has no twisted structure.

最終的にこの二つの液晶組成物を混合することで広い温
度範囲を有し、ピッチの非常に長い強誘電性液晶組成物
を得ることができ、セル厚の厚いセルでもねじれ構造を
取らない表示品位の良い強誘電性液晶表示装置を得るこ
とができる。
Finally, by mixing these two liquid crystal compositions, it is possible to obtain a ferroelectric liquid crystal composition that has a wide temperature range and a very long pitch, and displays that do not exhibit a twisted structure even in thick cells. A high-quality ferroelectric liquid crystal display device can be obtained.

作用 本発明はもともとねじれ構造を全く有さないカイラルで
ない液晶組成物に対し、右回りと左回りのねじれ方向を
持つカイラル物質を混合した組成物を混合するためねじ
れ構造がほどけたピッチの長い強誘電性液晶組成物が得
られる。
Effect of the present invention In contrast to a non-chiral liquid crystal composition which originally does not have any twisted structure, the composition of the present invention is a mixture of chiral substances with clockwise and counterclockwise twisting directions. A dielectric liquid crystal composition is obtained.

このためこのような強誘電性液晶組成物を用いた表示パ
ネルはセル厚が厚い状態でもねしれ構造は発現せずメモ
リー効果、良好な配向性が得られ、表示品位の良い強誘
電性液晶表示装置を得ることができる。
For this reason, display panels using such ferroelectric liquid crystal compositions do not develop a wrinkling structure even when the cell thickness is large, providing a memory effect and good alignment, resulting in ferroelectric liquid crystal displays with good display quality. You can get the equipment.

実施例 発明の実施例として左回りのカイラル物質として(+)
−DOBAMBC,左回りのカイラル物質として(−)
 −はHOBACPCをそれぞれ用いた構造式と相転移
温度を下に示す。
Example As an example of the invention, as a counterclockwise chiral substance (+)
-DOBAMBC, as a counterclockwise chiral substance (-)
- shows the structural formula and phase transition temperature using HOBACPC respectively.

(+)−DOBAMBC 纂CHCOOCH,CHC,H。(+)-DOBAMBC 纂CHCOOCH,CHC,H.

ネ (ここで*はカイラル炭素を示す) ここでIsoは等方性液体、SmAはスメクチック人相
SmC木は強誘電性を示すスメクチックCカイラル相、
Cryは結晶相を示す。
(Here * indicates chiral carbon) Here, Iso is an isotropic liquid, SmA is a smectic anthropomorphic SmC tree is a smectic C chiral phase showing ferroelectricity,
Cry indicates a crystalline phase.

(−) −HoBACPC =CHC00CH2CHCH8 ネ I  s o ←−−3 m A◆−−一−3m C零
か一一一一これらの混合物のピッチの関連を第1図に示
す。
(-) -HoBACPC =CHC00CH2CHCH8 ne I s o ←--3 m A◆--1-3m C zero or 1111 The pitch relationship of these mixtures is shown in FIG.

これはセル厚200μmのセルでTCA (スメクチッ
クCカイラル相からスメクチックA相への転移点)より
4℃下で測定したものである。
This was measured in a cell with a cell thickness of 200 μm at 4° C. below the TCA (transition point from smectic C chiral phase to smectic A phase).

この第1図よりHOBACPCの重量%(wt%)が約
55wt%の混合物でほぼピンチはほぼ伸びておりねじ
れ構造が消失していることがわかる。
From FIG. 1, it can be seen that in a mixture in which the weight percent (wt%) of HOBACPC is about 55 wt%, the pinch is almost elongated and the twisted structure disappears.

次にカイラルでないスメクチックC相を有する液晶組成
物を作成した。下にそれぞれ単体のwt%と得られた混
合物の相転移温度を示す。
Next, a liquid crystal composition having a non-chiral smectic C phase was prepared. The wt% of each single substance and the phase transition temperature of the resulting mixture are shown below.

79℃ 56℃   30℃ ここでNはネマチフク相を示す。79℃ 56℃ 30℃ Here, N indicates a nematic phase.

