JPH0775170B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JPH0775170B2
JPH0775170B2 JP61116872A JP11687286A JPH0775170B2 JP H0775170 B2 JPH0775170 B2 JP H0775170B2 JP 61116872 A JP61116872 A JP 61116872A JP 11687286 A JP11687286 A JP 11687286A JP H0775170 B2 JPH0775170 B2 JP H0775170B2
Authority
JP
Japan
Prior art keywords
fuel cell
fins
heat pipe
heat
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61116872A
Other languages
Japanese (ja)
Other versions
JPS62274562A (en
Inventor
宏 山之内
道雄 高岡
恒明 馬渡
昭太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61116872A priority Critical patent/JPH0775170B2/en
Publication of JPS62274562A publication Critical patent/JPS62274562A/en
Publication of JPH0775170B2 publication Critical patent/JPH0775170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固体電解質型燃料電池に関するもので、特
にその冷却方式に関するものである。
TECHNICAL FIELD The present invention relates to a solid oxide fuel cell, and more particularly to a cooling system thereof.

[固体電解質型燃料電池について] ここで、簡単に固体電解質型燃料電池について説明して
おく。
[Solid Electrolyte Fuel Cell] Here, the solid electrolyte fuel cell will be briefly described.

第1図はその一例の円筒薄膜形のものである[註1]。Fig. 1 shows an example of the cylindrical thin film type [Note 1].

10はその全体、12はその基体管で、多孔質のセラミック
ス(Al2O3など)からなり、サイズは、たとえば21mmφx
500〜700mmL。
10 is the whole, 12 is the base tube, which is made of porous ceramics (Al 2 O 3 etc.) and has a size of, for example, 21 mmφx
500 to 700 mmL.

基体管12上に、燃料電極14,固体電解質16,空気電極18の
各層を順に設けて単位セル20を形成し、インターコネク
タ22を介して直列に接続する。
The fuel cell 14, the solid electrolyte 16, and the air electrode 18 are sequentially provided on the base tube 12 to form a unit cell 20, which are connected in series via an interconnector 22.

なお、燃料電極14は、高い気孔性の耐熱性金属または合
金(Pt,Ni,NiOなど)で作る。
The fuel electrode 14 is made of a highly porous heat-resistant metal or alloy (Pt, Ni, NiO, etc.).

固体電解質16はイットリア安定化ジルコニアなどで作
る。
The solid electrolyte 16 is made of yttria-stabilized zirconia or the like.

空気電極18は酸化ガス雰囲気中で安定で、電池作用に必
要な反応を促進する触媒作用を持つ金属または金属酸化
物(Pt,Ni,Ni−Al,LaCoO3,LaCrO3など)で作る。
Air electrode 18 is stable in an oxidizing gas atmosphere, made of metal or metal oxide having catalytic activity to promote the required reaction cell action (Pt, Ni, Ni-Al , such as LaCoO 3, LaCrO 3).

これら燃料電極14,固体電解質16,空気電極18は、数十〜
100μm程度の薄さにして、極力電池内での電圧降下を
防いでいる(第1図では各厚みを誇張して描いてあ
る)。
These fuel electrode 14, solid electrolyte 16 and air electrode 18 are several tens to
The thickness is made as thin as about 100 μm to prevent voltage drop in the battery as much as possible (in FIG. 1, each thickness is exaggerated).

24は電流リード皮膜、26はアルミナ気密皮膜、28はエン
ドキャップ(銅など)で電気出力端子を兼ねる。
24 is a current lead film, 26 is an alumina airtight film, and 28 is an end cap (copper etc.) that also serves as an electric output terminal.

基体管12内を燃料ガス30(H2,CO)が流れ、空気電極18
の外側を空気32(またはO2)が流れて、約1000℃の高温
で、発電を行う。反応生成ガス34(H2O,CO2)は基体管1
2の端から排出される。
Fuel gas 30 (H 2 , CO) flows through the base tube 12 and the air electrode 18
Air 32 (or O 2 ) flows outside the to generate electricity at a high temperature of approximately 1000 ° C. Reaction product gas 34 (H 2 O, CO 2 ) is the base tube 1
Discharged from the end of 2.

