JPS61173469A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61173469A
JPS61173469A JP60013072A JP1307285A JPS61173469A JP S61173469 A JPS61173469 A JP S61173469A JP 60013072 A JP60013072 A JP 60013072A JP 1307285 A JP1307285 A JP 1307285A JP S61173469 A JPS61173469 A JP S61173469A
Authority
JP
Japan
Prior art keywords
resin film
fuel cell
manifold
fuel
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60013072A
Other languages
Japanese (ja)
Inventor
Toshihiko Takeu
竹生 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60013072A priority Critical patent/JPS61173469A/en
Publication of JPS61173469A publication Critical patent/JPS61173469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To ensure the uniform flow of gas even when a resin film is peeled off by covering the metal inner surface of a manifold with a heat resistant, chemical resistant resin film and mounting a resin film holder between the resin film and a cell main body. CONSTITUTION:The inner surface of a manifold 3, 4, 6, 7 made of metal is covered with a heat resistant, chemical resistant resin film 8, and a net-like resin film holder 9 is mounted inside the resin film 8. In a fuel cell having such manifold, even when the resin film 8 is peeled off from the manifold 3, 4, 6, 7, the resin film 8 is supported by the holder 9, and the gas supply to a cell main body 1 is surely maintained.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料として水素、酸化剤として酸素もしくは空
気を用いる燃料電池に係り、特に長寿命化を図り、得る
ようにした燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell that uses hydrogen as a fuel and oxygen or air as an oxidizing agent, and particularly relates to a fuel cell that is designed to have a long service life.

[発明の技術的背景とその問題点] 近年、公害要因が少なくエネルギー変換効率が高い発電
装置として、燃料電池の実用化が大きな期待を集めてお
り、官民による燃料電池の開発が強力に推進されてきて
いる。この燃料電池は通常、電解質を含浸したマトリッ
クスを挾んで一対の多孔質電極を配置するとともに、一
方の電極の背面に水素等の燃料を接触させ、また他方の
電極の背面に酸素等の酸化剤を接触させ、このとき起こ
る電気化学的反応を利用して、上記電極間から電気エネ
ルギーを取り出すようにしたものであり、前記燃料と酸
化剤が供給されている限り高い変換効率で電気エネルギ
ーを取り出すことができるものである。
[Technical background of the invention and its problems] In recent years, there have been great expectations for the practical application of fuel cells as a power generation device with low pollution factors and high energy conversion efficiency, and the development of fuel cells has been strongly promoted by the public and private sectors. It's coming. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte-impregnated matrix, a fuel such as hydrogen is brought into contact with the back of one electrode, and an oxidizing agent such as oxygen is brought into contact with the back of the other electrode. The device is designed to extract electrical energy from between the electrodes using the electrochemical reaction that occurs at this time, and as long as the fuel and oxidizer are supplied, electrical energy is extracted with high conversion efficiency. It is something that can be done.

第6図は、従来の燃料電池の構成例を分解斜視図にて示
したものである。図において、燃料電池本体く以下、単
に電池本体と称する)1は上下の補強材2によってはさ
まれ、電池本体1と対向する一側面には、燃料入口マニ
ホールド3、燃料出口マニホールド4がシール材5を介
してそれぞれ設けられ、電池本体1に燃料を供給、排出
するようになっている。また、上記電池本体1と対向す
る他の一側面には、空気入口マニホールド6、空気出口
マニホールド7がシール材を介して夫々設けられ、電池
本体1に空気を供給、排出するようになっている。さら
に、これらマニホールド3゜4.6.7は気密を保持し
て、これら全体を窒素等の不活性ガスを充填した図示し
ない密閉容器内に収納して運転されるものである。
FIG. 6 is an exploded perspective view showing an example of the configuration of a conventional fuel cell. In the figure, a fuel cell main body (hereinafter simply referred to as the cell main body) 1 is sandwiched between upper and lower reinforcing members 2, and a fuel inlet manifold 3 and a fuel outlet manifold 4 are provided with sealing material on one side facing the cell main body 1. 5, and are configured to supply and discharge fuel to and from the battery body 1. Further, on the other side facing the battery body 1, an air inlet manifold 6 and an air outlet manifold 7 are provided through a sealing material, respectively, to supply and discharge air to and from the battery body 1. . Furthermore, these manifolds 3.degree., 4.6.7 are operated while being kept airtight and housed entirely in a closed container (not shown) filled with an inert gas such as nitrogen.