次ニD OB A M B C(45wt%)とHOB
ACPC(55wt%)の混合物と上記のエステル系混
合物を重量比20 : 80の割合でそれぞれ混合し、
結果として0℃から70’Cで強誘電性を示すスメクチ
ック液晶を得た。
Next DOB A M B C (45wt%) and HOB
A mixture of ACPC (55 wt%) and the above ester mixture were mixed at a weight ratio of 20:80,
As a result, a smectic liquid crystal exhibiting ferroelectricity from 0°C to 70'C was obtained.

この組成物はセル厚200IJmにおいてもねじれ構造
はみられず良好な配向が得られた。自発分極は約2nC
/cd(20℃)であった。
In this composition, no twisted structure was observed even at a cell thickness of 200 IJm, and good orientation was obtained. Spontaneous polarization is about 2nC
/cd (20°C).

なお強誘電性液晶の配向はガラス基板上にボリイミド系
高分子被膜を設はラビングすることにより行った。
The orientation of the ferroelectric liquid crystal was achieved by applying a polyimide polymer film on a glass substrate and rubbing it.

このようなピッチの長い強誘電性液晶組成物をセル厚3
μmのセルに封入したところ、良好なメモリー効果が得
られた。
A ferroelectric liquid crystal composition with such a long pitch can be used with a cell thickness of 3
When encapsulated in a μm cell, a good memory effect was obtained.

またピッチの測定はラビングによる配向処理を行ったセ
ルに強誘電性液晶組成物を封入し偏光顕微鏡による観察
により行った。
The pitch was measured by enclosing a ferroelectric liquid crystal composition in a cell that had been subjected to alignment treatment by rubbing and observing it with a polarizing microscope.

このようにして作成したねじれ構造を有さない強誘電性
液晶パネルの電圧と透過率との関係を第1図に示す、こ
のときセルは厚は3.5μmで強誘電性液晶組成物は前
述のものを用いた。
Figure 1 shows the relationship between the voltage and the transmittance of the ferroelectric liquid crystal panel that does not have a twisted structure, created in this way.The cell thickness is 3.5 μm, and the ferroelectric liquid crystal composition is as described above. I used the one from

第1図より電圧が0(v)となっても透過率は変化して
おらずメモリー効果があることがわかる。
From FIG. 1, it can be seen that even when the voltage becomes 0 (V), the transmittance does not change and there is a memory effect.

このとき電圧パルスの高さは−20から+20(V)、
パルス幅は1sec−hパルス間は20secとした。
At this time, the height of the voltage pulse is -20 to +20 (V),
The pulse width was 1 sec and the interval between the h pulses was 20 sec.

第1図において1)は電圧、12は透過率曲線を表して
いる。
In FIG. 1, 1) represents a voltage, and 12 represents a transmittance curve.

強誘電性液晶パネルにおいて通常、応答時間はセル厚に
比例するため液晶層の厚さは10μmが限界であると考
えられる。そのため少なくともピンチは10μm以上に
する必要があると思われる。
In a ferroelectric liquid crystal panel, the response time is usually proportional to the cell thickness, so the maximum thickness of the liquid crystal layer is considered to be 10 μm. Therefore, it seems necessary to make the pinch at least 10 μm or more.

発明の効果 逆ねじれを有するそれぞれのカイラル物質を混合するこ
とでねじれ構造がほどけたピンチの長い組成物を作成し
、その組成物とカイラルでない液晶組成物を混合するこ
とでピッチの長い強誘電性液晶組成物を得ることができ
る。この組成物はピッチが長いため表示装置、光シヤツ
ターなどの装置においてメモリー性が高く、また配向性
も良いため表示品位の高い強誘電性液晶表示装置を得る
ことができる。
Effects of the Invention By mixing each chiral substance with a reverse twist, a long-pitch composition with an untwisted structure is created, and by mixing this composition with a non-chiral liquid crystal composition, a long-pitch ferroelectric material is created. A liquid crystal composition can be obtained. Since this composition has a long pitch, it has high memory properties in devices such as display devices and optical shutters, and also has good orientation, so it is possible to obtain a ferroelectric liquid crystal display device with high display quality.