[従来の技術とその問題点] 燃料電池の発電反応は、発熱反応であるので、その動作
温度を適正な値に保つには、冷却が必要である。
[Prior Art and Problems Thereof] Since the power generation reaction of the fuel cell is an exothermic reaction, cooling is necessary to keep the operating temperature at an appropriate value.

一方、冷却にヒートパイプを用いるということは、広く
行われている。
On the other hand, the use of heat pipes for cooling is widely practiced.

そして、燃料電池の冷却への、ヒートパイプの適用は、
リン酸型において、次のように種々提案されている。
And the application of the heat pipe to the cooling of the fuel cell is
Various phosphoric acid types have been proposed as follows.

[その1] 第5図[註2]で、 50は単位セル、 52はガス分離板で、空気の溝54(紙面と直角方向)と水
素ガスの溝56(紙面と平行方向)が設けてある。
[No. 1] In Fig. 5 [Note 2], 50 is a unit cell, 52 is a gas separation plate, and an air groove 54 (direction perpendicular to the paper surface) and a hydrogen gas groove 56 (direction parallel to the paper surface) are provided. is there.

58は冷却板で、冷却空気の溝60が設けてある。また空気
の溝54と水素ガスの溝56も設けてあってガス分離板52を
兼用している。
A cooling plate 58 is provided with a cooling air groove 60. Further, a groove 54 for air and a groove 56 for hydrogen gas are also provided to serve as the gas separating plate 52.

単位セル50とガス分離板52を数枚積層するごとに、冷却
板58を介在させる。
A cooling plate 58 is interposed every time several unit cells 50 and gas separation plates 52 are stacked.

冷却空気の溝60の隔壁62内にヒートパイプ64を埋設する
(紙面と直角方向)。
A heat pipe 64 is embedded in the partition wall 62 of the cooling air groove 60 (direction perpendicular to the plane of the drawing).

そして、冷却空気の溝60内を流れる空気との間で熱交換
を行い、高温の出口側の熱を低温の入口側に伝達する。
Then, heat exchange is performed between the cooling air and the air flowing in the groove 60, and the heat on the high temperature outlet side is transferred to the low temperature inlet side.

・その問題点: 冷却板58にヒートパイプ64を備えるというのは、あくま
でも積層構造の燃料電池の話である。
-Problem: The provision of the heat pipe 64 on the cooling plate 58 is only about the fuel cell having a laminated structure.

固体電解質型燃料電池のような高温(約1000℃)で使用
する場合は、上記のような円筒状になさざるを得ず、そ
のまま技術移入できない。
When used at a high temperature (about 1000 ° C.) such as a solid oxide fuel cell, the technology cannot be transferred as it is because of the above cylindrical shape.

[その2] 電解質保持板そのものにヒートパイプを使用する[註
3]。
[2] Use a heat pipe for the electrolyte holding plate itself [Note 3].

・その問題点: 固体電解質型燃料電池の場合は、上記のように電解質板
が100μmとたいへん薄く、また保持板といったものが
存在しないため、応用できない。
-Problem: In the case of a solid oxide fuel cell, the electrolyte plate is very thin as 100 μm as described above, and there is no holding plate, so it cannot be applied.

[その他] いろいろ提案されているが、固体電解質型燃料電池は動
作温度が100℃と、従来のリン酸型(約200℃)に比べて
非常に高温であり、形状も従来のものに比べて特殊にな
るので、従来型の冷却方式をそのまま適用することはで
きない。
[Others] Various proposals have been made, but the operating temperature of the solid oxide fuel cell is 100 ° C, which is much higher than that of the conventional phosphoric acid type (about 200 ° C), and the shape is also better than that of the conventional one. Due to the special nature, the conventional cooling method cannot be applied as it is.