ところで、上述した燃料電池におけるマニホールドとし
ては、内外の圧力の変動に耐えるような構造を必要とす
るばかりでなく、約200℃の運転温度で使用され、運
転中もしくは運転開始、停止時に、燃料電池の電解質で
あるリン酸の蒸発あるいは飛散によりマニホールド構造
材料が腐食する恐れがある。
By the way, the manifold in the above-mentioned fuel cell not only needs to have a structure that can withstand internal and external pressure fluctuations, but also needs to be used at an operating temperature of about 200°C, so that the fuel cell The manifold structural material may corrode due to evaporation or scattering of phosphoric acid, which is the electrolyte.

そこで最近では、高温のリン酸に対して十分な耐性を有
する材料が少ないことから、耐圧構造のために金属を用
い、かつその内面にフッ素系樹脂(テフロン)をコーテ
ィングする方法が採用されてきている。しかしこの種の
ものでは、樹脂自身の耐熱、耐医薬品性は強くとも、コ
ーティングが剥離し易いという問題がある。これは、コ
ーテイング材の接着用ブライマーとして200℃で利用
できるものが無い事、また線膨張係数が鉄の11.8x
10−’  (f/’C)に対しTFEでは10X10
−5と1桁も異なり、プラント起動・停止時の昇温・降
温による温度変化により剥離しやすい事、更に樹脂自身
のガス透過性によってマニホールドと樹脂との間に到達
し滞留したガスがプラント停止時にマニホールド降圧に
より膨張してコーティングをマニホールドから剥離する
事等による。
Recently, since there are few materials that have sufficient resistance to high-temperature phosphoric acid, a method has been adopted that uses metal for a pressure-resistant structure and coats its inner surface with fluorine-based resin (Teflon). There is. However, in this type of resin, although the resin itself has strong heat resistance and drug resistance, there is a problem in that the coating easily peels off. This is because there is no brimer that can be used at 200℃ for adhesion of coating materials, and the coefficient of linear expansion is 11.8x that of iron.
10-'(f/'C) vs. 10X10 in TFE
It is different from -5 by one order of magnitude, and is easily peeled off due to temperature changes due to temperature rises and falls during plant startup and shutdown.Furthermore, due to the gas permeability of the resin itself, gas that reaches and stagnates between the manifold and the resin will cause the plant to shut down. This is due to the fact that the manifold sometimes expands due to pressure drop and the coating peels off from the manifold.

かかる剥離は、プラントの起動・停止の繰り返しによっ
て徐々に進行し、第7図に断面図を示した様に電池本体
にもたれかかったり垂れ下がったりして電池へのガスの
流通を阻害することになる。
Such peeling progresses gradually as the plant is repeatedly started and stopped, and as shown in the cross-sectional view in Figure 7, it leans against or hangs down on the battery body, obstructing the flow of gas to the battery. .

そして、この電池へのガスの流通が阻害されると、ガス
が流通しない部分の電池で転極現象が発生して電池電圧
は直ちに低下し、プラントの運転を継続した場合は、転
極現象を起こした電池が再使用不能に損傷し、さらにそ
の上下の積層電池が次々に損傷するという問題が生ずる
。従って、コーティングが剥離して電池電圧が低下した
場合には、プラントの運転を停止することが必要となる
。しかしこの場合、剥離したコーティングの除去には種
々の困難があり、プラントの停止期間は長期間となる。
When the flow of gas to this battery is obstructed, a polarity reversal phenomenon occurs in the parts of the battery where gas does not flow, and the battery voltage immediately drops.If the plant continues to operate, the polarity reversal phenomenon will occur. A problem arises in that the damaged battery is damaged to the point where it cannot be reused, and furthermore, the stacked batteries above and below it are damaged one after another. Therefore, if the coating peels off and the battery voltage drops, it is necessary to stop the plant operation. However, in this case, there are various difficulties in removing the peeled off coating, and the plant is shut down for a long period of time.