また、カイラル物質は基本的には2種類で済むため従来
のように多くの種類のカイラル物質のピッチをそれぞれ
補償(温度依存も含む)してやる必要がないため簡単に
温度範囲の広い強誘電性液晶表示装置を得ることができ
る。
In addition, because basically only two types of chiral substances are required, there is no need to compensate for the pitches of many types of chiral substances (including temperature dependence), which is required in the past. A display device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は実施例における強誘電性液晶パネルの電圧と透
過率との関係を表した特性図、第2図は実施例における
右回りのカイラル物質と左回りのカイラル物質の混合比
とピッチの相関図、第3図は強誘電性液晶のねじれ構造
を示した模式図、第4図はセル厚がピッチより小さいと
き、ねじれ構造がほどかれたときの強誘電性液晶パネル
の分子の状態を表した模式図、第5図は一般的な強誘電
性液晶パネルの断面図で為)。 第6図(al、 (blは強誘電性液晶パネルに電界を
印加した場合の動作を表した模式図である。 1)・・・・・・電圧曲線、12・・・・・・透過率曲
線、31・・・・・・液晶分子、32・・・・・・永久
双極子モーメント、33・・・・・・ねじれの周期(ピ
ッチ:L)、34・・・・・・層構造、35・・・・・
・層法線方向、36・・・・・・傾き角(θ)、41・
・・・・・液晶分子、42・・・・・・電界の向き(紙
面表から裏方向)、43・・・・・・電界の向き(祇面
裏から表方向)、44・・・・・・N構造、45・・・
・・・層法線方向、46・・・・・・傾き角(θ)、5
1・・・・・・偏光板、52・・・・・・ガラス基板、
53・・・・・・透明電極、54・・・・・・強誘電性
液晶、61・・・・・・電界の方向、62・・・・・・
永久双極子モーメント、63・・・・・・層構造、64
・・・・・・傾き角(θ)、65・・・・・・偏光子(
P)、検光子(A>の偏光軸の方向。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 V 第2図 一’10fHoaAcpc 第4図 、、76 σl 第5図 必
Figure 2 is a characteristic diagram showing the relationship between the voltage and transmittance of the ferroelectric liquid crystal panel in the example, and Figure 2 is the mixing ratio and pitch of the clockwise chiral material and the counterclockwise chiral material in the example. Figure 3 is a schematic diagram showing the twisted structure of a ferroelectric liquid crystal, and Figure 4 shows the state of molecules in a ferroelectric liquid crystal panel when the twisted structure is unwound when the cell thickness is smaller than the pitch. The schematic diagram shown in Figure 5 is a cross-sectional view of a general ferroelectric liquid crystal panel. Figure 6 (al, (bl) is a schematic diagram showing the operation when an electric field is applied to a ferroelectric liquid crystal panel. 1) Voltage curve, 12 Transmittance Curve, 31...Liquid crystal molecule, 32...Permanent dipole moment, 33...Twist period (pitch: L), 34...Layer structure, 35...
・Layer normal direction, 36... Tilt angle (θ), 41・
...Liquid crystal molecules, 42...Direction of electric field (from the front to the back of the paper), 43...Direction of the electric field (from the back of the paper to the front), 44... ...N structure, 45...
...Layer normal direction, 46...Tilt angle (θ), 5
1...Polarizing plate, 52...Glass substrate,
53...Transparent electrode, 54...Ferroelectric liquid crystal, 61...Direction of electric field, 62...
Permanent dipole moment, 63...layer structure, 64
......Tilt angle (θ), 65...Polarizer (
P), the direction of the polarization axis of the analyzer (A>. Agent's name: Patent attorney Toshio Nakao, 1 person Figure 1 V Figure 2 1'10fHoaAcpc Figure 4, 76 σl Figure 5 required

Claims (6)