[問題点を解決するための手段] 第1図のように、 (1)基体管12の内部に、フィン付きのヒートパイプ40
を入れ、フィン46を基体管12の内面に接触させ、 (2)フィン46の形状を、らせん状にするか、または円
板状にしてそれにガスの通路48を設ける、 ことにより、上記の問題の解決を図ったものである。
[Means for Solving Problems] As shown in FIG. 1, (1) a heat pipe 40 with fins is provided inside the base tube 12.
The fin 46 is brought into contact with the inner surface of the base tube 12, and (2) the fin 46 is formed into a spiral shape or a disk shape, and a gas passage 48 is provided in the fin shape. It is intended to solve the problem.

[その説明] 40はヒートパイプの全体を示す(第1図)。[Explanation] Reference numeral 40 denotes the entire heat pipe (FIG. 1).

上記のように、固体電解質型燃料電池10は1000℃という
高温で動作するから、ヒートパイプ40も高温用のもので
なければならない。
As described above, since the solid oxide fuel cell 10 operates at a high temperature of 1000 ° C., the heat pipe 40 must also be for high temperature.

そこで、たとえば第2図のように、密閉容器41を2層構
造とし、外層42を熱伝導性がよくかつ耐食性のあるセラ
ミックス製(SiCなど)とし、内層44を耐熱金属製(タ
ングステン、タンタル、モリブデン、インコネルなど)
としている。
Therefore, for example, as shown in FIG. 2, the closed container 41 has a two-layer structure, the outer layer 42 is made of ceramics (SiC or the like) having good thermal conductivity and corrosion resistance, and the inner layer 44 is made of heat-resistant metal (tungsten, tantalum, Molybdenum, Inconel, etc.)
I am trying.

またフィン46も外層42と同様な材料で作る。The fins 46 are also made of the same material as the outer layer 42.

なお、このフィン46を付けるのは、ヒートパイプ40を
基体管12の直径方向の中央に置くとともに(つまりスペ
ーサの効果)、燃料ガス30の流路を確保し、燃料電池
を効率よく冷却し、また長手方向の温度を均一にする
ためである。
The fins 46 are attached so that the heat pipe 40 is placed at the center of the base tube 12 in the diametrical direction (that is, the effect of the spacer), the flow path of the fuel gas 30 is secured, and the fuel cell is cooled efficiently. This is also to make the temperature in the longitudinal direction uniform.

燃料ガス30の流路を確保するためのフィン46の形状は、
第1図のように、らせん状でもよいが、第2図のように
円板状にして、それに溝状(第3図)、窓状(第4図)
などのガス通路48を設けるようにしてもよい。
The shape of the fin 46 for securing the flow path of the fuel gas 30 is
As shown in FIG. 1, it may have a spiral shape, but as shown in FIG. 2, it has a disk shape, and has a groove shape (FIG. 3) and a window shape (FIG. 4).
A gas passage 48 such as the above may be provided.

動作流体としては、Na,Cs,K,Liなどを使う。Na, Cs, K, Li, etc. are used as the working fluid.

ヒートパイプ40の片端は、第1図のように、原則とし
て、燃料電池10の外に出し、そこで放熱し、排熱を再利
用し、電池システム全体の効率をアップする。
As shown in FIG. 1, one end of the heat pipe 40 is, as a general rule, taken out of the fuel cell 10, where heat is radiated, and exhaust heat is reused to improve the efficiency of the entire cell system.

また、この外に出た部分を利用して、電池のスタートア
ップ時に、効率よく加熱することができる[註4]。
Also, by utilizing the part that has gone out of this, it is possible to efficiently heat the battery at the time of startup [Note 4].

ただし、本発明においては、ヒートパイプ40を燃料電池
10の外に出さない場合も含む。それは、ヒートパイプ40
を燃料電池10の外に出さなくても、電池内の温度分布を
均一にし、発電効率をアップすることができるという作
用があるからである。
However, in the present invention, the heat pipe 40 is used as the fuel cell.
Including the case of not going out of 10. It's a heat pipe 40
This is because the temperature distribution inside the fuel cell can be made uniform and the power generation efficiency can be improved even if the fuel cell is not taken out of the fuel cell 10.