以上の事態による系統への影響は大きく、燃料電池の発
電設備としての信頼性は著しく低下してしまう。
The above-mentioned situation has a large impact on the power system, and the reliability of the fuel cell as a power generation facility is significantly reduced.

[発明の目的] 本発明は上記の様な問題を解消するために成されたもの
で、その目的は樹脂フィルムが剥離したような場合にも
電池本体へのもたれかかりや垂れ下がりを防止してガス
の均一な流れを確保し、長期間にわたる連続運転を行な
い発電設備としての信頼性向上を図ることが可能な燃料
電池を提供することにある。
[Purpose of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to prevent the resin film from leaning against or hanging down on the battery body even if it peels off, thereby preventing gas from flowing. The object of the present invention is to provide a fuel cell that can ensure uniform flow, perform continuous operation over a long period of time, and improve reliability as a power generation facility.

[発明の概要] 上記目的を達成するために本発明の燃料電池では、マニ
ホールド構造材料としての金属材の内面を耐熱、耐薬品
性の樹脂フィルムで包み込み、かつこの樹脂フィルムと
電池本体との間に樹脂フィルムの保持体を取り付ける構
成として、樹脂フィルムが剥離したような場合もガスの
均一な流れを確保し良好な発電が行ない得るようにした
ことを特徴とする。
[Summary of the Invention] In order to achieve the above object, in the fuel cell of the present invention, the inner surface of a metal material as a manifold structural material is wrapped in a heat-resistant and chemical-resistant resin film, and there is a gap between the resin film and the battery body. The structure is such that a resin film holder is attached to the holder, so that even if the resin film is peeled off, a uniform flow of gas is ensured and good power generation can be performed.

[発明の実施例] 以下、本発明の一実施例を図面を参照して詳細に説明す
る。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、本発明に適用するマニホールドの構成例を斜
視図にて示したもので第6図、第7図と同一部分には同
一符号を付して示している。図において、金属材からな
るマニホールド3,4.6゜7の内面を耐熱、耐医薬品
性の樹脂フィルム8で包み込み、さらにこの樹脂フィル
ム8の内側には編目状の樹脂フィルム保持体9を取付け
ている。
FIG. 1 is a perspective view showing an example of the configuration of a manifold applied to the present invention, and the same parts as in FIGS. 6 and 7 are designated by the same reference numerals. In the figure, the inner surface of a manifold 3, 4.6° 7 made of metal material is wrapped in a heat-resistant and drug-resistant resin film 8, and a mesh-like resin film holder 9 is attached to the inside of this resin film 8. There is.

第2図は、第1図におけるA−A’矢視図を示すもので
ある。図において、樹脂フィルム8は保持体9とマニホ
ールド3,4,6.7との間にある。この保持体9は、
樹脂フィルム8をマニホールド3.4.6.7に押し付
ける必要はなく隙間があっても良い。また、保持体つと
樹脂フィルム8とが接触した場合でも、保持体9の横棒
と樹脂フィルム8との間には隙間があり、樹脂フィルム
8に凝縮したリン酸は保持体9の横棒に滞留することな
く下方へ流れてマニホールド外へ排出されマニホールド
の腐食を防止するようにしている。
FIG. 2 shows a view taken along the line A-A' in FIG. In the figure, the resin film 8 is located between the holder 9 and the manifolds 3, 4, 6.7. This holding body 9 is
It is not necessary to press the resin film 8 against the manifold 3.4.6.7, and there may be a gap. Furthermore, even if the holder 9 comes into contact with the resin film 8, there is a gap between the horizontal bar of the holder 9 and the resin film 8, and the phosphoric acid condensed on the resin film 8 will be transferred to the horizontal bar of the holder 9. It flows downward without being retained and is discharged outside the manifold to prevent corrosion of the manifold.