【特許請求の範囲】[Claims] (1)ねじれ方向がそれぞれ逆のカイラル物質を混合し
た組成物と非カイラルな物質とを混合してなる強誘電性
液晶組成物を用いたことを特徴とする強誘電性液晶表示
装置。
(1) A ferroelectric liquid crystal display device characterized by using a ferroelectric liquid crystal composition formed by mixing a composition of chiral substances having opposite twist directions and a non-chiral substance.
(2)非カイラルな物質がスメクチックC相、スメクチ
ックI相、スメクチックF相またはスメクチックG相の
いずれかを有する液晶であることを特徴とする特許請求
の範囲第(1)項記載の強誘電性液晶表示装置。
(2) Ferroelectricity according to claim (1), wherein the non-chiral substance is a liquid crystal having any one of a smectic C phase, a smectic I phase, a smectic F phase, or a smectic G phase. LCD display device.
(3)ねじれ方向の逆のカイラル物質の組成物が液晶で
あることを特徴とする特許請求の範囲第(1)項記載の
強誘電性液晶表示装置。
(3) A ferroelectric liquid crystal display device according to claim (1), wherein the composition of chiral substances with opposite twist directions is a liquid crystal.
(4)ねじれ方向の逆のカイラル物質の組成物が強誘電
性液晶であることを特徴とする特許請求の範囲第(1)
項記載の強誘電性液晶表示装置。
(4) Claim (1) characterized in that the composition of the chiral substance with the opposite twist direction is a ferroelectric liquid crystal.
The ferroelectric liquid crystal display device described in .
(5)強誘電性液晶組成物の強誘電性液晶相のピッチが
10μmから無限大であることを特徴とする特許請求の
範囲第(1)項記載の強誘電性液晶表示装置。
(5) The ferroelectric liquid crystal display device according to claim (1), wherein the pitch of the ferroelectric liquid crystal phase of the ferroelectric liquid crystal composition is from 10 μm to infinity.
(6)強誘電性液晶組成物においてコレステリック相を
強誘電性液晶相の転移温度よりも高い温度で有するとき
そのコレステリック相のピッチが10μmから無限大で
あることを特徴とする特許請求の範囲第(1)項記載の
強誘電性液晶表示装置。
(6) When the ferroelectric liquid crystal composition has a cholesteric phase at a temperature higher than the transition temperature of the ferroelectric liquid crystal phase, the pitch of the cholesteric phase is from 10 μm to infinity. A ferroelectric liquid crystal display device according to item (1).
JP28347785A 1985-12-17 1985-12-17 Ferroelectric liquid crystal display device Pending JPS62143030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28347785A JPS62143030A (en) 1985-12-17 1985-12-17 Ferroelectric liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28347785A JPS62143030A (en) 1985-12-17 1985-12-17 Ferroelectric liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS62143030A true JPS62143030A (en) 1987-06-26

Family

ID=17666052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28347785A Pending JPS62143030A (en) 1985-12-17 1985-12-17 Ferroelectric liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS62143030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235932A (en) * 1986-04-07 1987-10-16 Canon Inc Liquid crystal element
JPH01500856A (en) * 1986-04-03 1989-03-23 イギリス国 smekchitsuk liquid crystal device
JPH08101368A (en) * 1986-04-03 1996-04-16 Uk Government Smectic liquid crystal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500856A (en) * 1986-04-03 1989-03-23 イギリス国 smekchitsuk liquid crystal device
JPH08101368A (en) * 1986-04-03 1996-04-16 Uk Government Smectic liquid crystal device
JPS62235932A (en) * 1986-04-07 1987-10-16 Canon Inc Liquid crystal element

Similar Documents

Publication Publication Date Title
JP2972892B2 (en) Liquid crystal display device
US6151093A (en) Liquid crystal display device having mixture to suppress changing switching characteristics with temperature of the liquid crystal display device
JP2728095B2 (en) Liquid crystal electro-optical device
US5453861A (en) Chiral smectic liquid crystal device and display apparatus
JPS61255323A (en) Liquid crystal display element and its production
JPS62143030A (en) Ferroelectric liquid crystal display device
JPS62141093A (en) Ferroelectric liquid crystal display unit
JPS62205189A (en) Liquid crystal display device
JPS6337186A (en) Liquid crystal composition
JPS6337187A (en) Liquid crystal display device
JP2839248B2 (en) LCD panel display method
JP2001316667A (en) Liquid crystal display element
TW500945B (en) Polymer assemble liquid crystal for liquid crystal display
JP2845236B2 (en) Manufacturing method of liquid crystal electro-optical element
JP2804763B2 (en) Liquid crystal electro-optical device
JPS63256688A (en) Liquid crystal composition
JPS6250735A (en) Liquid crystal display device
JPS6370227A (en) Ferroelectric liquid crystal display element
JPH0229630A (en) Liquid crystal element
JPH0545929B2 (en)
JPH0816222B2 (en) Ferroelectric liquid crystal composition
JPH1067987A (en) Liquid crystal electrooptical device
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device
JPH01178587A (en) Liquid crystal composition
JPS63254421A (en) Liquid crystal display device