[作 用] 燃料電池10で発生した高熱は、放射およびフィン46によ
る伝導によりヒートパイプ40に入り、外部に排出される
か、または全体の均一化が図られる。
[Operation] The high heat generated in the fuel cell 10 enters the heat pipe 40 by radiation and conduction by the fins 46, is discharged to the outside, or is made uniform throughout.

[発明の効果] (1)ヒートパイプによって効果的に冷却することがで
きる。
[Advantages of the Invention] (1) It can be effectively cooled by a heat pipe.

(2)上記のように、ヒートパイプの片端を燃料電池の
外に出すことにより、排熱として利用でき、電池全体の
効率をアップする。また、発電を開始するときにも、ヒ
ートパイプの片端を加熱することにより、電池を急速に
昇温させることができる。
(2) As described above, by putting one end of the heat pipe out of the fuel cell, it can be used as exhaust heat and the efficiency of the entire cell is improved. Also, when starting power generation, the temperature of the battery can be rapidly raised by heating one end of the heat pipe.

(3)電池内の温度分布を均一にすることにより、電池
全体の発電効率がアップする。
(3) By making the temperature distribution in the battery uniform, the power generation efficiency of the entire battery is improved.

(4)フィン付きのヒートパイプを使い、フィンを基体
管の内面に接触させるようにしたので、ヒートパイプ40
を基体管12の中央に支持することができ、またフィン46
による熱伝導も利用することができる。
(4) The heat pipe with fins was used to bring the fins into contact with the inner surface of the base pipe.
Can be supported in the center of the substrate tube 12 and the fins 46
Heat conduction by can also be used.

(5)フィンの形状を、らせん状にするか、または円板
状にしてそれにガスの通路を設けたので、燃料ガス30ま
たは反応生成ガス34の流れに支障がない。
(5) Since the fins are formed in a spiral shape or a disk shape and provided with gas passages, the flow of the fuel gas 30 or the reaction product gas 34 is not hindered.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の説明図、 第2図は、ヒートパイプ40の一部の断面図、 第3図と第4図は、フィンの形状の説明図、 第5図は従来技術の一例の説明図。 10:燃料電池、12:基体管 14:燃料電池、16:固体電解質 18:空気電極、20:単位セル 30:燃料ガス、32:空気 34:反応生成ガス、40:ヒートパイプ 41:密閉容器、42:外層 44:内層、46:フィン 48:ガス通路 1 is an explanatory view of an embodiment of the present invention, FIG. 2 is a partial sectional view of a heat pipe 40, FIGS. 3 and 4 are explanatory views of the shape of fins, and FIG. Explanatory drawing of an example. 10: Fuel cell, 12: Base tube 14: Fuel cell, 16: Solid electrolyte 18: Air electrode, 20: Unit cell 30: Fuel gas, 32: Air 34: Reaction product gas, 40: Heat pipe 41: Closed container, 42: Outer layer 44: Inner layer, 46: Fin 48: Gas passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭太郎 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (56)参考文献 特開 昭57−77890(JP,A) 実開 昭59−71085(JP,U) 実開 昭60−93860(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shotaro Yoshida 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (56) References JP 57-77890 (JP, A) 59-71085 (JP, U) Actually opened 60-93860 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多孔質セラミックス管を基体管とし、その
外側に、燃料電極、固体電解質、空気電極の層を順に設
けた、円筒形の固体電解質型燃料電池において、 前記基体管の内部に、フィン付きのヒートパイプを入
れ、フィンを基体管の内面に接触させるとともに、フィ
ンの形状を、らせん状にするか、または円板状にしてそ
れにガスの通路を設けたことを特徴とする、固体電解質
型燃料電池。
1. A cylindrical solid electrolyte fuel cell in which a porous ceramics tube is used as a base tube, and a fuel electrode, a solid electrolyte, and an air electrode layer are sequentially provided on the outer side of the base tube. A solid, characterized in that a heat pipe with fins is put in, the fins are brought into contact with the inner surface of the base pipe, and the fins are formed into a spiral shape or a disk shape to provide a gas passage therein. Electrolyte fuel cell.
【請求項2】ヒートパイプの密閉容器は、熱伝導性のよ
いセラミックス製の外層と、耐熱金属製の内層からなる
2層構造で、フィンも熱伝導性のよいセラミックス製で
あることを特徴とする、特許請求の範囲第1項に記載
の、固体電解質型燃料電池。
2. The heat pipe closed container has a two-layer structure comprising an outer layer made of ceramics having good thermal conductivity and an inner layer made of heat-resistant metal, and the fins are also made of ceramics having good thermal conductivity. The solid oxide fuel cell according to claim 1.
JP61116872A 1986-05-21 1986-05-21 Solid oxide fuel cell Expired - Lifetime JPH0775170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116872A JPH0775170B2 (en) 1986-05-21 1986-05-21 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116872A JPH0775170B2 (en) 1986-05-21 1986-05-21 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPS62274562A JPS62274562A (en) 1987-11-28
JPH0775170B2 true JPH0775170B2 (en) 1995-08-09