ざらに保持体9の上下部には、保持体9が電池本体1に
もたれかからず常に垂直な姿勢を保てる様に横棒を設け
ている。ただし、保持体9は直接電池本体1には接触し
ない構成となっており、電池本体1上下部の電気的短絡
を防止するようにしている。
Roughly speaking, horizontal bars are provided at the top and bottom of the holder 9 so that the holder 9 can always maintain a vertical posture without leaning against the battery body 1. However, the holder 9 is configured not to come into direct contact with the battery body 1, so as to prevent an electrical short circuit between the upper and lower parts of the battery body 1.

第3図は上記保持体9の断面図を示すもので、樹脂チュ
ーブ10内に金属棒11を収納して両端を封入し構成し
たものである。第4図に、偏平な金属棒11を樹脂チュ
ーブ1o内に封入した例を示している。
FIG. 3 shows a cross-sectional view of the holder 9, which is constructed by housing a metal rod 11 in a resin tube 10 and enclosing both ends thereof. FIG. 4 shows an example in which a flat metal rod 11 is enclosed in a resin tube 1o.

一方上記において、樹脂フィルム8としてはマニホール
ド3.4.6.7内面に一致する様に予め成形したもの
を使用するのが好ましい。また、使用可能な樹脂フィル
ム8および樹脂チューブ10としては、耐熱、耐薬品性
のフッ素樹脂としてTFE、PFA、PEP等がある。
On the other hand, in the above, it is preferable to use a resin film 8 that has been previously formed so as to match the inner surface of the manifold 3.4.6.7. Furthermore, usable resin film 8 and resin tube 10 include TFE, PFA, PEP, etc. as heat-resistant and chemical-resistant fluororesins.

この場合、マニホールドの構造が複雑になると、TFE
では加工しにくく溶接、はり合わせ等を必要とするが、
PFA、FEP等は加熱によって流動性を持つためフィ
ルムを用いて自由な形状が得られる。さらに、TFE、
PFAは260℃、FEPは200℃での連続使用温度
に耐えられる。一方、フィルムの厚さとしては0.2〜
0.5m程度が望ましい。
In this case, if the manifold structure becomes complicated, TFE
However, it is difficult to process and requires welding, gluing, etc.
Since PFA, FEP, etc. have fluidity when heated, a free shape can be obtained using a film. Furthermore, TFE,
PFA can withstand continuous use temperatures of 260°C and FEP at 200°C. On the other hand, the thickness of the film is 0.2~
Approximately 0.5m is desirable.

また剥離を前提として、エマルジョンもしくは粉体で厚
めのコーティングを行なって一定厚さのフィルムを得る
ようにしてもよい。
Further, on the premise of peeling, a thick coating of emulsion or powder may be applied to obtain a film of a constant thickness.

かかる構成のマニホールドを備えた燃料電池においては
、樹脂フィルム8がマニホールド3.4゜6.7から剥
離した場合でも、樹脂フィルム8は保持体9にもたれか
かるのみとなり、電池本体1へのガス流通阻害を確実に
防止することができる。
In a fuel cell equipped with a manifold having such a configuration, even if the resin film 8 is peeled off from the manifold 3.4°6.7, the resin film 8 only leans against the holder 9, preventing gas flow to the cell body 1. Inhibition can be reliably prevented.

また、樹脂フィルム8が部分的に破損して垂れ下がった
ような場合でも、樹脂フィルム8は保持体9とマニホー
ルド3,4.6.7との間にあり、電池本体1へのガス
流通阻害を確実に防止することができる。
Furthermore, even if the resin film 8 is partially damaged and hangs down, the resin film 8 is between the holder 9 and the manifolds 3, 4, 6, 7, and prevents gas flow to the battery body 1 from being obstructed. This can be reliably prevented.

以上から、従来用いられているマニホールドのテフロン
コーティング剥離は燃料電池の運転条件下では容易に発
生し、その結果電池破損防止のためにプラントの運転を
停止するという事態を引き起こすが、本実施例によれば
かがる問題を全て解決することができる。
From the above, peeling of the Teflon coating on conventionally used manifolds easily occurs under the operating conditions of fuel cells, resulting in a situation where plant operation is stopped to prevent cell damage. According to this, all the problems can be solved.

すなわち、燃料電池の運転温度200℃、リン酸雰囲気
という材料的に厳しい条件下における金属の腐食防止材
料としては、現在テフロンが最も有力である。しかしテ
フロンは、前述の如り200℃において使用可能な接着
用ブライマーが無い事、線膨張係数が鉄と1桁異なりプ
ラントの起動・停止時の昇温・降温による温度変化に′
よって剥離しやすい事、テフロン自身のガス透過性から
マニホールドと]−ティングとの間に滞留したガスがプ
ラント停止時のマニホールド降圧時膨張する事により剥
離する場合がある。そして、この剥離したコーティング
はガスの流通を阻害して電池の転極現象を発生し、運転
を継続すれば電池を損傷して使用不能となる。従来のマ
ニホールドテフロンコーティングの方法では、かかる如
き問題がプラントの起動、停止の繰り返しによって高い
確立で発生する。この点、本実施例のものでは極めて簡
単な方法により、剥離コーティングによるガス流通阻害
を確実に防止することができ、燃料電池の長期間にわた
る連続運転を可能とし、発電設備としての信頼性向上に
大きく寄与するものである。
That is, Teflon is currently the most effective material for preventing metal corrosion under materially severe conditions such as a fuel cell operating temperature of 200° C. and a phosphoric acid atmosphere. However, as mentioned above, Teflon does not have an adhesive brimer that can be used at 200℃, and its coefficient of linear expansion is an order of magnitude different from that of steel, making it susceptible to temperature changes due to temperature rises and falls during plant startup and shutdown.
Therefore, it is easy to peel off, and due to the gas permeability of Teflon itself, the gas stagnant between the manifold and the ring may expand when the manifold pressure is lowered when the plant is stopped, resulting in peeling. This peeled off coating obstructs gas flow and causes polarity reversal of the battery, and if operation continues, the battery will be damaged and become unusable. In the conventional manifold Teflon coating method, such problems are likely to occur due to repeated startup and shutdown of the plant. In this regard, the method used in this example uses an extremely simple method to reliably prevent gas flow obstruction caused by the release coating, enabling continuous operation of the fuel cell over a long period of time, and improving reliability as a power generation facility. This will make a major contribution.

尚、本発明は上記実施例に限定されるものではなく、例
えば樹脂フィルムの保持体9として第5図に斜視図を示
すように、保持体9の上下に突起を有するものを用いる
ようにしても、第2図の場合と同様に電池本体1へのも
たれかかりを防止することができる。また同時に、マニ
ホールド3゜4.6.7の上底、下底部分の樹脂フィル
ムの剥離によるガス流通の阻害も防止することができる
It should be noted that the present invention is not limited to the above-mentioned embodiments, and for example, as the resin film holder 9, as shown in a perspective view in FIG. Also, as in the case of FIG. 2, leaning against the battery body 1 can be prevented. At the same time, it is also possible to prevent obstruction of gas flow due to peeling of the resin film at the upper and lower bottom portions of the manifold 3°4.6.7.