Family

ID=14697717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116872A Expired - Lifetime JPH0775170B2 (en) 1986-05-21 1986-05-21 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JPH0775170B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528989B2 (en) * 1990-02-15 1996-08-28 日本碍子株式会社 Solid oxide fuel cell
JPH03238760A (en) * 1990-02-15 1991-10-24 Ngk Insulators Ltd Fuel cell of solid electrolyte type
FR2827427B1 (en) * 2001-07-12 2003-11-28 Commissariat Energie Atomique FUEL CELL WITH OPTIMIZED THERMAL MANAGEMENT
JP5010133B2 (en) * 2005-10-24 2012-08-29 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, FUEL CELL AND METHOD FOR PRODUCING FUEL CELL

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777890A (en) * 1980-10-30 1982-05-15 Sanyo Electric Co Ltd Heat conducting pipe
JPS5971085U (en) * 1982-10-28 1984-05-14 昭和アルミニウム株式会社 Grooved rolled fin tube
JPS6093860U (en) * 1983-12-05 1985-06-26 ヤンマー農機株式会社 Mounting structure of heat collection fins in solar water heaters

Also Published As

Publication number Publication date
JPS62274562A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
US4853100A (en) High performance electrochemical energy conversion systems
JP3512411B2 (en) Integration of regenerative and radiative heat in high-temperature electrochemical converters
JP2930326B2 (en) Solid oxide fuel cell
JP2008510288A (en) SOFC stack concept
JP5109252B2 (en) Fuel cell
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP2011129489A (en) Fuel cell module
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
WO2007066619A1 (en) Fuel cell
JP5122319B2 (en) Solid oxide fuel cell
JP2004152645A (en) Solid oxide fuel cell constituted in honeycomb structure, and fluid supply method in solid oxide fuel cell
JP2007200710A (en) Solid oxide fuel cell stack
JP4389493B2 (en) Fuel cell
JPH0775170B2 (en) Solid oxide fuel cell
JP2004139960A (en) Fuel cell
JP3244308B2 (en) Solid oxide fuel cell system
JPH11102721A (en) Ion-exchange membrane fuel cell provided with peripheral cooling device
JP2007005134A (en) Steam generator and fuel cell
JP2004281353A (en) Separator for fuel cell
JP2004335166A (en) Solid oxide fuel cell
JP4389492B2 (en) Fuel cell separator and solid oxide fuel cell
JPH03285268A (en) High temperature type fuel cell and manufacture thereof
JP2004235060A (en) Fuel cell
JP2004103552A (en) Preheating method at start up time of solid electrolyte fuel cell
JPH0294365A (en) Solid electrolyte fuel cell