[発明の効果1 以上説明したように本発明によれば、マニホールドの内
面を耐熱、耐薬品性の樹脂フィルムで包み込み、かつこ
の樹脂フィルムと溝上電池本体との間に上記樹脂フィル
ムの保持体を取付ける構成としたので、樹脂フィルムが
剥離したような場合にも電池本体へのもたれかかりや垂
れ下がりを防止してガスの均一な流れを確保し、長期間
に゛わたる連続運転を行ない発電設備としての信頼性向
上を図ることが可能な燃料電池が提供できる。
[Effect of the Invention 1] As explained above, according to the present invention, the inner surface of the manifold is wrapped in a heat-resistant and chemical-resistant resin film, and a holder for the resin film is placed between the resin film and the groove-top battery body. Because it is configured to be attached, even if the resin film peels off, it prevents the battery from leaning against or sagging, ensuring a uniform flow of gas, and ensuring continuous operation over long periods of time, ensuring reliability as a power generation facility. A fuel cell that can improve performance can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図のA −A’断面図、第3図は保持体の断面図、第4
図は偏平な金属棒、樹脂チューブを用いた保持体の断面
図、第5図は本発明の他の実施例を示す斜視図、第6図
は従来の燃料電池を示す分解斜視図、第7図は樹脂フィ
ルム剥離時の電池状態を示す断面図である。 1・・・電池本体、2・・・補強材、3・・・燃料入口
マニホールド、4・・・燃料出口マニホールド、5・・
・シール材、6・・・空気入口マニホールド、7・・・
空気出口マニホールド、8・・・樹脂フィルム、9・・
・保持体、10・・・樹脂チューブ、11・・・金属棒
。 出願人代理人 弁理士 鈴江武彦 13第1図 第 2 図 嶌3図 第4図 第5図 第6図 第7図
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
A-A' sectional view in the figure, Figure 3 is a sectional view of the holder, Figure 4 is a sectional view of the holder,
5 is a perspective view showing another embodiment of the present invention; FIG. 6 is an exploded perspective view showing a conventional fuel cell; FIG. The figure is a cross-sectional view showing the state of the battery when the resin film is peeled off. DESCRIPTION OF SYMBOLS 1...Battery main body, 2...Reinforcing material, 3...Fuel inlet manifold, 4...Fuel outlet manifold, 5...
・Sealing material, 6...Air inlet manifold, 7...
Air outlet manifold, 8... Resin film, 9...
- Holding body, 10...resin tube, 11...metal rod. Applicant's agent Patent attorney Takehiko Suzue 13 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (7)

【特許請求の範囲】[Claims] (1)燃料および酸化剤が流通する燃料流通路および酸
化剤流通路を有する一対のガス拡散電極間に電解質を保
持するマトリックスを配置してなる単位セルを複数個積
層して燃料電池本体を形成し、この燃料電池本体の側面
に前記ガス拡散電極へ燃料および酸化剤を夫々供給およ
び排出するマニホールドを配置し、かつ前記マニホール
ドと燃料電池本体との間をシールして構成される燃料電
池において、前記マニホールドの内面を耐熱、耐薬品性
の樹脂フィルムで包み込み、かつこの樹脂フィルムと前
記燃料電池本体との間に前記樹脂フィルムの保持体を取
付ける構成としたことを特徴とする燃料電池。
(1) A fuel cell body is formed by stacking a plurality of unit cells in which a matrix that holds an electrolyte is arranged between a pair of gas diffusion electrodes that have a fuel flow path and an oxidant flow path through which fuel and oxidizer flow. In a fuel cell configured by arranging a manifold on a side surface of the fuel cell main body for supplying and discharging fuel and oxidizer to and from the gas diffusion electrode, respectively, and sealing between the manifold and the fuel cell main body, A fuel cell characterized in that the inner surface of the manifold is wrapped in a heat-resistant and chemical-resistant resin film, and a holder for the resin film is attached between the resin film and the fuel cell main body.
(2)特許請求の範囲第(1)項記載のものにおいて、
マニホールドは燃料電池本体と対向する一側面にガス供
給排出管を通して燃料を供給、排出する一対のマニホー
ルドを設けると共に、これと直交する他側面にガス供給
排出管を通して酸化剤を供給、排出する一対のマニホー
ルドを設けたものであることを特徴とする燃料電池。
(2) In what is stated in claim (1),
The manifold is provided with a pair of manifolds for supplying and discharging fuel through gas supply and discharge pipes on one side facing the fuel cell main body, and a pair of manifolds for supplying and discharging fuel through gas supply and discharge pipes on the other side perpendicular to this. A fuel cell characterized by being equipped with a manifold.
(3)特許請求の範囲第(1)項記載のものにおいて、
樹脂フィルムはフッ素系樹脂であることを特徴とする燃
料電池。
(3) In what is stated in claim (1),
A fuel cell characterized in that the resin film is a fluororesin.
(4)特許請求の範囲第(1)項記載のものにおいて、
樹脂フィルムはマニホールドにコーティングしたもので
あることを特徴とする燃料電池。
(4) In what is stated in claim (1),
A fuel cell characterized in that a resin film is coated on a manifold.
(5)特許請求の範囲第(1)項記載のものにおいて、
樹脂フィルムはマニホールド内面に一致する様に予め成
形したものであることを特徴とする燃料電池。
(5) In what is stated in claim (1),
A fuel cell characterized in that the resin film is pre-formed to match the inner surface of the manifold.
(6)特許請求の範囲第(1)項記載のものにおいて、
樹脂フィルムの保持体は金属棒をフッ素系樹脂チューブ
内に封入したものであることを特徴とする燃料電池。
(6) In what is stated in claim (1),
A fuel cell characterized in that the resin film holder is a metal rod encapsulated in a fluororesin tube.
(7)特許請求の範囲第(1)項記載のものにおいて、
樹脂フィルムの保持体は金属の網をフッ素系樹脂フィル
ムに封入したものであることを特徴とする燃料電池。
(7) In what is stated in claim (1),
A fuel cell characterized in that the resin film holder is a metal mesh encapsulated in a fluororesin film.
JP60013072A 1985-01-26 1985-01-26 Fuel cell Pending JPS61173469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013072A JPS61173469A (en) 1985-01-26 1985-01-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013072A JPS61173469A (en) 1985-01-26 1985-01-26 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61173469A true JPS61173469A (en) 1986-08-05

Family

ID=11822945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013072A Pending JPS61173469A (en) 1985-01-26 1985-01-26 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61173469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891650A (en) * 2016-08-22 2019-06-14 斗山燃料电池美国股份有限公司 Fuel cell manifold component including self-supporting polymer material lining
US11990649B2 (en) * 2017-11-15 2024-05-21 Audi Ag Fuel cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891650A (en) * 2016-08-22 2019-06-14 斗山燃料电池美国股份有限公司 Fuel cell manifold component including self-supporting polymer material lining
EP3501056A4 (en) * 2016-08-22 2020-04-15 Doosan Fuel Cell America, Inc. Fuel cell manifold assembly including a self-supporting polymer material liner
US10903514B2 (en) 2016-08-22 2021-01-26 Doosan Fuel Cell America, Inc. Fuel cell manifold assembly including a self-supporting polymer material liner
US11990649B2 (en) * 2017-11-15 2024-05-21 Audi Ag Fuel cell device

Similar Documents

Publication Publication Date Title
TW558852B (en) Control apparatus and method of fuel cell set
US6596426B2 (en) Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
US4048383A (en) Combination cell
JP4262780B2 (en) Inclined metal parts for electrochemical cells
JP4210035B2 (en) Multi-element fuel cell system
US7282285B2 (en) Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
JP2012508950A (en) Fuel cell without bipolar plate
US5178969A (en) Fuel cell powerplant system
JP5001495B2 (en) Fuel cell system and fuel cell operating method
JPS61173469A (en) Fuel cell
JP5464015B2 (en) Method for manufacturing electrode catalyst layer, method for manufacturing membrane electrode assembly, and method for manufacturing fuel cell
JP2004152645A (en) Solid oxide fuel cell constituted in honeycomb structure, and fluid supply method in solid oxide fuel cell
US7432002B2 (en) Method for regeneration of performance in a fuel cell
JP2005353561A (en) Fuel cell
JP2008181731A (en) Fuel cell device and electronic device
JPH0775170B2 (en) Solid oxide fuel cell
JP2526390B2 (en) Solid electrolyte fuel cell power generator
JPH07169494A (en) Phosphoric acid type fuel cell power plant
JPS58164161A (en) Operation stopping method of fuel cell
JP2003086206A (en) Fuel cell system
KR100215596B1 (en) Fuel cell of solid electrolyte
JPH07211325A (en) Gas diffusion electrode
JPS6313278A (en) Fuel cell
JPH07235318A (en) Fuel cell
JP2004165063A (en) Humidifier for fuel cell and fuel cell system